

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

System-level, Thermal-aware, Fully-loaded Process Scheduling

Dong Li, Hung-Ching Chang, Hari K. Pyla, Kirk W. Cameron
Department of Computer Science, Virginia Tech

{lid, hcchang , harip, cameron} @ vt.edu

Abstract

Processor power consumption produces significant

heat and can result in higher average operating
temperatures. High operating temperatures can lead to
reduced reliability and at times thermal emergencies.
Previous thermal-aware techniques use Dynamic
Voltage and Frequency Scaling (DVFS) or
multithreaded or multicore process migration to
reduce thermals. However, these methods do not
gracefully handle scenarios where processors are fully
loaded, i.e. there are no free threads or cores for
process scheduling. We propose techniques to reduce
processor temperature when processors are fully
loaded. We use system-level compiler support and
dynamic runtime instrumentation to identify the
relative thermal intensity of processes. We implement a
thermal-aware process scheduling algorithm that
reduces processor thermals while maintaining
application throughput. We favor “cool” processes by
reducing time slice allocations for “hot” processes.
Results indicate that our thermal-aware scheduling
can reduce processor thermals by up to 3 degrees
Celsius with little to no loss in application throughput.

1. Introduction

Power consumption is now a critical design
constraint in high-end system design. Increased power
consumption produces additional heat which must be
dissipated by complex cooling systems. It can result in
higher average operating temperatures which decrease
the reliability of microelectronics. The Arrhenius
equation[1] states a temperature increase of 10 degrees
Celsius results in reliability decrease of an electronic
device by 50 percent. In a compute server cluster this
translates to a shorter average life span for each
electronic device and a shorter mean-time-between-
failure. Therefore, thermal-aware design is playing a
more and more important role for sustaining high-
performance computing.

Recent thermal management techniques [2-6]
include scheduling of power modes such as DVFS and
scheduling threads and cores in SMTs and CMPs
respectively to reduce thermal hotspots. Unfortunately,
DVFS techniques may not provide enough granularity
for thermal control. Currently, architectures support
only lock-step frequency changes limiting the amount
of control possible on real systems. DVFS techniques
also can hurt performance and are primarily a last
resort to protect the processor from thermal
emergencies. Use of DVFS to reduce thermals in
typical situations may unfairly penalize “cooler”
running processes by reducing their performance.
Process migration techniques can provide some relief,
but there are currently no solutions that suggest process
migration schedules to improve thermals when all
cores or threads are active. Nevertheless, in previous
work we have created tools[7] that identify hot and
cool running threads. These findings indicate
scheduling based on temperature in cases when all
resources are being used could reduce temperature.
The challenge is to ensure the techniques used do not
impact performance negatively.

This paper proposes a thermal control framework
based on process scheduling (process priority setting)
to address these challenges. Ours is an architecture
independent solution, controlling temperature at fine
(process) granularity. Our techniques operate at the
user application level and do not require any
modifications to the operating system kernel. Typical
research in this area uses simulation for validation such
as Turandot[8], PowerTimer[9] and HotSpot[10]. In
these cases, changing system design at any level means
redesign and revalidation of the thermal models.
Simulations of this type are also impractical for
studying thermal optimization techniques in large high-
end clusters. We verify our techniques on a real system
running with an AMD 64bit Athlon processor. More
specifically, our approach uses profile-driven
techniques to obtain process information on resource
intensity from hardware performance counters. We
also gather data from temperature sensors. We
combine this information to identify the relative

thermal intensity of a process. Whenever processor
temperature is above a user specified value, we trigger
our process scheduling algorithm to reset process
priority to favor “cool” processes.

The rest of this paper is organized as follows.
Section 2 discusses related work in the area of
temperature aware computing. Section 3 gives
background information. In section 4, we present the
complete thermal control framework. Section 5
presents our experimental analysis and results. Finally,
in section 6 we conclude the paper.

2. Related Work

Many have explored the use of DVFS to maintain
temperature thresholds and/or reduce temperature.
Since temperature has strong relationship to processor
resource usage and DVFS is a fast way to reduce the
thermal output of all resources, DVFS is very efficient
for temperature control. Pyla, et al.,[5] showed the
effects of DVFS on real system thermals and designed
a runtime PID controller for CPU frequency setting.
With the supports of the compiler and thermal sensors,
their work provided fine-grained thermal profiling of
parallel scientific applications. Isci, et al.,[11]
presented a system for predicting phases of
applications at runtime using performance counters. It
uses a global phase history table predictor leveraged
from a common branch predictor technique. These
runtime phase predictions are used to guide DVFS as
the underlying dynamic management technique.
Donald, et al.,[3] categorized previous thermal
management techniques and claimed that the best
performing thermal control combination includes both
control-theoretic distributed DVFS and a sensor-based
migration policy. However DVFS, including
distributed DVFS which operates on the core scale,
although it is very effective in decreasing temperature,
may not provide enough granularity for thermal
management since most current systems do not support
independent frequency scaling of cores or threads. Our
methods operate at finer (process) granularities by
treating scheduling of cores independently and
avoiding the use of DVFS.

Recent research leverages CMPs and SMT cores for
adaptive thermal control. Powell et al.,[4] discuss
thread migration as an effective scheme to avoid
overheating of cores. They achieve this by assigning
workloads to free SMT contexts on alternative cores,
leveraging availability of SMT contexts on alternate
CMP cores to maintain throughput while allowing
overheated cores to cool. However this method is not
effective when there are no free SMT contexts on all
cores. Our work doesn’t depend on CMP and SMT

architectures and can handle scenarios where all cores
or threads are in use.

Donald et al.,[2] claimed that when multiple
heterogeneous programs are available in the workload,
thermal-aware instruction issue policies provide a
significant power-performance benefit. Their work
selectively manages process execution when there are
opportunities for adaptively counteracting and
preventing hot spots assuming hardware support.
However if programs are homogeneous, their methods
are ineffective. Our work can identify resource usage
intensity regardless of process mix and intervenes
through the process priority mechanism of the
operating system. Li et al, [12] explain that the
mechanisms by which SMT and CMP heat up are quite
different. SMT heat up is primarily caused by localized
heating while CMP heat up is mainly caused by the
global impact of increased energy output. They
conclude non-DVFS localized thermal-management
can outperform DVFS for SMT. Our approach is
architecture-independent and thus can be applied in
both SMT and CMP.

Bellosa et al,[13] proposed a modified process
scheduler which can allocate CPU time slices
according to the power consumption of each task to the
current temperature level of the processor. In essence,
both their methods and our methods do thermal
management by controlling CPU time slice allocation.
Their thermal model is based on a power model and
can ignore localized hotspots. On different platform a
power model must be derived and verified. Since we
use a combination of hardware counters and thermal
sensors our methods are more portable and thus don’t
require model conversion. We additionally use the
collected data to identify the relative resource intensity
of processes. This is based on the reasonable
assumption that resource intensity has strong
relationship with the temperature.

3. Background

The process scheduling mechanism in a
multitasking operating system is used to select which
process to run next. It can be viewed as the subsystem
of the kernel that divides the finite resources of
processor time between the running processes on a
system. By deciding what process can run, the
scheduler is responsible for best utilizing the system.
In Section 3.1, we describe the process scheduling
mechanism in the Linux 2.6 kernel on which our
framework is based. We note that many operating
systems use similar scheduling policies. Thus, it is not
be difficult to port our algorithm onto systems. In

addition this work uses temperature sensors to capture
thermal status. We describe the sensors in section 3.2.

3.1. Linux Process Scheduling

Linux uses a priority-based scheduling algorithm.

The idea is to rank processes based on their need for
processor time. Processes with a higher priority run
before those with a lower priority, whereas processes
with the same priority are scheduled round-robin. On
Linux, processes with a higher priority also receive a
longer time slice. The process with time slices
remaining and the highest priority always runs. Both
the user and the system may set a process's priority to
influence the scheduling behavior of the system.

Processes have an initial priority that is called the
nice value. This value ranges from -20 to +19 with a
default of zero. +19 is the lowest and -20 is the highest
priority. The variable is also called the static priority
because it does not change from what the user
specifies. The process scheduler, in turn, bases its
decisions on the dynamic priority. The dynamic
priority is calculated as a function of the static priority
and the task's interactivity. The scheduler computes a
bonus or penalty in the range -5 to +5 based on the
interactivity of the task.

Our thermal management system sets process nice
values based on process relative resource intensity. In
this way we can reduce time slice allocation for “hot”
processes when the temperature is high. Effectively,
we are interleaving the scheduling of cooler processes
to reduce the heat created by high intensity hot
processes.

3.2. Temperature Sensors

We use AMD K8 digital temperature sensors
embedded in the AMD Athlon processor to report core
CPU temperature. The sensor is digital, which means it
does not rely on an external circuit located on the
motherboard to report temperature. Its value is stored
in a special register in the processor so software can
access and read it. This eliminates any inaccuracy that
can be caused by external motherboard circuits. Many
processors have this kind of sensor, including Intel
Core Duo, Core Solo, Pentium E1000 series, Xeon
series etc. Even for processors that don’t have thermal
sensors,[14] describes repeatable accurate
methodologies for measuring the processor-die
temperature.

Lee etc. claimed there is temperature differential
between a hot spot and a region of interest based on
their distance in the chip and processor packaging
information[15], i.e. the placement of sensors play an

important role in reporting the temperature
measurement of hot spot. We assume the placement of
K8 thermal sensor in the chip is accurate. Our
techniques effectively reduce the measured
temperature. Hence, despite this assumption our results
show promise for CPU heat reduction. In the worst
case, our measurements would underestimate the
temperature reduction.

4. Design and Implementation

Our thermal management framework consists of a
process profiler and a control daemon shown in
Figure1. The profiler is a shared library attached to
application processes to record resource access counts.
The control daemon is a system service which collects
process information and reads the temperature sensors.
It is also used to makes process scheduling decisions.
We use Performance Application Programming
Interface (PAPI) [16] to record resource access counts.
The PAPI events have direct relationship with the CPU
functional units. So the event numbers reflect access
intensity.

Figure1. Our thermal management system design

The profiler instruments the process to collect

resource access information. Its functionality includes:
(1) initializing the PAPI library; (2) managing shared
memory segment and advertising segment ID for inter-
process communication (IPC); (3) periodically reading
PAPI event number and updating shared memory area.

The profiler initializes the PAPI library when it is
loaded for the first time. It then reads the configuration
file to get the event names and adds them into the
event set. The configuration file contains the event
name registered by the user for profiling. The profiler

uses the shared memory segment to export event
numbers to the control daemon. Shared memory is the
fastest form of IPC. It doesn’t require a system call or
entry to the kernel and avoids copying data
unnecessarily. However to access the shared memory,
its segment ID is needed. We define this directory as
“segment ID store”, where the profiler creates an
empty file named with the attaching process’s ID.
Then a new unique process identity can be formed by
converting this file pathname to an IPC key. The
profiler uses this key to create a shared memory
segment ID. The daemon scans the segment ID store to
find application processes and form the keys in the
same way as profilers. The same segment ID can then
be produced by the daemon to access shared memory.
The profiler periodically outputs the event numbers
into shared memory. The time period here is set in
terms of process virtual time instead of wall clock
time. This guarantees the events number we record
actually reflect the resource intensity of a process even
when the process is set down to a low priority. This
also avoids the delay delivery of timer signal under
heavy system loading. To synchronize accesses of
shared memory and avoid the overhead of locking, we
use version control. The daemon can detect memory
updates by looking for changes to version number. If
the version number is not changed, the daemon uses
the old data obtained in the previous period as an
estimate. Whenever the application process finishes,
the profiler removes its corresponding file from the
segment ID store. The daemon in turn notices this
change and deletes the memory segment. So the
segment ID store is actually a registry. The daemon
scans it to maintain the process membership for
thermal management.

We leverage the constructor/destructor attributes of
the GNU compiler to attach profilers. These attributes
cause profiler functions to be called before and after
the execution of the program. This is easy to
implement. However, such a technique is compiler
dependent and requires re-linking applications.
Alternatively, our system uses Dyninst[17] to attach to
processes. Dyninst is based on the idea of dynamic
instrumentation[18] and permits the insertion of code
at runtime into a program without the need of re-
compilation or re-linkage. Our system includes a
mutator program based on Dyninst, it takes the profiler
code snippet and inserts it at the starting point of the
applications. This method is completely application-
independent. However installing and developing using
Dyninst is not an easy task and requires extra code
development (mutator program). Our framework
supports both these approaches to instrument an
application. We tried to design the profiler with low
overhead and avoid performance loss in application

processes. We choose to sample the performance
counters once every second, we believe this interval is
consistent enough to reflect the resource variance.
Table 1 illustrates the overheads of various NAS serial
benchmarks.

Table 1. Performance overhead of benchmarks
with/without the profiler.

Benchmark Time without
profiler (s)

Time with
profiler (s)

Performance
loss

CG.B 246.04 250.53 1.82%
LU.A 181.77 184.02 1.24%
SP.A 212.46 213.72 0.593%
EP.B 131.39 131.81 0.320%

The daemon (figure1) controls thermal

management. It also periodically scans the segment ID
store directory for any newly registered processes and
also cleans the memory segment for a terminated
process. Whenever a new process is found, the daemon
records its initial priority and creates its memory
segment ID. The daemon at regular intervals, (wall
clock time) reads the thermal sensors and compares it
with the temperature threshold set by the user. The
process scheduling routine is triggered whenever the
temperature is above the threshold. The sampling rate
for thermal sensors should be longer than the time it
takes the kernel to update the sensor register and also
should be short enough to reflect temperature variance.
As a result, based on our experiments we choose a
sampling rate of once per second.

The process scheduling algorithm is intuitive. The
scheduler first reads the shared memory the exported
by the currently registered processes. This is done to
figure out the resource consumption (event numbers)
within a time interval. The most resource intensive
process is given a lower static priority than its current
priority. The difference in each priority level is chosen
as 5. Since the Linux scheduler computes bonus or
penalty for the process dynamic priority in the range -5
to +5, we offset the effects of the Linux scheduler by
lowering the priority by 5. This is repeated until the
following two conditions are satisfied. (1) The
temperature is below the threshold. In which case, the
processes static priorities are immediately restored
their original values. In general, we decrement the
priorities of processes gradually by steps of 5 and reset
them quickly to avoid any performance loss. (2) All
registered processes reach their least priority possible.
In such a scenario there is no room to further
decrement the process priority. In which case, we set
process priority to the original value and reshuffle
scheduling. This is important for the following reason:

When all processes are resource intensive and thus
have a lowest priority possible, over a period of time,
they tend to use resources much less frequently. We
should favor such processes by assigning a higher
priority. However according to (1), unless the
temperature is below the threshold, we do not raise the
process priority. So our thermal control fails. But by
reshuffling scheduling, we expose more opportunities
for process scheduling and avoid this extreme case of
failure.

Figure 2. The algorithm for the daemon

Since the “hot” process’s priority is lowered

gradually, our thermal management may not react
quickly enough to avoid thermal emergency. So we use
the DVFS as our backup policy to fall upon in order to
guarantee prevention of a thermal emergency. The
complete scheduling algorithm is shown in the
Figure2.

5. Evaluation

In this section, we examine the benefits of our
temperature-aware process scheduling. Depending on
the event type observed by the profiler, the daemon can
commit the scheduling for homogenous processes and
heterogeneous processes. In our system we define
processes to be “homogenous” when their thermal
properties can be characterized by repeated access to
the same resource, such as a floating point unit or a
fixed-point execution unit etc. For the homogeneous

processes, we record PAPI event number
corresponding to the resource they access most
intensively. For the heterogeneous processes, we
compute and compare IPC based on the PAPI events.
When IPC is large enough (>0.5), it generates a rough
estimate of power dissipation[19] which could provide
an estimate to temperature variance. So the scheduling
for homogenous processes actually focuses on the
thermals of individual functional units, while the
scheduling for heterogeneous processes focuses on the
thermals of the whole chip.

Table 2. Benchmarks used for evaluation.

Group
Label App Int/FP Ex-IPC Homo

/hetero
A cg+sixtrack FP+FP L+H Homo

B sixtrack+art
+apsi

FP+FP+
FP H+L+L Homo

C art+mesa FP+Int L+H Hetero

D mcf+art
+gzip

Int+FP+
Int L+L+H Hetero

We ran our experiments on a HP DX5150 MT PC

with AMD Athlon64 4000+ 2.4GHz CPU (single core
without SMT) with 1GB memory and running Linux
(kernel 2.6.19) kernel. We did not trigger DVFS in the
case of a thermal emergency and CPU fan speed was
set to a constant value, this is done to minimize the
impact of these controls and understand the true effects
of process priorities on thermals. The benchmarks in
the experiments are selected from the SPEC CPU 2000
suite and the NAS parallel benchmark shown in the
table 2. They are compiled with the default settings
using gcc (version 3.4.6) for C programs and gfortran
(version 4.1.0) for Fortran programs. We categorize
benchmarks into two categories: high and low based on
their ex-IPC. High ex-IPC reflects high core activity
and indicates a potential high temperature and vice-
versa. Before running any benchmark we allow the
computer to sit idle briefly and confirm that it has
reached its idle operating temperature. The temperature
threshold for enacting thermal control is set to 50°C.
Modern commercial microprocessors tend to list
maximum allowable operating temperatures in the
range of 70-90 °C[20]. Depending on the position of
thermal sensors, the overall chip temperature reported
by the thermal sensors could be 30°C less than the
temperature of a hot spot[2]. The temperature threshold
should reflect this difference. In our platform we don’t
know the exact position of thermal sensors, but we feel
50°C is a reasonable choice. For the homogenous
process groups which are floating point intensive in
our experiments, we record the event number for

floating point instructions, which in turn correlates to
the floating point register file access, one of the hottest
chip portions.

Table 3. Execution times for various groups using
our system (Time-1) and the default Linux
scheduler (Time-2).

Figure 3 reveals that when the processor is fully-

loaded the processor temperature is lower under our
scheduling than under normal Linux scheduling. The
differences of time for finishing benchmark tasks
between our scheduling and Linux scheduling is within
4% thus guarantying the system throughput. There are
several interesting facts worth noticing. (1) Under our
scheduling, “cool” processes finish earlier than under
normal Linux scheduling (shown in the table 3). This is
due to their relative high priority. After they finish, the
“hot” processes are allocated more time slices and thus
can run faster. This helps in compensating the amount
of time they lost when the “cool” process were
running. So in our case there is not a significant
difference in terms of the time between running under
our scheduling and under normal Linux scheduling. (2)
When the “cool” processes are finished, the
temperature rises up much quickly. These are shown
by the arrow in the figures. At this point, the “hot”
process gets more time slices to execute and therefore
burns the processor up. (3) Also, at the point when all

0 100 200 300 400 500 600
35

40

45

50

55

60

65

Time (s)

T
em

pe
ra

tu
re

 (
°C

)

Group A: cg+sixtrack

Under our scheduling
Under normal Linux scheduling

Finish cg

0 200 400 600 800 1000 1200 1400 1600 1800
35

40

45

50

55

60

65

70

75

80

85

Time (s)

T
em

pe
ra

tu
re

 (
°C

)

Group B: sixtrack+art+apsi

Under normal Linux
scheduling
Under our scheduling

Finish art Finish
apsi

Finish
sixtrack

0 50 100 150 200 250 300
35

40

45

50

55

60

65

70

Time(s)

T
em

pe
ra

tu
re

(°
C

)

Group C: art+mesa

Under our scheduling
Under normal Linux scheduling

Finish art Finish mesa

0 100 200 300 400 500 600
35

40

45

50

55

60

65

70

75

Group D: mcf+art+gzip

Time(s)

T
em

p
er

a
tu

re
 (

°C
)

Under our scheduling
Under normal Linux scheduling

Finish art Finish mcf Finish gzip

Figure 3: Comparison of our scheduling scheme
with default Linux scheduler. The dotted line
refers to the finish time under our scheduling.
benchmarks finish, the final temperature under our
scheduling scheme could be different from the one
under the default case. For example, in groups B and
C, our temperature is lower, while in other cases it is
higher. Combining (2) and (3), we conclude that given
enough “cool” processes to schedule it is possible to
achieve lower temperatures.

6. Conclusion and Future Work

This paper proposes a thermal management
framework orthogonal to previous thermal-aware
research. It targets process scheduling when there are
no free simultaneously-multithreaded contexts on all

Group Benchmarks Time 1(s) Time 2(s)
CG 534 981 Group A Sixtrack 1234 1194
Art 274 387

Apsi 852 1497 Group B
Sixtrack 1556 1552

Art 154 261 Group C
Mesa 302 303
Mcf 468 632
Art 312 366 Group D

Gzip 639 525

cores. By leveraging compiler or dynamic runtime
instrumentation we attach a profiler to an application
collecting process information (resource intensity). The
process with high resource intensity is assumed to be
“hot” and leads to high temperature. According to the
process information we distribute process priority of
all registered processes along the allowed range. The
“hot” process is assigned relatively low priority. In this
way we indirectly reduce time slice allocation for “hot”
process and thus cool the processor when it is fully
loaded.

Although our work effectively reduces temperature,
it doesn’t replace previous methods. Our techniques
target scenarios common to high-performance
computing where processors are fully loaded, i.e. there
are no free hardware threads or cores available. In
addition, as temperature emergencies could happen at
the scale of millisecond, process scheduling may not
be fast enough to react against temperature variance. In
the future we hope to integrate our techniques with
other scheduling techniques and DVFS techniques to
improve temperature reduction under various
conditions.

7. References

[1] A. McNaught, " Compendium of Chemical

Terminology: IUPAC recommendations," 2nd ed:
Oxford, 1997.

[2] J. Donald and M. Martonosi, "Leveraging
Simultaneous Multithreading for Adaptive Thermal
Control," in 2nd workshop on Temperature-Aware
Computer Systems(TACS-2), 2005.

[3] J. Donald and M. Martonosi, "Techniques for
Multicore Thermal Management: Classification
and New Exploration," in 33rd International
Symposium on Computer Architecture (ISCA-33),
2006.

[4] M. D. Powell, M. Gomaa, and T. N. Vijaykumar,
"Heat-and-Run: Leveraging SMT and CMP to
Manage Power Density through Operating
System," in International Conference on
Architectural Support for Programming Languages
and Operating Systems(ASPLOS), Boston, MA,
2004.

[5] H. K. Pyla, D. Li, and K. W. Cameron, "Poster:
Thermal-aware High-performance Computing
Using TEMPEST," in 19th IEEE/ACM
International Conference on High Performance
Computing and Communications (SC07), Reno,
NV, 2007.

[6] A. Snavely and D. M. Tullsen, "Symbiotic Job
scheduling for a Simultaneous Multithreading
Processor," in International Conference on
Architectural Support for Programming Languages
and Operating Systems(ASPLOS), 2000, pp. 234-
244.

[7] H. K. Pyla, "Tempest: A Framework for High
Performance Thermal-Aware Distributed
Computing," in Computer Science. vol. Masters in
Computer Science and Applications Blacksburg:
Virginia, 2007, p. 79.

[8] M. Moudgill, J.-D. Wellman, and J. H. Moreno,
"Environment for PowerPC microarchitecture
exploration," IEEE Micro, vol. 19, pp. 15-25, 1999.

[9] D. M. Brooks, P. Bose, S. E. Schuster, H.
Jacobson, P. N. Kudva, A. Buyuktosunoglu, J.-D.
Wellman, V. Zyuban, M. Gupta, and P. W. Cook,
"Power-Aware Microarchitecture: Design and
Modeling Challenges for Next-Generation
Microprocessors," IEEE Micro, 2000.

[10] K. Skadron, T. Abdelzaher, and M. R. Stan,
"Control-Theoretic Techniques and Thermal-RC
Modeling for Accurate and Localized Dynamic
Thermal Management," in Eighth International
Symposium on High-Performance Computer
Architecture, 2002, pp. 17-28.

[11] C. Isci, G. Contreras, and M. Martonosi, "Live,
Runtime Phase Monitoring and Prediction on Real
Systems with Application to Dynamic Power
Management," in 39th ACM/IEEE International
Symposium on Microarchitecture (MICRO-39),
2006.

[12] Y. Li, D. Brooksz, Z. Huyy, and K. Skadron,
"Performance, Energy, and Thermal
Considerations for SMT and CMP Architectures,"
in 11th International Symposium on High-
Performance Computer Architecture (HPCA-11),
2005, pp. 71-82.

[13] F. Bellosa, S. Kellner, M. Waitz, and A. Weissel,
"Event-Driven Energy Accounting for Dynamic
Thermal Management," in Proceedings of the
Workshop on Compilers and Operating Systems for
Low Power, 2003.

[14] AMD, "Methodologies for Measuring Temperature
on AMD Athlon and AMD Duron Processors." vol.
2008.

[15] K.-J. Lee, K. Skadron, and W. Huang, "Analytical
Model for Sensor Placement on Microprocessors,"
in International Conference on Computer Design:
VLSI in Computers and Processors (ICCD). 2005,
pp. 24-27.

[16] "Performance Application Programming Interface,"
p. http://icl.cs.utk.edu/papi/.

[17] "An Application Program Interface (API) for
Runtime Code Generation."

[18] J. K. Hollingsworth, B. P. Miller, and J. Cargille,
"Dynamic Program Instrumentation for Scalable
Performance Tools," in Scalable High
Performance Computing Conference, 1994, pp.
841-850.

[19] W. L. Bircher, J. Law, M. Valluri, and L. K. John,
"Effective Use of Performance Monitoring
Counters for Run-Time Prediction of Power",
2004.

[20] "CPU Maximum Operating Temperatures."

