
System-level, Unified In-band and Out-of-band
Dynamic Thermal Control

Dong Li*, Rong Ge**, Kirk Cameron*
*Department of Computer Science, Virginia Tech

**Department of Mathematics, Statistics, and Computer Science, Marquette University
{lid, cameron}@cs.vt.edu, rong.ge@marquette.edu

Abstract
High-density computer racks become increasingly
commonplace in supercomputing centers and data centers.
With tight integration of high-powered computing
components in the racks, hot spots or pockets of elevated
temperatures on the chips and system can be easily
formed when room air circulation is not effective. Hot
spots reduce the reliability of high-density systems and
increase the chances of thermal emergencies, which
further trigger system slowdowns or shutdowns.
Techniques such as dynamically scaling down the voltage
of the CPUs and fan control are available on today’s
systems to reduce heat generation and dissipate heat.
Unfortunately, these techniques work independently on
their own without cooperation. As a result, to prevent
thermal emergencies, systems may work at reduced
capacity when full capacity is required. We propose a
combined in-band and out-of-band approach to reduce
the likelihood of thermal emergency slowdowns and
improve the reliability of systems. Our thermal control
framework unifies temperature control mechanisms in
systems to balance temperature, power consumption, and
performance. More precisely, we balance the use of in-
band dynamic voltage and frequency scaling (DVFS) with
out-of-band proactive fan control. Our results on a
power-aware cluster indicate the coordinated use of fan
control and DVFS is more effective than either technique
in isolation at reducing average system operating
temperatures with expected performance.

1. Introduction

Deployments in data centers and supercomputer
facilities consist of large numbers of servers that provide
computational power for solving challenging commercial,
scientific and engineering problems. High-power servers
in close proximity to one another generate significant heat
that must be removed from the servers and ultimately the
facility. Despite the availability of sophisticated cooling
systems, hot spots or elevated temperatures in areas of the
data center are quite common.
Elevated temperatures cause several problems: First,

the additional cooling requirements further stress the

HVAC units and increase operational costs. Second,
elevated temperatures may cause components (e.g.
CMOS circuit, power supply, etc.) to operate less
efficiently. Third, high temperatures can trigger thermal
emergencies in a server that will slow or shut down the
system resulting in severe performance degradation or
loss of availability. Fourth, higher temperatures can
reduce system reliability and life expectancy.
Previous thermal management techniques, such as

dynamic voltage and frequency scaling [2-5] (DVFS) and
load migration [6-9], operate in-band, i.e., in the critical
path of the application execution. In-band techniques can
potentially reduce heat substantially. For example, scaling
down DVFS processor frequency cubically reduces power
consumption and the resulting heat. Nevertheless, the
power reduction comes at the expense of the decrease in
computation capacity. Less studied are out-of-band
techniques (e.g. CPU cooling fans [10]) that operate
completely outside the critical performance path of an
application. Out-of-band techniques cool down hot spots
without impacting system computational capacity and
application performance. However, relying on cooling fan
solely may fail to cool down the hot spots that are already
above the emergency threshold.
In-band and out-of-band techniques operate

independently without cooperating with each other in
today’s systems. When sensing thermal emergences, the
fans increase the revolution speed (see Figure 1) and the
CPUs throttle down. When sensing lower chip
temperature, the fans slow down, without recognizing the
CPUs are still running at reduced speed. To deliver
performance for applications while effectively controlling
temperature, we must deploy these two techniques in
concert in computing systems.
In-band and out-of-band techniques can coordinate if

they work under a unified single controller. The
challenges to develop this controller are primarily two-
fold. First, in order to coordinate these techniques, we
need to be able to enforce the same user control policy
across diverse physical mechanisms (e.g., changing CPU
frequencies or controlling fan speeds). Second, the
controller needs to be easily tunable. It should provide a
unified way for the users to explore the tradeoff between
control effectiveness and costs for both in-band and out-

2010 39th International Conference on Parallel Processing

0190-3918/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPP.2010.22

131

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:13:45 UTC from IEEE Xplore. Restrictions apply.

of-band techniques. Also it should provide the users with
the convenience of choosing either a technique alone, or
their combination with superior thermal and performance
management.

Figure 1: The relationship between temperature and pulse-
width modulation (PWM) duty cycle (i.e. fan speed). This
picture is adapted from the Analog Devices ADT7467
dBCool remote thermal monitor and fan controller manual
[1]. The CPU fan speed is regulated using PWM to control
fan revolutions per minute (RPMs).

.
In this work, we made the following contributions.

• We propose a unified representation that quantifies
the effectiveness of various in-band and out-of-band
thermal control techniques, which enables
coordinated thermal control among them.

• We develop a software framework for system-level,
unified in-band and out-of-band dynamic thermal
control. We demonstrate that our techniques reduce
processor operating temperatures more effectively
than DVFS or fan speed control in isolation.

• We explore a number of dynamic thermal
management polices and quantify their power,
thermal, and performance efficiency.

• We demonstrate that the behavior of parallel
applications provides significant opportunities for
power and thermal reductions.
The rest of the paper is organized as follows. Section

2 discusses related work. Section 3 describes our
proposed temperature control method. Section 4 presents
case studies of our method on CPU fans and DVFS and
evaluates the results. Section 5 concludes the paper.

2. Related Work

Thermal management has been studied at various
system levels. The work most closely related to ours can
be categorized into techniques targeting single
components, clusters/servers and data centers. We also
discuss formal control techniques for thermal
management.
Thermal management at the component level:

Many component-level studies such as memory [11-13],

disk [14, 15], and microprocessors [16-18] leverage
power modes to conserve energy, avoid thermal
emergencies, and reduce thermals. Skadron et al. [19]
proposed component-level, thermal-aware design and
power-mode scheduling techniques for processors. In
contrast, our work focuses on system-level thermal
management and to the best of our knowledge is the first
study of the interactive effects of dynamic fan
management and DVFS on system thermals.
Thermal management in clusters/servers: Many

thermal management techniques address the problem of
reacting to or preventing thermal emergencies that lead to
system shut downs or malfunctions. Choi et al. [10]
presented a CFD-based simulation tool for thermal
profiling and management. This work considered the use
of DVFS in response to fan failure. Ferreira et al. [20]
simulated a thermal model based on resistance-
capacitance. Heath et al. [7] designed a thermal emulation
tool based on hardware component layout and utilization.
Fan failures and other emulated thermal events are used
to trigger service request redistributions and admissions.
These techniques need careful model verifications which
precludes their availability in complex thermal
environments. In contrast, our work depends on general
thermal control hardware and is portable enough to be
used in a large-scale complicated thermal environment.
Horvath et al. [21] exploited DVFS together with
multiple sleep states for the energy management of
reconfigurable clusters. Sharma et al. investigates
adaptive DVFS algorithm in QoS enabled web servers to
minimize energy consumption subject to service delay
constraints. In essence, this work considers the integration
of in-band techniques in isolation; while our work
provides a methodology to integrate both in-band and out-
of-band techniques.
Thermal management in the Data Center:Moore et

al. [23] designed Weatherman to predict on-line
temperatures using neural networks. They evaluated
different workload placements to reduce cooling costs in
batch-processing data centers. Mukherjee et al. [8] and
Samadiani et al. [9] used data center thermal distributions
to influence system load management and data center
design. Ramos et al. [24] proposed a software
infrastructure for Internet services that selects thermal
policy based on dynamic predictions of thermal
management technique impact. These techniques
primarily consider the isolated effects of workload
distribution and dynamic voltage and frequency scaling
(DVFS) on system thermals. These approaches do not
consider the interactive effects of dynamic fan control on
temperature in thermal management of server class
machines.
Formal Thermal Control Techniques: Wu and

Juang et al. [25] [5] set up a formal model describing a
task queue as a proxy for processing loads on cores. They

132

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:13:45 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000 1200
35

40

45

50

55

60

65

Te
m

pe
ra

tu
re

 (°
C

)

Figure 2: A CPU thermal profile of a system with AMD Athlon64
processor with constant fan speed. Sample rate is 4 samples per
second. This profile captures the three most common types of
thermal behavior (sudden, gradual, and jitter) observed in parallel
applications.

formally scaled DVFS settings to match varying
workload changes. Lefurgy et al. [26] used a closed-loop
control to provide precise power control in a real server.
Wang et al. [27] used a controller based on multi-input-
multi-output control theory to constrain total power of the
cluster. These formal techniques usually focus on DVFS
in isolation. Our framework can integrate and coordinate
different thermal management techniques.

3. Methodology

3.1 Temperature characteristics of parallel
applications

Figure 2 shows CPU temperature characteristics
observed for parallel applications. We measured a range
of parallel workloads [28] and found their thermal
behaviors fall into 3 types:
Type I: Sudden change. The CPU temperature

increases or decreases drastically over short time periods
where the increase or decrease is sustained. This behavior
corresponds to drastic or sudden CPU utilization variation.
Type II: Gradual change. The CPU temperature

increases or decreases gradually yet steadily over longer
time periods at second scale. This behavior corresponds
to CPU intensive utilization without proactive
temperature control.
Type III: Jitter. The temperature oscillates around a

certain value over short time periods. This behavior
captures short, bursty CPU utilization. This type differs
from the sudden case by the lack of sustained increase or
decrease following a spike.
Of these three types, type I and type II lead to actual

temperature increase or decrease, while type III does not.
Our temperature controller recognizes these types of
workload phases in parallel applications and responds
accordingly. It proactively controls temperature for type I
and II to prevent thermal emergencies, or reduce power
consumption when temperature is under control. It is also
intelligent not to respond to periods of jitter (Type III).

3.2 Historybased contextaware temperature
control

Our temperature control methodology is history-based,
context sensitive and unified. It (1) periodically profiles
temperature and uses the historical information to predict
future CPU temperature, and (2) identifies the appropriate
technique (DVFS or fan speed regulation) to perform
thermal control and balance power and performance for
the next interval based on the prediction. Our method is
applicable to both out-of-band (e.g. CPU fan) and in-band
(e.g. DVFS) temperature regulation techniques.

3.2.1 Temperature profiling and prediction

We periodically profile temperature and use a two-
level window to track the changes in temperature in both
long and short time periods. Level one uses an array to
store a small number of most recent temperature samples,
and overwrites it for next round of sampling once the
array is full. Level two stores the average of the
temperatures in level one in a FIFO list, and enqueue and
dequeue when a new round of sampling finishes. In such
way, the level one window tracks and predicts sudden
temperature changes and the level two window tracks and
predicts gradual temperature behavior.

Figure 3 demonstrates the detailed usage of the two-
level window of temperature profiles. We initially fill the
level one window with temperature samples. Once the
cells are full, we calculate the sums of the samples in the
second and first half of the window respectively, and then
calculate the difference Δ tL1 between the sums. A large
difference indicates that the processor’s work load has
recently experienced significant changes. We assume
temperature will change with the same rate for the next

Figure 3: The two-level, history-based, temperature data used
in our algorithm to control the effects of sudden, gradual and
jitter thermal behaviors.

133

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:13:45 UTC from IEEE Xplore. Restrictions apply.

round of sampling. The temperature difference is then
used to determine the appropriate temperature regulator
response. Meanwhile, the cells in this level of window
will be cleared out for next round of sampling.
Generally, the array size of level one window is small,

yet large enough to capture sudden temperature change
and jitter. If the window size is too small, then the
controller will react to jitter as if it were a “sudden”
sustained behavior. If the window size is too large, then
the controller will not promptly respond to sudden
sustained behaviors. We experimented with various
window sizes and found a 4-entry window was
sufficiently large to capture sudden changes and nullify
jitter effects for the workloads studied. The window size
and sampling rate together determine window update
frequency. For example, given a sampling rate of 4 per
second and a 4-entry level-one temperature window, the
update frequency is 1 second.
To identify trends across larger spans of time, we

store the long period and coarse grain temperature
profiles in the level two window. Essentially, this window
maintains a fixed-size (5 entries in our cases) FIFO queue
that stores the average values from the first level. We
calculate the temperature difference (Δ tL2) between the
front and rear items in the queue and use this to predict
the temperature behavior over the next interval. More
details about how to determine the appropriate
temperature regulator response based on the predicted
temperature behavior are described in the section 3.2.2.

3.2.2 Target Mode Identification

The identification of appropriate temperature
regulation takes two inputs: one is the predicted
temperature behavior based on the temperature profile
(the section 3.2.1); the other is a parameter specified by
the user that indicates the aggressiveness of the
temperature controller.
We maintain a thermal control array for each

available thermal control technique on the system. The
control array contains N integer numbers {g1,
g2,…gn,…gN} , with each number representing a mode
that controls temperature at a degree. For example, the
thermal control array contains valid CPU frequencies for
DVFS control, valid fan speeds for cooling fan, and valid
sleep states for ACPI-compatible [32] system. With this
common data structure of thermal control array, we are
able to unify various in-band and out-of-band thermal
management techniques. To enforce a control policy to a
single thermal management technique, we vary the values
in its corresponding thermal control array. To coordinate
multiple thermal management techniques, we fill out the
arrays in a unified way.
A value in a thermal control array indicates the

effectiveness of this mode to control temperature using

the associated in-band or out-of-band technique. For
example, a lower CPU frequencies are more effective
than a higher frequencies; a higher fan speed is more
effectively than a lower one. For a CPU fan with
continuous speed, we discretize the speed into a number
of distinct speeds; each of the resulting speeds is then a
valid mode.
We store the values in the thermal control array in

non-descending order by their effectiveness. We also
allow duplicated values in the array. An extreme case is
that all the values in the array are the same. Herein, the
technique associated with the array is not sensitive to
temperature changes. N, the bound of the thermal control
array, can be equal to or greater than the actual number of
available modes on the physical devices such as CPUs
and fans.
The actual filled values in the thermal control array is

controlled by a user specified parameter Pp. Pp reflects the
degree of aggressiveness with which the users want to
control temperature. When specifying Pp, the users should
be aware of the tradeoffs between temperature
management and power consumption or performance
delivery. This is because aggressive temperature
reduction may cause excessive increased cooling costs:
higher CPU fan speeds dissipate heat more quickly while
consuming more power; lower DVFS frequencies
decrease heat generation more quickly with much more
reduced computation capacity. Since Pp reflects a relative
degree of proactive control, we use integers within the
range of [PMIN, PMAX], i.e., [1, 100] to specify Pp. Controls
using larger Pp tend to be cost-oriented, while ones using
smaller Pp tend to be temperature-oriented. As we see, Pp
is essentially a means of setting control policy.
The details about filling the values into the array is

described in the following. The first array element g1
always stores the least effective temperature control mode,
the last element gN always stores the most effective mode,
and the values of the rest array elements are determined
by Pp in the following. Given a Pp, we firstly use Eq.(1)
to derive an integer number n.

⎣ ⎦1)/()1)((+−−−= MINMAXMINpp PPNPPn (1)

where PMIN and PMAX is the lower bound and upper
bounds of PP. This integer np is a special index of our
thermal control array: the array cells with indices in [np, N]
are filled out with the most effective mode gN, and the
array cells with indices in [1, np-1] are filled out with a
subset of physically available modes evenly extracted
from the full set. The ratio of np to the number of
physically available modes on the device determines the
subset. If the ratio is less than 1, some physical modes
will not appear in the array. If the ratio is 1, then the full
set is used to fill out the subarray in [1, np-1]. The ratio is

134

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:13:45 UTC from IEEE Xplore. Restrictions apply.

unlikely larger than 1 due to the limitation of available
physical modes. A small Pp results in a small np.
Consequently, 1) more array items store the most efficient
temperature mode; 2) a small increment in array index
can lead to large increment in cooling effect. Thus the
temperature control with small Pp is more aggressive and
large Pp is less aggressive.
We use the predicted temperature variations from the

two-level window to identify an index in our thermal
control array, and the value of the indexed array item is
the target mode for the next time interval. Specifically, if
the index of the current mode is i, and the temperature
variation from the first level of the window is Δt L1, then
the target mode index is (i+c·Δt L1), here c is a constant in
the form of c =(N-1)/(tmax-tmin), where tmin and tmax are
lower and upper bounds of safe operating temperature.
Such a scheme assures that a temperature changes lead to
an appropriate mode change. If the temperature variation
from the first level does not result in a change in mode
index, our algorithm then uses the temperature variation
Δt L2 from the second level to see if (i+c·Δt L2) results in
a change.

4. Experimental results and evaluation

Using our thermal control array, our methodology can
unify various temperature control mechanisms. We have
implemented this methodology on a computation cluster
that has user controllable CPU fans with full speed of
4300 RPMs and DVFS capable processors. In this section,
we study temperature and power consumption of parallel
applications with the unified temperature control on this
cluster to examine and evaluate the effects of our
methodology.
In the following sections, we evaluate different user

control policies with various Pp. Note that we do not
mean to pick an optimal Pp for any case in terms of
control effectiveness and costs, which is impossible,
because an optimal Pp highly depends on application
characteristics and system thermal properties. Rather, we
mean to develop a tool which has an adjustable parameter
Pp to enforce user control policies; we want to evaluate
how effectively our system reacts to the Pp in term of
power, thermal and performance.

4.1 Experimental platform

The original traditional fan control on the system uses
a static mapping between the fan speed and the processor
temperature, which is depicted in Figure 1. Fan’s RPMs
are typically a continuous monotonic function of the
PWM duty cycle. In the later discussions, we use the
PWM duty cycle to represent corresponding fan speed.
The traditional fan speed is set at PWMmin when the

temperature is no more than Tmin, and increase linearly
with temperature to full speed PWMmax when the
temperature reaches Tmax. The parameter values in our
cluster are: PWMmin=10%, Tmin=38°C and Tmax=82°C.
We have implemented a fan driver that dynamically

set the fan speed according to both processor temperature
and its variation using our methodology. Specifically, we
bought an ADT7467 [1] dBCool remote thermal monitor
and fan controller from Analog Devices and connected it
to the system through PCI interface. We then developed a
Linux device driver that regulates fan speed using the i2c
[29] protocol. In this driver, we discretize the continuous
fan speed into 100 distinct speeds from duty cycle of 1%
to 100%, where duty cycle 1% corresponds to the lowest
fan speed, and duty cycle 100% corresponds to the
highest fan speed. The temperature samples are collected
from digital thermal sensors embedded in the processor
(AMD Athlon64 4000+) to report core CPU temperature
through lm-sensors [30] with a rate of four samples per
second. Figure 4 depicts our fan control platform.
Embedded remote thermal monitors and fan controllers
are common in the motherboard of today’s high-end
servers. So our method can be easily applied to other
servers.

Figure 4: Our fan control Platform.

The processor in our system is DVFS capable and can
be scaled among 5 frequencies: 2.4GHz, 2.2GHz, 2.0GHz,
1.8GHz, and 1.0GHz. The processor produces less heat
when its frequency is lower. However, our strategy for
DVFS control is not to scale down frequency unless
necessary because low frequencies impact application
performance. Based on this strategy, we implemented a
daemon named tDVFS that is directed by our
methodology in frequency scaling for temperature control.
In this daemon, we trigger frequency scaling when the
temperature reaches a threshold.

4.2 Dynamic CPU fan control

We initially run three instances of the cpu-burn [31]

135

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:13:45 UTC from IEEE Xplore. Restrictions apply.

38

40

42

44

46

48

50

52

54

56

58

Pp=75

10

20

30

40

50

60

70

80

90

100

Pp=75

Pp=50

Pp=50

Pp=25

Pp=25

Figure 5: The variations of processor temperature (top) and fan speed (bottom) under our fan control with different Pp (75, 50, 25)
The x axis is time and y axis is temperature in °C (top) and PWM duty (bottom). Temperature is sampled every 250ms.

0 100 200 300 400 500 600 700 800 900
38

40

42

44

46

48

50

52

54

Sample Points

Te
m

pe
ra

tu
re

 (°
C

)

Under traditional fan control
Under our fan control
Under max fan speed

(a)

10

20

30

40

50

60

70

80

Sample Points

P
W

M
 D

ut
y

C
yc

le

Traditional fan control
Our fan control
Max fan speed

(b)
Figure 6: (a) processor temperature and (b) fan speed with
our dynamic fan control, traditional static method control,
and constant fan speed control. Compared to traditional
static method control, ours proactively scales up fan speed
and effectively prevents temperature from increasing.
Constant fan speed control with high PWM duty cycle
maintains the lowest temperature but consumes the most
power.

code to test how our dynamic fan control responds to
temperature changes. cpu-burn is a program that
intensively utilizes the CPU and thus can exhibit a wide
range of temperature and patterns. Each run lasts about
five minutes. We tested three temperature control policies:
1) aggressive fan control with Pp=25; 2) moderate fan
control with Pp=50; and 3) weak fan control with Pp=75.
Figure 5 indicates that fan speed with all these three
policies quickly responds well to “sudden” temperature
variation and as designed does not respond to “jitter” (see
① in Figure 5). Meanwhile, setting Pp to small values
leads the lowest temperature, and setting Pp to larger
values has less effect and leads to higher operating
temperatures. The average PWM duty cycles with the
three policies are 36 (Pp=75), 53 (Pp=50), and 70 (Pp=25).
Larger Pp values then correspond to lower power use,
assuming PWM is directly correlated to power
consumption, which it invariably is.

Figure 5 also shows our fan speed control is aware of
gradual changes in temperature and responds accordingly.
The temperature area marked by a red circle at the left
shows a trend to a lower temperature. Our fan speed is
thus scaled down to a lower mode, despite the apparent
thermal jitter. The temperature area marked by a red
circle at the middle shows a trend to a higher temperature.
Our fan speed is accordingly scaled up to a higher gear.
These proper responses are the results of our history-
based thermal analysis.
Next, we compare our dynamic fan control method

with the traditional static method and constant fan speed
control (the PWM duty cycle is fixed as 75%). The
maximum allowed fan speed for traditional fan control
and our fan control is also set to 75%. Pp in our fan
control is set to 50. Figure 6 shows the fan speed and
temperature during the execution of NPB BT.B.4 on four
nodes. Fan speed with traditional static control method
only reacts to the absolute temperature without foreseeing

the increase in the future. As a result, this method needs
the longest time to stabilize the temperature yet at the

136

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:13:45 UTC from IEEE Xplore. Restrictions apply.

0 100 200 300 400 500 600 700 800 900 1000
38

40

42

44

46

48

50

52

54

56

58

Sample Points

Te
m

pe
ra

tu
re

 (°
C

)

25% max

50% max

75% max

100% max

0 50 100 150 200 250
10

15

20

25

30

35

40

45

50

55

60

Sample Points

P
W

M
 D

ut
y

C
yc

le

max 100%
max 75%
max 50%
max 25%

Figure 7: Temperature and fan speed with various maximum PWM duty cycle in our dynamic method. In general, larger maximum
PWM duty cycle leads to lower temperature. However, the temperate difference between maximum PWM duty cycles of 50% and
75% is not significant, which implies less powerful fan is able to deliver similar cooling effects as more powerful fan with our
dynamic control.

0 200 400 600 800 1000 1200
38

40

42

44

46

48

50

52

54

Te
m

pe
ra

tu
re

 (°
C

)

Trigger Temperature
 = 51 °C

Freq change:
2.4GHz --> 2.2GHz

Freq change:
2.2GHz --> 2.4GHz

Figure 8: Temperature control with tDVFS. tDVFS scales
down processor frequency when average temperature is
consistently above threshold and scales processor frequency
back up when average temperature is consistently below
threshold. The maximal allowed fan speed is 25% PWM
duty cycle.

highest degree. In contrast, our dynamic method predicts
the temperature increase and thus proactively expedites
fan. With our control method, PWM duty cycle increases
over 45% against 32% with static method. Consequently,
our method stabilizes temperature in a shorter time at a
lower degree. Constant fan speed control with high PWM
duty cycle maintains the lowest temperature but
consumes the most power.
To emulate the cooling effect of different fans, we

constrain the maximum PWM duty cycles the fan can
revolve in the dynamic control method. Figure 7 depicts
the temperature and fan speed with various maximum
PWM duty cycles when NAS BT.B.4 benchmark
executes on the cluster. Pp is set as 50. The maximum
PWM duty cycles are 25%, 50%, 75% and 100% of the
full fan speed PWMmax respectively. Here a higher PWM
duty cycles indicates a more powerful fan. The results
show that a more powerful fan brings temperature to
lower degrees. The temperature with 100% PWM duty
cycle is about 8°C lower than that with 25% PWM duty
cycle. However, the results also show there is no
significant temperature difference between 50% and 75%
maximum PWM duty cycles. This indicates, with
proactive fan control methods, a less powerful fan is able
to deliver comparable cooling effect as a more powerful
one.

4.3 Temperature aware DVFS control

In our experiments tDVFS is coupled with either
traditional static or our dynamic fan control. The idea is
to use fan to control temperature if possible, and trigger

tDVFS to scale down frequency only when temperature is
above a threshold. Thus we minimize the impact of
frequency down scaling on application performance. The
threshold temperature is set as 51°C and Pp is 50 for
tDVFS in the following experiments.
We first study the effects of tDVFS when coupled

with traditional static fan control. This will help us focus
and recognize the dynamics of tDVFS. Figure 8 depicts
CPU temperature variation when NAS parallel
benchmark LU is executing on four nodes (one MPI

137

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:13:45 UTC from IEEE Xplore. Restrictions apply.

Table 1: Performance and power consumption of BT benchmark when processor speed is controlled by CPUSPEED and tDVFS
respectively. tDVFS effectively reduces temperature and power consumption with small performance impact.

CPUSPEED tDVFS
Max allowed
PWM duty cycle 75% 50% 25% 75% 50% 25%

freq changes 101 122 139 2 2 3

Execution Time (s) 219 222 223 219 233 234

Ave Power(Watt) 99.78 99.30 100.80 97.93 94.19 92.78
Power-Delay Product

(Watt*s) 21852.78 22044.21 22478.64 21447.27 21946.03 21710.32

process per node). We observe that tDVFS does scale
down frequency to reduce temperature when temperature
is above a threshold, as expected. However, to minimize
the impact on performance, it does so only when average
temperature is stabilized above the threshold.
Additionally, tDVFS algorithm scales up frequency to its
original value once the temperature is consistently below
the threshold so as to avoid performance loss. We also
highlight an area marked by a red circle in Figure 8 where
tDVFS does not respond to short-term thermal behavior
and thus avoids performance loss.
Next, we compare the effects of tDVFS with another

DVFS daemon named CPUSPEED [33] when both use
our dynamic fan control. CPUSPEED periodically adjusts
CPU power/performance modes based on CPU utilization
during past intervals. Figure 9 shows CPU temperature
when NAS parallel benchmark BT.B.4 is executing on 4
nodes. Here Pp in our dynamic fan control is set as 50 and
the maximum allowable PWM duty is set to 25%. With
these parameters, CPU fan alone is not able to effectively
maintain temperature under threshold, and DVFS must
act. We observe that the temperature continues to increase
when controlled by CPUSPEED, while it is stabilized
when controlled by tDVFS. Such results indicate tDVFS
is more effective in reducing temperature and preventing
hot spots and thermal emergencies.
We have also studied how tDVFS responds to various

fan capabilities with the comparison of CPUSPEED,
shown in the Table 1. In these experiments, the system
power is measured using a Watts up? Pro ES power meter.
Compared with CPUSPEED, tDVFS has significantly
reduced the number of frequency changes (up to 98.36%
as PWM=50%), which is greatly beneficial to the system
reliability. When PWM=75%, tDVFS achieve the same
performance as CPUSPEED, but uses less power. When
PWM=50% and 25%, tDVFS extended the execution
time due to the longer execution time at the low

frequency than CPUSPEED. However considering both
power-saving and performance (i.e., using the metric
power-delay product), the tDVFS still performs better
than CPUSPEED.

0 100 200 300 400 500 600 700 800 900 1000
35

40

45

50

55

60

65

70

75

Te
m

pe
ra

tu
re

 (°
C

)

CPUspeed
tDVFS

Freq changes:
2.4GHz -->2.2GHz

Freq changes:
2.2GHz --> 2.0GHz

Figure 9: CPU temperature when frequency scaling is
controlled by tDVFS and CPUSPEED respectively.
Temperature continues to increase with CPUSPEED while is
stabilized with tDVFS.

4.4 Dynamic hybrid fan and DVFS control

In the case studies presented above, we have
concentrated on either dynamic fan control or temperature
aware DVFS. Here we further study how these two
mechanisms interact and complement each other in
temperature control. In these experiments, we apply an
identical Pp value to both dynamic fan control and tDVFS
control to reflect user’s intention. Figure 10 depicts
processor temperature when BT Class B executes on 4
nodes. The maximum allowed PWM duty cycle is set as

138

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:13:45 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250
38

40

42

44

46

48

50

52

54

56

58

sample points

Te
m

pe
ra

tu
re

 (°
C

)

Pp = 75
Pp = 50
Pp = 25

Figure 10: Hybrid temperature control with dynamic fan and
tDVFS. Smaller Pp leads to lower temperature and triggers
frequency scaling later. Frequency scales at ① (Pp =25):
2.4GHz 2.0GHz;② (Pp =25): 2.0GHz 2.4GHz; ③(Pp =50):

50%. The threshold temperature for triggering tDVFS is
still set as 51°C.
We first observe that smaller Pp more effectively

controls temperature and vice versa, which complies with
our design. Second, we notice effective coordination
between the out-of-band and in-band thermal control
techniques. In particular, the triggering time of tDVFS
varies with Pp. The smaller Pp is, the later tDVFS is
triggered. This is because dynamic fan control is more
aggressive with a smaller Pp, thus effectively maintains
temperature at a safe level and avoids the performance
loss caused by frequency adjusting. On the contrary,
when Pp is larger, if temperature quickly increases above
a threshold due to the conservative control of cooling fan,
tDVFS is triggered earlier to reduce temperature. Third,
we notice the performance differences (i.e., cooling costs)
between different Pp. The smaller Pp leads to longer
execution time due to its aggressive thermal control
policy. In particular, when Pp=25, the CPU frequency is
put into the lower frequency than the other cases and has
the longest execution time. However we also notice that
the performance difference between Pp=25 and Pp=75 is
only 4.76%, which means our method tries to minimize
the performance impact even though we use aggressive
thermal control. In general, our method effectively unifies
different thermal control techniques and reacts to
different user control policies with minimum performance
impact.

5. Conclusion

The thermal control problem is becoming more
serious in servers of high-density data centers and
supercomputer facilities. However, integrated thermal
control for in-band and out-of-band control has not been
explored previously. We demonstrate the effectiveness of
a thermal control framework that integrates an out-of-
band method (fan control) and an in-band method
(DVFS). We classified thermal characteristics of parallel
applications and used a two-level temperature window to
make our controller more effective. We introduced a
simple parameter (Pp) to allow the user to specify the
aggressiveness of in-band and out-of-band techniques for
thermal reductions. This parameter also provides a way to
integrate different control methods. We found that using a
less powerful fan can achieve the same thermal efficiency
as a more powerful fan if we carefully design our fan
controller methods. We showed that coordinated use of
fan control and DVFS is more effective than either
technique in isolation at reducing average system
operating temperatures while controlling effects on power
and performance.

In future work, we will study how our thermal
controllers scale in a large-scale clusters. Also we want to
explore the effects of our techniques on OS noise and

jitter in scalable systems. In addition, we are considering
integration of hardware counter and data in our
techniques to improve our prediction mechanisms.

References:
[1] Analog Devices. dBCool Remote Thermal Monitor and Fan

Controller ADT7467.
http://www.analog.com/UploadedFiles/Data_Sheets/353643468A
DT7467_a.pdf

[2] Lin, J., et al. Thermal Modeling and Management of DRAM
Memory Systems. in Proceedings of the 34th International
Symposium on Computer Architecture (ISCA-34). 2007. San
Diego, CA.

[3] Donald, J. and M. Martonosi. Techniques for Multicore Thermal
Management: Classification and New Exploration. in 33rd
International Symposium on Computer Architecture (ISCA-33).
2006.

[4] Hanson, H., et al. Thermal Response to DVFS: Analysis with An
Intel Pentium M. in International Symposium on Low Power
Electronics and Design. 2007. Portland, OR.

[5] Wu, Q., et al., Formal Control Techniques for Power-
Performance Management. IEEE Micro, 2005. 25(5): p. 12.

[6] Powell, M., M. Gomaa, and T.N. Vijaykumar. Heat-and-run:
Leveraging SMT and CMP to manage power density through the
operating system. in Proceedings of the 11th International
Conference on architectural support for programming languages
and operating systems (ASPLOS). 2004.

[7] Heath, T., et al. Mercury and Freon: Temperature Emulation and
Management for Server Systems. in Proceedings of the 12th
international conference on Architectural support for
programming languages and operating systems 2006.

139

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:13:45 UTC from IEEE Xplore. Restrictions apply.

[8] Mukherjee, T., et al. Software Architecture for Dynamic Thermal
Management in Datacenters. in 2nd International Conference on
Communication Systems Software and Middleware. 2007.

[9] Samadiani, E. The thermal design of a next generation data
center: a conceptual explosion. in 1st conference on thermal
issues in emerging technologies: theory and application. 2007.

[10] Choi, J., et al. Modeling and Managing Thermal Profiles of Rack-
mounted Servers with ThermoStat. in Proceedings of the 2007
IEEE 13th International Symposium on High Performance
Computer Architecture. 2007.

[11] Ibrahim Hur, C.L. A Comprehensive Approach to DRAM Power
Management. in the 14th International Symposium on High-
Performance Computer Architecture. 2008.

[12] Pandey, V., et al. DMA-aware memory energy management. in
The 12th International Symposium on High-Performance
Computer Architecture. 2006.

[13] Useche, L., et al. EXCES: EXternal Caching in Energy Saving
Storage Systems. in The 14th International Symposium on High-
Performance Computer Architecture. 2008. Salt Lake City, UT.

[14] Kim, Y., et al. Graceful Operation of Disk Drives under Thermal
Emergencies. in 1st conference on thermal issues in emerging
technologies: theory and application. 2007.

[15] Kim, Y., S. Gurumurthi, and A. Sivasubramaniam,
Understanding the Performance-Temperature Interactions in
Disk I/O of Server Workloads, in The 12th International
Symposium on High-Performance Computer Architecture. 2006.

[16] Isci, C., G. Contreras, and M. Martonosi. Live, Runtime Phase
Monitoring and Prediction on Real Systems with Application to
Dynamic Power Management. in the Micro-39. 2006.

[17] Li, J. and J.e. F.Mart´ınez. Dynamic Power-Performance
Adaptation of Parallel Computation on Chip Multiprocessors. in
12th International Symposium on High-Performance Computer
Architecture. 2006. Austin, Texas.

[18] Monchiero, M., R. Canal, and A. Gonzalez. Design Space
Exploration for Multicore Architectures: A
Power/Performance/Thermal View. in In the 20th ACM
International Conference on Supercomputing. 2006.

[19] Skadron, K., et al., Temperature-aware microarchitecture:
Modeling and implementation. ACM Trans. Archit. Code Optim.,
2004. 1(1): p. 94-125.

[20] Ferreira, A., D. Mosse, and J. Oh. Thermal Faults Modeling using
a RC model with an Application to Web Farms. in Proceedings of
RTS. 2007.

[21] Horvath, T. and K. Skadron. Multi-mode Energy Management for
Multi-tier Server Clusters. in Proceedings of the ACM/IEEE/IFIP
International Conference on Parallel Architectures and
Compilation Techniques. 2008.

[22] Sharma, V., et al. Power-Aware QoS Management on Web
Servers. in Proceedings of the 24th International Real-Time
Systems Symposium. 2003.

[23] Moore, J., J.S. Chase, and P. Ranganathan. Weatherman:
Automated, Online, and Predictive Thermal Mapping and
Management for Data Centers. in Third IEEE International

Conference on Autonomic Computing. 2006.
[24] Ramos, L. and R. Bianchini. C-Oracle: predictive thermal

management for data centers. in The 14th International
Symposium on High-Performance Computer Architecture. 2008.

[25] Juang, P., et al., Formal Coordinated, Distributed Energy
Management of Chip Multiprocessors, in International
Symposium on Low Power Electronics and Design (ISLPED).
2005: Bangalore, India.

[26] Lefurgy, C., X. Wang, and M. Ware. Server-level power control.
in Proceedings of the 4th IEEE International Conference on
Autonomic Computing. 2007.

[27] Wang, X. and M. Chen. Cluster-level Feedback Power Control
for Performance Optimization. in 14th IEEE International
Symposium on High-Performance Computer Architecture 2008.

[28] Kirk, W.C., P. Hari K, and S. Varadarajan, Tempest: a portable
tool to identify hot spots in parallel code, in Interntional
Conference on Parallel Processing. 2007: Xi'An.

[29] I2C Bus Protocol. http://www.i2c-bus.org/2008. Accessed on Feb
28, 2010

[30] lm-sensors. http://www.lm-sensors.org/. Accessed on Feb 28,
2010.

[31] CPU burn-in. http://users.bigpond.net.au/cpuburn/2008. Accessed
on Feb 28, 20010

[32] ACPI: Advanced Configuration and Power Interface.
http://www.acpi.info. Accessed on Feb 28, 2010

[33] CPUSPEED. http://www.carlthompson.net/Software/CPUSpeed.
Accessed on Feb 28, 2010.

[34] Jin Yang, I. Charles Ume, and Camil Ghiu, and George White,
“Board-Level Solder Joint Reliability Study of Land Grid Array
Packages for RF Applications Using a Laser Ultrasound
Inspection System”, 57th Electronic Components and Technology
Conference (ECTC), Reno NV, May 2007.

140

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:13:45 UTC from IEEE Xplore. Restrictions apply.

