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Abstract 

 
Processor power consumption produces significant 

heat and can result in higher average operating 
temperatures. High operating temperatures can lead to 
reduced reliability and at times thermal emergencies. 
Previous thermal-aware techniques use Dynamic 
Voltage and Frequency Scaling (DVFS) or 
multithreaded or multicore process migration to 
reduce thermals. However, these methods do not 
gracefully handle scenarios where processors are fully 
loaded, i.e. there are no free threads or cores for 
process scheduling. We propose techniques to reduce 
processor temperature when processors are fully 
loaded. We use system-level compiler support and 
dynamic runtime instrumentation to identify the 
relative thermal intensity of processes. We implement a 
thermal-aware process scheduling algorithm that 
reduces processor thermals while maintaining 
application throughput. We favor “cool” processes by 
reducing time slice allocations for “hot” processes. 
Results indicate that our thermal-aware scheduling 
can reduce processor thermals by up to 3 degrees 
Celsius with little to no loss in application throughput.  
 
1. Introduction 
 

Power consumption is now a critical design 
constraint in high-end system design. Increased power 
consumption produces additional heat which must be 
dissipated by complex cooling systems. It can result in 
higher average operating temperatures which decrease 
the reliability of microelectronics. The Arrhenius 
equation[1] states a temperature increase of 10 degrees 
Celsius results in reliability decrease of an electronic 
device by 50 percent. In a compute server cluster this 
translates to a shorter average life span for each 
electronic device and a shorter mean-time-between-
failure. Therefore, thermal-aware design is playing a 
more and more important role for sustaining high-
performance computing. 

Recent thermal management techniques [2-6] 
include scheduling of power modes such as DVFS and 
scheduling threads and cores in SMTs and CMPs 
respectively to reduce thermal hotspots. Unfortunately, 
DVFS techniques may not provide enough granularity 
for thermal control. Currently, architectures support 
only lock-step frequency changes limiting the amount 
of control possible on real systems. DVFS techniques 
also can hurt performance and are primarily a last 
resort to protect the processor from thermal 
emergencies. Use of DVFS to reduce thermals in 
typical situations may unfairly penalize “cooler” 
running processes by reducing their performance. 
Process migration techniques can provide some relief, 
but there are currently no solutions that suggest process 
migration schedules to improve thermals when all 
cores or threads are active. Nevertheless, in previous 
work we have created tools[7] that identify hot and 
cool running threads. These findings indicate 
scheduling based on temperature in cases when all 
resources are being used could reduce temperature. 
The challenge is to ensure the techniques used do not 
impact performance negatively.  

This paper proposes a thermal control framework 
based on process scheduling (process priority setting) 
to address these challenges. Ours is an architecture 
independent solution, controlling temperature at fine 
(process) granularity. Our techniques operate at the 
user application level and do not require any 
modifications to the operating system kernel. Typical 
research in this area uses simulation for validation such 
as Turandot[8], PowerTimer[9] and HotSpot[10]. In 
these cases, changing system design at any level means 
redesign and revalidation of the thermal models. 
Simulations of this type are also impractical for 
studying thermal optimization techniques in large high-
end clusters. We verify our techniques on a real system 
running with an AMD 64bit Athlon processor. More 
specifically, our approach uses profile-driven 
techniques to obtain process information on resource 
intensity from hardware performance counters. We 
also gather data from temperature sensors. We 
combine this information to identify the relative 



thermal intensity of a process. Whenever processor 
temperature is above a user specified value, we trigger 
our process scheduling algorithm to reset process 
priority to favor “cool” processes. 

The rest of this paper is organized as follows. 
Section 2 discusses related work in the area of 
temperature aware computing. Section 3 gives 
background information. In section 4, we present the 
complete thermal control framework. Section 5 
presents our experimental analysis and results. Finally, 
in section 6 we conclude the paper. 
 
2. Related Work 
 

Many have explored the use of DVFS to maintain 
temperature thresholds and/or reduce temperature. 
Since temperature has strong relationship to processor 
resource usage and DVFS is a fast way to reduce the 
thermal output of all resources, DVFS is very efficient 
for temperature control. Pyla, et al.,[5] showed the 
effects of DVFS on real system thermals and designed 
a runtime PID controller for CPU frequency setting. 
With the supports of the compiler and thermal sensors, 
their work provided fine-grained thermal profiling of 
parallel scientific applications. Isci, et al.,[11] 
presented a system for predicting phases of 
applications at runtime using performance counters. It 
uses a global phase history table predictor leveraged 
from a common branch predictor technique. These 
runtime phase predictions are used to guide DVFS as 
the underlying dynamic management technique. 
Donald, et al.,[3] categorized previous thermal 
management techniques and claimed that the best 
performing thermal control combination includes both 
control-theoretic distributed DVFS and a sensor-based 
migration policy. However DVFS, including 
distributed DVFS which operates on the core scale, 
although it is very effective in decreasing temperature, 
may not provide enough granularity for thermal 
management since most current systems do not support 
independent frequency scaling of cores or threads. Our 
methods operate at finer (process) granularities by 
treating scheduling of cores independently and 
avoiding the use of DVFS.  

Recent research leverages CMPs and SMT cores for 
adaptive thermal control. Powell et al.,[4] discuss 
thread migration as an effective scheme to avoid 
overheating of cores. They achieve this by assigning 
workloads to free SMT contexts on alternative cores, 
leveraging availability of SMT contexts on alternate 
CMP cores to maintain throughput while allowing 
overheated cores to cool. However this method is not 
effective when there are no free SMT contexts on all 
cores. Our work doesn’t depend on CMP and SMT 

architectures and can handle scenarios where all cores 
or threads are in use. 

Donald et al.,[2] claimed that when multiple 
heterogeneous programs are available in the workload, 
thermal-aware instruction issue policies provide a 
significant power-performance benefit. Their work 
selectively manages process execution when there are 
opportunities for adaptively counteracting and 
preventing hot spots assuming hardware support. 
However if programs are homogeneous, their methods 
are ineffective. Our work can identify resource usage 
intensity regardless of process mix and intervenes 
through the process priority mechanism of the 
operating system. Li et al, [12] explain that the 
mechanisms by which SMT and CMP heat up are quite 
different. SMT heat up is primarily caused by localized 
heating while CMP heat up is mainly caused by the 
global impact of increased energy output. They 
conclude non-DVFS localized thermal-management 
can outperform DVFS for SMT. Our approach is 
architecture-independent and thus can be applied in 
both SMT and CMP. 

Bellosa et al,[13] proposed a modified process 
scheduler which can allocate CPU time slices 
according to the power consumption of each task to the 
current temperature level of the processor. In essence, 
both their methods and our methods do thermal 
management by controlling CPU time slice allocation. 
Their thermal model is based on a power model and 
can ignore localized hotspots. On different platform a 
power model must be derived and verified. Since we 
use a combination of hardware counters and thermal 
sensors our methods are more portable and thus don’t 
require model conversion. We additionally use the 
collected data to identify the relative resource intensity 
of processes. This is based on the reasonable 
assumption that resource intensity has strong 
relationship with the temperature. 

 
3. Background 
 

The process scheduling mechanism in a 
multitasking operating system is used to select which 
process to run next. It can be viewed as the subsystem 
of the kernel that divides the finite resources of 
processor time between the running processes on a 
system. By deciding what process can run, the 
scheduler is responsible for best utilizing the system. 
In Section 3.1, we describe the process scheduling 
mechanism in the Linux 2.6 kernel on which our 
framework is based. We note that many operating 
systems use similar scheduling policies. Thus, it is not 
be difficult to port our algorithm onto systems. In 



addition this work uses temperature sensors to capture 
thermal status. We describe the sensors in section 3.2. 
 
3.1. Linux Process Scheduling 

 
Linux uses a priority-based scheduling algorithm. 

The idea is to rank processes based on their need for 
processor time. Processes with a higher priority run 
before those with a lower priority, whereas processes 
with the same priority are scheduled round-robin. On 
Linux, processes with a higher priority also receive a 
longer time slice. The process with time slices 
remaining and the highest priority always runs. Both 
the user and the system may set a process's priority to 
influence the scheduling behavior of the system. 

Processes have an initial priority that is called the 
nice value. This value ranges from -20 to +19 with a 
default of zero. +19 is the lowest and -20 is the highest 
priority. The variable is also called the static priority 
because it does not change from what the user 
specifies. The process scheduler, in turn, bases its 
decisions on the dynamic priority. The dynamic 
priority is calculated as a function of the static priority 
and the task's interactivity. The scheduler computes a 
bonus or penalty in the range -5 to +5 based on the 
interactivity of the task. 

Our thermal management system sets process nice 
values based on process relative resource intensity. In 
this way we can reduce time slice allocation for “hot” 
processes when the temperature is high. Effectively, 
we are interleaving the scheduling of cooler processes 
to reduce the heat created by high intensity hot 
processes. 
  
3.2. Temperature Sensors 
 

We use AMD K8 digital temperature sensors 
embedded in the AMD Athlon processor to report core 
CPU temperature. The sensor is digital, which means it 
does not rely on an external circuit located on the 
motherboard to report temperature. Its value is stored 
in a special register in the processor so software can 
access and read it. This eliminates any inaccuracy that 
can be caused by external motherboard circuits. Many 
processors have this kind of sensor, including Intel 
Core Duo, Core Solo, Pentium E1000 series, Xeon 
series etc. Even for processors that don’t have thermal 
sensors,[14] describes repeatable accurate 
methodologies for measuring the processor-die 
temperature. 

Lee etc. claimed there is temperature differential 
between a hot spot and a region of interest based on 
their distance in the chip and processor packaging 
information[15], i.e. the placement of sensors play an 

important role in reporting the temperature 
measurement of hot spot. We assume the placement of 
K8 thermal sensor in the chip is accurate. Our 
techniques effectively reduce the measured 
temperature. Hence, despite this assumption our results 
show promise for CPU heat reduction. In the worst 
case, our measurements would underestimate the 
temperature reduction. 
 
4. Design and Implementation 
 

Our thermal management framework consists of a 
process profiler and a control daemon shown in 
Figure1. The profiler is a shared library attached to 
application processes to record resource access counts. 
The control daemon is a system service which collects 
process information and reads the temperature sensors. 
It is also used to makes process scheduling decisions. 
We use Performance Application Programming 
Interface (PAPI) [16] to record resource access counts. 
The PAPI events have direct relationship with the CPU 
functional units. So the event numbers reflect access 
intensity. 
 

 
Figure1. Our thermal management system design 

 
The profiler instruments the process to collect 

resource access information. Its functionality includes: 
(1) initializing the PAPI library; (2) managing shared 
memory segment and advertising segment ID for inter-
process communication (IPC); (3) periodically reading 
PAPI event number and updating shared memory area.  

The profiler initializes the PAPI library when it is 
loaded for the first time. It then reads the configuration 
file to get the event names and adds them into the 
event set. The configuration file contains the event 
name registered by the user for profiling. The profiler 



uses the shared memory segment to export event 
numbers to the control daemon. Shared memory is the 
fastest form of IPC. It doesn’t require a system call or 
entry to the kernel and avoids copying data 
unnecessarily. However to access the shared memory, 
its segment ID is needed. We define this directory as 
“segment ID store”, where the profiler creates an 
empty file named with the attaching process’s ID. 
Then a new unique process identity can be formed by 
converting this file pathname to an IPC key. The 
profiler uses this key to create a shared memory 
segment ID. The daemon scans the segment ID store to 
find application processes and form the keys in the 
same way as profilers. The same segment ID can then 
be produced by the daemon to access shared memory. 
The profiler periodically outputs the event numbers 
into shared memory. The time period here is set in 
terms of process virtual time instead of wall clock 
time. This guarantees the events number we record 
actually reflect the resource intensity of a process even 
when the process is set down to a low priority. This 
also avoids the delay delivery of timer signal under 
heavy system loading. To synchronize accesses of 
shared memory and avoid the overhead of locking, we 
use version control. The daemon can detect memory 
updates by looking for changes to version number. If 
the version number is not changed, the daemon uses 
the old data obtained in the previous period as an 
estimate. Whenever the application process finishes, 
the profiler removes its corresponding file from the 
segment ID store. The daemon in turn notices this 
change and deletes the memory segment. So the 
segment ID store is actually a registry. The daemon 
scans it to maintain the process membership for 
thermal management. 

We leverage the constructor/destructor attributes of 
the GNU compiler to attach profilers. These attributes 
cause profiler functions to be called before and after 
the execution of the program. This is easy to 
implement. However, such a technique is compiler 
dependent and requires re-linking applications. 
Alternatively, our system uses Dyninst[17] to attach to 
processes. Dyninst is based on the idea of dynamic 
instrumentation[18] and permits the insertion of code 
at runtime into a program without the need of re-
compilation or re-linkage. Our system includes a 
mutator program based on Dyninst, it takes the profiler 
code snippet and inserts it at the starting point of the 
applications. This method is completely application-
independent. However installing and developing using 
Dyninst is not an easy task and requires extra code 
development (mutator program). Our framework 
supports both these approaches to instrument an 
application. We tried to design the profiler with low 
overhead and avoid performance loss in application 

processes. We choose to sample the performance 
counters once every second, we believe this interval is 
consistent enough to reflect the resource variance. 
Table 1 illustrates the overheads of various NAS serial 
benchmarks. 
 
Table 1. Performance overhead of benchmarks 
with/without the profiler. 
 

Benchmark Time without 
profiler (s) 

Time with 
profiler (s) 

Performance 
loss 

CG.B 246.04 250.53 1.82% 
LU.A 181.77 184.02 1.24% 
SP.A 212.46 213.72 0.593% 
EP.B 131.39 131.81 0.320% 

 
The daemon (figure1) controls thermal 

management. It also periodically scans the segment ID 
store directory for any newly registered processes and 
also cleans the memory segment for a terminated 
process. Whenever a new process is found, the daemon 
records its initial priority and creates its memory 
segment ID. The daemon at regular intervals, (wall 
clock time) reads the thermal sensors and compares it 
with the temperature threshold set by the user. The 
process scheduling routine is triggered whenever the 
temperature is above the threshold. The sampling rate 
for thermal sensors should be longer than the time it 
takes the kernel to update the sensor register and also 
should be short enough to reflect temperature variance. 
As a result, based on our experiments we choose a 
sampling rate of once per second.  

The process scheduling algorithm is intuitive. The 
scheduler first reads the shared memory the exported 
by the currently registered processes. This is done to 
figure out the resource consumption (event numbers) 
within a time interval. The most resource intensive 
process is given a lower static priority than its current 
priority. The difference in each priority level is chosen 
as 5. Since the Linux scheduler computes bonus or 
penalty for the process dynamic priority in the range -5 
to +5, we offset the effects of the Linux scheduler by 
lowering the priority by 5. This is repeated until the 
following two conditions are satisfied. (1) The 
temperature is below the threshold. In which case, the 
processes static priorities are immediately restored 
their original values. In general, we decrement the 
priorities of processes gradually by steps of 5 and reset 
them quickly to avoid any performance loss. (2) All 
registered processes reach their least priority possible. 
In such a scenario there is no room to further 
decrement the process priority. In which case, we set 
process priority to the original value and reshuffle 
scheduling. This is important for the following reason: 



When all processes are resource intensive and thus 
have a lowest priority possible, over a period of time, 
they tend to use resources much less frequently. We 
should favor such processes by assigning a higher 
priority. However according to (1), unless the 
temperature is below the threshold, we do not raise the 
process priority. So our thermal control fails. But by 
reshuffling scheduling, we expose more opportunities 
for process scheduling and avoid this extreme case of 
failure. 

 

 
Figure 2. The algorithm for the daemon 

 
Since the “hot” process’s priority is lowered 

gradually, our thermal management may not react 
quickly enough to avoid thermal emergency. So we use 
the DVFS as our backup policy to fall upon in order to 
guarantee prevention of a thermal emergency. The 
complete scheduling algorithm is shown in the 
Figure2. 
 
5. Evaluation 
 

In this section, we examine the benefits of our 
temperature-aware process scheduling. Depending on 
the event type observed by the profiler, the daemon can 
commit the scheduling for homogenous processes and 
heterogeneous processes. In our system we define 
processes to be “homogenous” when their thermal 
properties can be characterized by repeated access to 
the same resource, such as a floating point unit or a 
fixed-point execution unit etc. For the homogeneous 

processes, we record PAPI event number 
corresponding to the resource they access most 
intensively. For the heterogeneous processes, we 
compute and compare IPC based on the PAPI events. 
When IPC is large enough (>0.5), it generates a rough 
estimate of power dissipation[19] which could provide 
an estimate to temperature variance. So the scheduling 
for homogenous processes actually focuses on the 
thermals of individual functional units, while the 
scheduling for heterogeneous processes focuses on the 
thermals of the whole chip.  
 
Table 2. Benchmarks used for evaluation. 
 
Group 
Label App Int/FP Ex-IPC Homo 

/hetero 
A cg+sixtrack FP+FP L+H Homo 

B sixtrack+art 
+apsi 

FP+FP+
FP H+L+L Homo 

C art+mesa FP+Int L+H Hetero 

D mcf+art 
+gzip 

Int+FP+
Int L+L+H Hetero 

 
We ran our experiments on a HP DX5150 MT PC 

with AMD Athlon64 4000+ 2.4GHz CPU (single core 
without SMT) with 1GB memory and running Linux 
(kernel 2.6.19) kernel. We did not trigger DVFS in the 
case of a thermal emergency and CPU fan speed was 
set to a constant value, this is done to minimize the 
impact of these controls and understand the true effects 
of process priorities on thermals. The benchmarks in 
the experiments are selected from the SPEC CPU 2000 
suite and the NAS parallel benchmark shown in the 
table 2. They are compiled with the default settings 
using gcc (version 3.4.6) for C programs and gfortran 
(version 4.1.0) for Fortran programs. We categorize 
benchmarks into two categories: high and low based on 
their ex-IPC. High ex-IPC reflects high core activity 
and indicates a potential high temperature and vice-
versa. Before running any benchmark we allow the 
computer to sit idle briefly and confirm that it has 
reached its idle operating temperature. The temperature 
threshold for enacting thermal control is set to 50°C. 
Modern commercial microprocessors tend to list 
maximum allowable operating temperatures in the 
range of 70-90 °C[20]. Depending on the position of 
thermal sensors, the overall chip temperature reported 
by the thermal sensors could be 30°C less than the 
temperature of a hot spot[2]. The temperature threshold 
should reflect this difference. In our platform we don’t 
know the exact position of thermal sensors, but we feel 
50°C is a reasonable choice. For the homogenous 
process groups which are floating point intensive in 
our experiments, we record the event number for 



floating point instructions, which in turn correlates to 
the floating point register file access, one of the hottest 
chip portions.  
 
Table 3. Execution times for various groups using 
our system (Time-1) and the default Linux 
scheduler (Time-2). 

 
Figure 3 reveals that when the processor is fully-

loaded the processor temperature is lower under our 
scheduling than under normal Linux scheduling. The 
differences of time for finishing benchmark tasks 
between our scheduling and Linux scheduling is within 
4% thus guarantying the system throughput. There are 
several interesting facts worth noticing. (1) Under our 
scheduling, “cool” processes finish earlier than under 
normal Linux scheduling (shown in the table 3). This is 
due to their relative high priority. After they finish, the 
“hot” processes are allocated more time slices and thus 
can run faster. This helps in compensating the amount 
of time they lost when the “cool” process were 
running. So in our case there is not a significant 
difference in terms of the time between running under 
our scheduling and under normal Linux scheduling. (2) 
When the “cool” processes are finished, the 
temperature rises up much quickly. These are shown 
by the arrow in the figures. At this point, the “hot” 
process gets more time slices to execute and therefore 
burns the processor up. (3) Also, at the point when all 
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Figure 3: Comparison of our scheduling scheme 
with default Linux scheduler. The dotted line 
refers to the finish time under our scheduling. 
benchmarks finish, the final temperature under our 
scheduling scheme could be different from the one 
under the default case. For example, in groups B and 
C, our temperature is lower, while in other cases it is 
higher. Combining (2) and (3), we conclude that given 
enough “cool” processes to schedule it is possible to 
achieve lower temperatures. 
 
6. Conclusion and Future Work 
 

This paper proposes a thermal management 
framework orthogonal to previous thermal-aware 
research. It targets process scheduling when there are 
no free simultaneously-multithreaded contexts on all 

Group Benchmarks Time 1(s) Time 2(s) 
CG 534 981 Group A Sixtrack 1234 1194 
Art 274 387 

Apsi 852 1497 Group B 
Sixtrack 1556 1552 

Art 154 261 Group C 
Mesa 302 303 
Mcf 468 632 
Art 312 366 Group D 

Gzip 639 525 



cores. By leveraging compiler or dynamic runtime 
instrumentation we attach a profiler to an application 
collecting process information (resource intensity). The 
process with high resource intensity is assumed to be 
“hot” and leads to high temperature. According to the 
process information we distribute process priority of 
all registered processes along the allowed range. The 
“hot” process is assigned relatively low priority. In this 
way we indirectly reduce time slice allocation for “hot” 
process and thus cool the processor when it is fully 
loaded. 

Although our work effectively reduces temperature, 
it doesn’t replace previous methods. Our techniques 
target scenarios common to high-performance 
computing where processors are fully loaded, i.e. there 
are no free hardware threads or cores available. In 
addition, as temperature emergencies could happen at 
the scale of millisecond, process scheduling may not 
be fast enough to react against temperature variance. In 
the future we hope to integrate our techniques with 
other scheduling techniques and DVFS techniques to 
improve temperature reduction under various 
conditions. 
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