
S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 263–273, 2008.
© Springer-Verlag Berlin Heidelberg 2008

CG-Cell: An NPB Benchmark Implementation on Cell
Broadband Engine

Dong Li, Song Huang, and Kirk Cameron

Department of Computer Science
Virginia Tech

{lid,huangs,Cameron}@cs.vt.edu

Abstract. The NAS Conjugate Gradient (CG) benchmark is an important
scientific kernel used to evaluate machine performance and compare
characteristics of different programming models. CG represents a computation
and communication paradigm for sparse linear algebra, which is common in
scientific fields. In this paper, we present the porting, performance optimization
and evaluation of CG on Cell Broadband Engine (CBE). CBE, a heterogeneous
multi-core processor with SIMD accelerators, is gaining attention and being
deployed on supercomputers and high-end server architectures. We take
advantages of CBE’s particular architecture to optimize the performance of CG.
We also quantify these optimizations and assess their impact. In addition, by
exploring distributed nature of CBE, we present trade-off between parallelization
and serialization, and Cell-specific data scheduling in its memory hierarchy. Our
final result shows that the CG-Cell can achieve more than 4 times speedup over
the performance of single comparable PowerPC Processor.

1 Introduction

The NAS Conjugate Gradient (CG) benchmark is often used to evaluate computer
machine performance and compare characteristics of different programming models. It
uses a conjugate gradient method to compute an approximation to the smallest
eigenvalue of a large, sparse, symmetric positive definite matrix. CG is one of the
memory intensive benchmark in NAS kernels and is typical of unstructured grid
computations, which tests irregular long distance communication by employing
unstructured matrix vector multiplication [1].

The recent developments in semiconductor technology lead to the debuts of
multi-core processors in the computing industry, such as IBM’s Cell, Sun
Microsystems’ Niagara and AMD’s Opteron. The multi-core helps multi-programmed
workloads which could contain a mix of independent sequential tasks. It presents a
chance to study new or existing parallel programming models. However many
questions for programming on multi-core are still open, such as how to efficiently
handle specific communication and computation patterns. Cell Broadband Engine
(CBE), developed jointly by Sony, Toshiba and IBM, is a new heterogeneous
multi-core platform. The Cell is a general-purpose microprocessor which offers a rich
palette of thread-level and data-level parallelization options to the programmer.

264 D. Li, S. Huang, and K. Cameron

The NPB CG presents a communication and computing pattern seen in sparse linear
algebra [11]. It would be helpful to see how CG can be implemented on Cell, the new
distributed and parallel scenario. Implementing CG on this special multi-core is a
challenging topic. Firstly the essences of heterogeneous cores require careful
consideration of task schedules while improving execution efficiency. Secondly Cell
architecture shows an explicit and special memory hierarchy to users. On one hand, it
presents a shared/global view of data to its nine cores through main memory. On the
other hand, it presents a distributed view of data since eight of its nine cores have local
memory. To achieve good performance on Cell, people need to carefully handle the
data distribution and locality of references. Thirdly, due to its unusual architecture,
unconventional Cell-specific code optimization approaches should be considered.

In this paper, we present how we solve the above problems in the implement CG on
a real Cell multi-core. The main contributions of this paper include:

• We port NAS CG onto CBE. We present an example of how the communication and
computation pattern of CG could be implemented on Cell and how we take
advantage of the Cell’s distributed multi-core nature. The result shows that CBE as a
new architecture has good potential for this programming pattern with limited
working data sets.

• We quantify Cell-specific code optimizations and assess their impacts using CG.
These quantified results are beneficial for application developments on the Cell.

• We explore the parallelization methods on the Cell. We find that sometimes merely
exposing task level parallelism is insufficient for high performance computing. We
also find that parallelization on the Cell does not always mean performance
speedup. Other factors, like overhead for creating threads and Direct Memory
Access (DMA) communication, should be considerable when making decisions on
parallelization.

The rest of this paper is organized as follows. Section 2 summarizes related works on
programming support for Cell and studies of implementing CG using different
programming models. Section 3 introduces kernel CG algorithm and section 4 outlines
the Cell architecture. Section 5 presents step by step our CG porting and optimization
process. In Section 6, we present the performance of parallel CG on Cell. In the end, we
conclude the paper in Section 7.

2 Related Work

As a brand-new multi-core architecture, Cell has attracted many attentions in various
research communities. Some researches focus on how to develop applications and
speedup their performances. These include exploring new programming models and
developing compiler supports. Other researches focus on analyzing the performance of
the processor in terms of chip architecture.

Pieter et. al. [4] presents a simple and flexible programming model for Cell. It
requires the input application source code to follow a certain paradigm. Then based on
the paradigm annotation, a source to source compiler builds a task dependency graph of

