
Hybrid MPI/OpenMP Power-Aware Computing

Dong Li† Bronis R. de Supinski� Martin Schulz� Kirk Cameron† Dimitrios S. Nikolopoulos‡

† Virginia Tech

Blacksburg, VA, USA

{lid,cameron}@cs.vt.edu

� Lawrence Livermore National Lab

Livermore, CA, USA

{bronis,schulzm}@llnl.gov

‡ FORTH-ICS and University of Crete

Heraklion, Crete, GREECE

dsn@ics.forth.gr

Abstract—Power-aware execution of parallel programs is
now a primary concern in large-scale HPC environments. Prior
research in this area has explored models and algorithms
based on dynamic voltage and frequency scaling (DVFS) and
dynamic concurrency throttling (DCT) to achieve power-aware
execution of programs written in a single programming model,
typically MPI or OpenMP. However, hybrid programming
models combining MPI and OpenMP are growing in popularity
as emerging large-scale systems have many nodes with several
processors per node and multiple cores per processor. In this
paper we present and evaluate solutions for power-efficient
execution of programs written in this hybrid model targeting
large-scale distributed systems with multicore nodes. We use
a new power-aware performance prediction model of hybrid
MPI/OpenMP applications to derive a novel algorithm for
power-efficient execution of realistic applications from the ASC
Sequoia and NPB MZ benchmarks. Our new algorithm yields
substantial energy savings (4.18% on average and up to 13.8%)
with either negligible performance loss or performance gain (up
to 7.2%).

Keywords-MPI; OpenMP; performance modeling; power-
aware high-performance computing.

I. INTRODUCTION

The large energy footprint of high-end computing systems

motivates holistic approaches to energy management that

combine hardware and software solutions. Thus, software-

controlled power-aware execution of HPC applications on

large-scale clusters has become an important research

topic [1], [2], [3], [4]. Most researchers have focused on

processor-level power management schemes since proces-

sors dominate power consumption in HPC environments.

Two primary power-aware computing approaches cur-

rently exist for large-scale systems. Many state-of-the-art

algorithms for software-controlled dynamic power manage-

ment [5], [6], [7], [8] use dynamic voltage and frequency

scaling (DVFS) to dilate computation into slack (any non-

overlapped hardware or algorithmic latency) that occurs

between MPI communication events, thus reducing energy

consumption. Alternatively, dynamic concurrency throttling

(DCT) [9], [10] controls the number of active threads

executing pieces of parallel code, particularly in shared-

memory programming models like OpenMP, to save energy

and to improve performance simultaneously [11].

These software-controlled power-aware execution

schemes for HPC applications have been integrated

within a single parallel programming model, such as

MPI or OpenMP. However, none have been applied to

applications written in hybrid programming models, such

as MPI/OpenMP. Since multicore nodes with larger core

counts and less memory per node are becoming prevalent,

we anticipate hybrid programming models will become

common. Hybrid programming models complicate power

management since any solution must consider inter-node

and intra-node effects simultaneously. Thus, several new

research issues arise when applying DCT and DVFS to

hybrid programming models. We explore these issues in the

context of the hybrid MPI/OpenMP programming model,

to provide answers to the following questions:

• Does using DCT within one MPI task affect the exe-

cution in other tasks?

• How can we identify slack due to intra- and inter-node

interactions in hybrid programs?

• How should we coordinate DCT and DVFS to save

energy?

We contribute a new power-aware modeling methodology

for the hybrid MPI/OpenMP model. Based on it, we de-

sign and implement a power-aware runtime library that

adaptively applies DVFS and DCT to hybrid MPI/OpenMP

applications. Our modeling approach and runtime library

implementation answer the above research issues. Our main

contributions are:

• A formalization of the interactions between MPI tasks

under DCT control that identifies the impact of DCT

on other tasks;

• A novel DCT coordination scheme;

• A new analysis of the implicit penalty of concurrency

throttling on last-level cache misses and a DCT algo-

rithm that aggregates OpenMP phases to overcome this

problem;

• A unified intra- and inter-node method to identify the

slack available for DVFS control in hybrid applications;

• A novel combined DCT/DVFS system in which the

DVFS scheduler accounts for the effects of DCT includ-

ing explicit prediction of the time required for OpenMP

phases at different concurrency levels;

• A study of power-saving opportunities in both strong

and weak scaling of hybrid applications at unprece-

dented system scales of up to 1024 cores.

Our results, obtained with applications from the ASC Se-

978-1-4244-6443-2/10/$26.00 ©2010 IEEE

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

quoia and the NAS Parallel Benchmark Multizone suites, on

two systems with relatively wide shared-memory nodes (8

and 16 cores per node) show that our power-aware runtime

library leverages the energy-saving opportunities in hybrid

MPI/OpenMP applications while maintaining performance.

Our scaling study demonstrates that power saving opportuni-

ties continue or increase under weak scaling but diminish un-

der strong scaling. Overall, our power-aware runtime library

for hybrid programming models saves significant energy—

4.2% on average and as much as 13.8% in certain cases—

with either negligible performance loss or performance gain

up to 7.2%.

The rest of this paper is organized as follows. Section II

provides background terminology for this work. Section III

presents our power-aware performance prediction model for

hybrid MPI/OpenMP applications. Section IV presents our

execution time prediction methodology for OpenMP phases

under DCT and DVFS control. Section V presents our

dynamic concurrency throttling schemes and Section VI

presents our dynamic voltage and frequency scaling schemes

for hybrid MPI/OpenMP applications. Section VII presents

our experimental analysis. Section VIII discusses related

work and Section IX concludes the paper.

II. HYBRID MPI/OPENMP TERMINOLOGY

Large-scale system trends motivate our consideration of

hybrid programming models. HPC systems are rapidly in-

creasing in scale in terms of numbers of nodes, numbers of

processors and numbers of cores per processor, with declin-

ing main memory and secondary cache sizes per core. These

trends encourage the use of shared-memory models within

a node to exploit fine-grain parallelism, to achieve better

load balance, to reduce application memory footprints and

to improve memory bandwidth utilization [12]. However,

message-passing remains preferable between nodes since it

simplifies minimization of communication overhead.

Most hybrid programming models exploit coarse-grain

parallelism at the task level and medium-grain parallelism

at the loop level. Thus, we consider programs that use

the common THREAD MASTERONLY model [13]. Its

hierarchical decomposition closely matches most large-scale

HPC systems, which are comprised of clustered nodes, each

of which has multiple cores per node, distributed across

multiple processors. In this model, a single master thread

invokes all MPI communication outside of parallel regions.

Almost all MPI programming environments support the

THREAD MASTERONLY model. OpenMP directives par-

allelize the sequential code of the MPI tasks. This solution

exploits fast intra-task data communication through shared

memory via loop-level parallelism. While other mechanisms

(e.g., POSIX threads) could add multi-threading to MPI

tasks, OpenMP supports incremental parallelization and,

thus, is widely adopted by hybrid applications.

Figure 1: Simplified typical MPI/OpenMP scheme

Iterative parallel computations dominate the execution

time of scientific applications. Hybrid programming models

exploit these iterations. Figure 1 depicts a typical itera-

tive hybrid MPI/OpenMP computation, which partitions the

computational space into subdomains, with each subdomain

handled by one MPI task. The communication phase (MPI

operations) exchanges subdomain boundary data or compu-

tation results between tasks. Computation phases that are

parallelized with OpenMP constructs follow the commu-

nication phase. We use the term OpenMP phases for the

computation phases delineated by OpenMP parallelization

constructs.

Collections of OpenMP phases delineated by MPI oper-

ations form OpenMP phase groups, as shown in Figure 1.

Typically, MPI collective operations (e.g., MPI Allreduce

and MPI Barrier) or grouped point-to-point completions

(e.g., MPI Waitall) delineate OpenMP phase groups. No

MPI primitives occur within an OpenMP phase group. MPI

operations may include slack since the wait times of different

tasks can vary due to load imbalance. Based on notions

derived from critical path analysis, the critical task is the

task upon which all other tasks wait.

Our goal is to adjust configurations of OpenMP phases

of hybrid MPI/OpenMP applications dynamically. A con-

figuration includes CPU frequency settings and concurrency

configurations. The concurrency configuration specifies how

many OpenMP threads to use for a given OpenMP phase

and how to map these threads to processors and cores.

This can be done by OpenMP mechanisms for controlling

the number of threads and by setting the CPU affinity of

threads using system calls. We use DCT and DVFS to adjust

configurations so as to avoid performance loss while saving

as much energy as possible. Also, configuration selection

should have negligible overhead. For this selection process,

we sample selected hardware events during several iterations

in the computation loop for each OpenMP phase, and collect

timing information for MPI operations. From this data,

we build a power-aware performance prediction model that

determines configurations that—according to predictions—

can improve application-wide energy-efficiency.

III. POWER-AWARE MPI/OPENMP MODEL

Our power-aware performance prediction model estimates

the energy savings that DCT and DVFS can provide for

hybrid MPI/OpenMP applications. Table I summarizes the

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

M Number of OpenMP phases in a OpenMP phase group

ΔEdct
ij

Energy saving by DCT during OpenMP phase j of task i

xij ,yij Number of processors (xij) and number of cores per processor (yij) used by OpenMP

phase j of task i

X ,Y Maximum available number of processors (X) and number of cores (Y) per processor on a

node

Tij Time spent in OpenMP phase j of task i under a configuration using X processors and Y

cores per processor

tij Time spent in OpenMP phase j of task i after DCT

ti Total OpenMP phases time in task i after DCT

ti,j,thr Time spent in OpenMP phase j of task i using a configuration thr with thread count |thr|

N Number of MPI tasks

f0 Default frequency setting (highest CPU frequency)

Δtijk Time change after we set frequency fk during phase j of task i

Table I: Power-aware MPI/OpenMP model notation

notation of our model. We apply the model at the granularity

of OpenMP phase groups. OpenMP phase groups exhibit

different energy-saving potential since each group typically

encapsulates a different major computational kernel with

a specific pattern of parallelism and data accesses. Thus,

OpenMP phase groups are an appropriate granularity at

which to adjust configurations to improve energy-efficiency.

We discuss the implications of adjusting configurations at

the finer granularity of OpenMP phases in Section V.

DCT attempts to discover a concurrency configuration

for an OpenMP phase group that minimizes overall energy

consumption without losing performance. Thus, we prefer

configurations that deactivate complete processors in order

to maximize the potential energy savings. The energy saving

achieved by DCT for task i is:

ΔE
dct
i =

∑

1≤j≤M

ΔE
dct
ij , (1)

Where ΔEdct
ij is the energy savings for phase j relative

to using all cores, when we use xij ≤ X processors and

yij ≤ Y cores per processor. If the time for phase j, tij ,

is no longer than the time using all cores Tij , as we try to

enforce, then ΔEdct
ij ≥ 0 and DCT saves energy without

losing performance.

Ideally, DCT selects a configuration for each OpenMP

phase that minimizes execution time and, thus, the total

computation time in any MPI task. We model this total

execution time of OpenMP phases in MPI task i as:

ti =

M∑

j=1

min
1≤|thr|≤X·Y

ti,j,thr (2)

The subscript thr in Equation (2) represents a configuration

with thread count |thr|.
The critical task has the longest execution time, the

critical time, which we model as:

tc = max
1≤i≤N

M∑

j=1

min
1≤|thr|≤X·Y

ti,j,thr (3)

The time difference between the critical task and other

(non-critical) tasks in an OpenMP phase group is slack that

we can exploit to save energy with DVFS. Specifically, we

can use a lower CPU frequency during the OpenMP phases

of non-critical tasks. These frequency adjustments do not

incur any performance loss if the non-critical task, executed

at the adjusted frequencies, does not spend more time inside

the OpenMP phase group than the critical time. The slack

Figure 2: Leveraging slack to save energy with DVFS

time that we can disperse to the OpenMP phase group of a

non-critical task i by DVFS is:

Δt
slack
i = tc − ti − t

comm send
i − tdvfs (4)

Equation (4) reduces the available slack by the DVFS

overhead (tdvfs) and the communication time (tcomm send
i)

for sending data from task i in order to avoid reducing the

frequency too much. We depict two slack scenarios for MPI

collective operations and MPI Waitall in Figure 2. In each

scenario, Task 0 is the critical task and Task 1 disperses its

slack to its OpenMP phases.

We select a CPU frequency setting for each OpenMP

phase based on the non-critical task’s slack (Δtslack
i). We

discuss how we select the frequency in Section VI. We

ensure that the selected frequency satisfies the following two

conditions: ∑

1≤j≤M

Δtijk ≤ Δt
slack
i (5)

∑

1≤j≤M

tijkfk ≤ tif0 (6)

Equation (5) sets a time constraint: Δtijk refers to the time

change after we set the frequency of the core or processor

executing task i in phase j to fk. Equation (5) requires that

the total time changes of all OpenMP phases at the selected

frequencies do not exceed the available slack we want to

disperse. Equation (6) sets an energy constraint: tijk refers

to the time taken by phase j of task i running at frequency

fk. We approximate the energy consumption of the phase as

the product of time and frequency. Equation (6) requires that

the energy consumption with the selected frequencies does

not exceed the energy consumption at the highest frequency.

Intuitively, energy consumption is related to both time

and CPU frequency. Longer time and higher frequency lead

to more energy consumption. By computing the product

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

of time and frequency, we capture the effect of both. Our

energy estimation is not contradictory to previous CMOS

models [5], [14], in which power and CPU frequency are

related quadratically since we are estimating total system

energy. Empirical observations [15] found average system

power is approximately linear in frequency under a certain

CPU utilization range. These observations support our esti-

mate since HPC applications usually have very high CPU

utilization under different CPU frequencies (e.g., all of our

tests have utilization beyond 82.4%, well within the range

of a near-linear relationship between frequency and system

power).

IV. TIME PREDICTION FOR OPENMP PHASES

Our DVFS and DCT control algorithms rely on accurate

execution time prediction of OpenMP phases in response

to changing either the concurrency configuration or voltage

and frequency. Changes in concurrency configuration should

satisfy Equation 2. Changes in voltage and frequency should

satisfy Equations 5 and 6.

We design a time predictor that extends previous work

that only predicted IPC since intra-node DCT only requires

a rank ordering of configurations [9], [11], [16]. We require

time predictions in order to estimate the slack to disperse.

We also require time predictions to estimate energy con-

sumption. We use execution samples collected at runtime on

specific configurations to predict the time on other, untested

configurations. From these samples, our predictor learns

about each OpenMP phase’s execution properties that impact

the time under alternative configurations. The input from the

sample configurations consists of elapsed CPU clock cycles

and a set of n hardware event rates (e(1···n,s)) observed for

the particular phase on the sample configuration s, where

the event rate e(i,s) is the number of occurrences of event i

divided by the number of elapsed cycles during the execution

of configuration s. The event rates capture the utilization

of particular hardware resources that represent scalability

bottlenecks, thus providing insight into the likely impact

of hardware utilization and contention on scalability. The

model predicts time on a given target configuration t, which

we call Timet. This time includes the time spent within

OpenMP phases plus the parallelization overhead of those

phases.

For an arbitrary collection of samples, S, of size |S|, we

model Timet as a linear function:

Timet =

|S|∑

i=1

(Timei ·α(t,i)(e(1···n,i)))+λt(e(1···n,S))+σt (7)

The term λt is defined as:

λt(e(1···n,S))=
∑ n

i=1(
∑ |S|−1

j=1 (
∑ |S|

k=j+1(μ(t,i,j,k)·e(i,j)·e(i,k))))+

∑ |S|−1
j=1 (

∑ |S|
k=j+1(μ(t,j,k,time)·Timej ·Timek))+lt (8)

Equation (7) illustrates the dependency of terms α(t,i),

λt and σt on the target configuration. We model each

target configuration t through coefficients that capture the

varying effects of hardware utilization at different degrees

of concurrency, different mappings of threads to cores and

different frequency levels. The term α(t,i) scales the ob-

served Timei on the sample configurations up or down

based on the observed values of the event rates in that con-

figuration. The constant term σt is an event rate-independent

term. It includes the overhead time for parallelization or

synchronization. The term λt combines the products of

each event across configurations and of Timej/k to model

interaction effects. Finally, μ is the target configuration-

specific coefficient for each event pair and l is the event

rate-independent term in the model.

We use multivariate linear regression (MLR) to obtain the

model coefficients (α, μ and constant terms) from a set of

training benchmarks. We select the training benchmarks em-

pirically to vary properties such as scalability and memory

boundedness. The observed time Timei, the product of the

observed time Timei and each event rate and the interaction

terms on the sample configurations are independent variables

for the regression while Timet on each target configuration

is the dependent variable. We derive sets of coefficients and

model each target configuration separately.

We use the event rates for model training and time pre-

diction that best correlate with execution time. We use three

sample configurations: one uses the maximum concurrency

and frequency, while the other two use configurations with

half the concurrency—with different mappings of threads

to cores—and the second highest frequency. Thus, we gain

insight into utilization of shared caches and memory band-

width while limiting the number of samples.

We verify the accuracy of our models on systems with

three different node architectures. One has four AMD

Opteron 8350 quad-core processors. The second has two

AMD Opteron 265 dual-core processors. The third has

two Intel Xeon E5462 quad-core processors. We present

experiments with seven OpenMP benchmarks from the NAS

Parallel Benchmarks suite (v3.1) with CLASS B input. We

collect event rates from three sample configurations and

make time predictions for OpenMP phase samples in the

benchmarks. We then compare the measured time for the

OpenMP phases to our predictions. Figure 3 shows the

cumulative distribution of our prediction accuracy, i.e., the

total percentage of OpenMP phases with error under the

threshold indicated on the x-axis. The results demonstrate

high accuracy of the model in all cases: more than 75% of

the samples have less than 10% error.

V. DYNAMIC CONCURRENCY THROTTLING

This section describes our two schemes (“profile-driven

static mapping” and “one phase approach”) for applying

DCT. We predict performance for each OpenMP phase under

all feasible concurrency configurations at the default fre-

quency setting (highest frequency) with input from samples

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Cumulative distribution of prediction accuracy

of hardware event counters collected at runtime. We predict

the execution time of each phase as discussed in Section IV.

We cannot apply DCT in OpenMP phases where the code

in each thread depends on the thread identifier, since this

would violate correct execution. Also, we cannot make

accurate time predictions for very short OpenMP phases due

to the overhead of performing adaptation as well as accuracy

limitations in performance counter measurements. We have

empirically identified a threshold of one million cycles as

the minimum DCT granularity for an OpenMP phase. We

simply use the active configuration of the preceding phase

for each phase below this threshold.

A. Profile-driven Static Mapping

Intuitively, using the best concurrency configuration for

each OpenMP phase should minimize the computation time

of each MPI task. We call this DCT strategy the profile-

driven static mapping. To explore how well this strategy

works in practice, we applied it to the AMG benchmark

from the ASC Sequoia Benchmark suite. AMG has four

OpenMP phases in the computation loop of its solve phase.

Phases 1 and 2 are in phase group 1, phases 3 and 4 are

in phase group 2, and the phase groups are separated by

MPI Waitall. We describe AMG in detail in Section VII.

We run these experiments on two nodes, each with four

AMD Opteron 8350 quad-core processors.

We first run the benchmark with input parameters

P = [2 1 1], n = [512 512 512] under a fixed configuration

throughout the execution of all OpenMP phases in all tasks

for the entire duration of the run. We then manually select

the best concurrency configuration based on these static

observations, thus avoiding any prediction errors. Figure 4

shows the results with the fastest configuration for each

task and OpenMP phase shown in stripes. Scalability varies

across the phases and even within the same phase when

executed in different tasks, due to differences in workload

and data sets. The configuration of 4 processors and 2

threads per processor, shown as the first bar in each group

of bars in Figure 5, has the lowest total time in the solve

phase and, thus, is the best static mapping that we use as

our baseline in the following discussion.

Under this whole-program configuration, each individual

OpenMP phase may not use its best concurrency configu-

ration. We select the best configuration for each OpenMP

phase based on the results of Figure 4 and rerun the

benchmark, as the second bar in each group of bars in

Figure 5 shows. We profile each OpenMP phase with this

Figure 4: AMG phase performance

Figure 5: Impact of different DCT policies on AMG

Figure 6: Phase profiles of task 0 under DCT policies

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

profile-driven static mapping, which we compare with the

best static mapping to explore the source of the performance

loss. Figure 6 shows the last-level cache misses that each

OpenMP phase incurs normalized to the results with the

static mapping. Three of the four OpenMP phases incur

more misses with the profile-driven static mapping, lead-

ing to lower overall performance despite using the best

configuration based on the fixed configuration runs. This

increase arises from frequent configuration changes from

one OpenMP phase to another under the profile-driven static

mapping, thus confirming that cache interference causes the

performance loss.

Previous work [9], [11] showed that the profile-driven

static mapping can outperform the best static mapping.

These results combine with ours to demonstrate that the

profile-driven static mapping has no performance guaran-

tees: it benefits from improved concurrency configurations

while often suffering additional cache misses. We would

have to extend our time prediction model to consider the

configuration of the previous OpenMP phase in order to

capture the impact on cache hit rates. We would also need

to train our model under various thread mappings instead of

a unique thread mapping throughout the run, which would

significantly increase the overhead of our approach.

B. One Phase Approach

A simple solution to avoid cache misses caused by chang-

ing configurations is to use the same concurrency config-

uration for all OpenMP phases in each task in isolation.

We can predict time for this combined phase and select

the configuration that minimizes the time of the combined

phase in future iterations under this one phase approach.

Figure 5 shows that this strategy greatly reduces the perfor-

mance loss for AMG compared to the profile-driven static

mapping. Figure 6 shows that cache misses are also reduced

significantly. However, we still incur significant performance

loss compared to the best static mapping. Further analysis

reveals that the one phase approach can change the critical

task for specific phases despite minimizing the time across

all OpenMP phases.

This problem arises because configurations are selected

without coordination between tasks. Instead, each task

greedily chooses the best configuration for each combined

phase regardless of the global impact. Under our improved

one phase approach, each task considers the time at the

critical task when making its DCT decision. Each task

selects a configuration that does not make its OpenMP phase

groups longer than the corresponding ones in the critical

task. Although this strategy may result in a configuration

where performance for a task is worse than the one achieved

with the best static mapping, it maintains performance as

long as the OpenMP phase group time is shorter than the

corresponding one in the critical task. Unlike the profile-

driven static mapping, this strategy has a performance guar-

antee: it selects configurations that yield overall performance

no worse than the best static mapping, as Figure 5 shows.

The profile-driven static mapping adjusts configurations at

a fine granularity and suffers from the performance impact

of cache interference between adjacent OpenMP phases. The

one phase approach throttles concurrency at the coarsest

granularity, thus ignoring that particular OpenMP phases

may miss opportunities to execute with better configurations.

The improved one phase approach strives for a balance

between the two approaches by introducing task coordina-

tion and considering performance at a medium granularity

(OpenMP phase groups).

VI. DVFS CONTROL FOR ENERGY SAVING

We follow DCT with DVFS to exploit further energy

saving opportunities during OpenMP phases. The CPU fre-

quency setting should satisfy the constraints of Equations 5

and 6. We use two steps for DVFS control: (1) identifying

and estimating the slack available for DVFS; and (2) picking

the appropriate frequency for each OpenMP phase given the

slack.

A. Slack Estimation

Ideally, we can compute slack from Equation 4 in our

model. We can estimate the communication time in the

model a priori, using a communication benchmark such as

MPPtest [17]. In practice, however, several factors can cause

inaccuracies in our computed slack estimates. First, our

execution time predictions for OpenMP phases have error, as

shown in Section IV, and hence impact the computed slack.

Second, since the workload of OpenMP phases can vary

between outer iterations of the computation, our sampled

iterations may have a different workload from that in other

iterations. We introduce an error tolerance, ε, that adjusts our

computed slack to compensate for these inaccuracies, thus

preventing reductions of the frequency beyond the actual

slack, which is the maximum time we can disperse to the

OpenMP phases by DVFS without incurring performance

loss. We modify our slack model in Equation 4 to:

Δtslack
i = (tc − ti − tcomm send

i − tdvfs)/(1 + ε) (9)

In most cases, Equation (9) works well with a low value

for ε. However, even a large ε (> 0.3) can lead to excessive

frequency reductions in a few cases, which in turn hurts

performance. Our analysis found that the actual slack can

be shorter than the computed slack due to communication

phases. To explain how communication can affect slack,

Figure 7 illustrates a scenario observed in the IRS bench-

mark from the ASC Sequoia Benchmark Suite. In this case,

three tasks execute OpenMP phase group 2, non-blocking

MPI communication, MPI Waitall, OMP phase group 3, and

MPI Allreduce. Due to load imbalance, the tasks arrive at

MPI Allreduce at different times. Task 0, the most heavily

loaded, arrives late. Task 2 arrives earlier and can disperse

the slack that our model computes. However, point-to-point

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

Figure 7: Impact of communication on slack with IRS

communication between group 2 and group 3, reduces the

slack by Δt. In particular, task 2 starts executing OpenMP

phase group 3 later than task 0, which reduces the available

slack by Δt.
To capture the impact of communication on slack,

we record the wait time in MPI operations (particularly

MPI Allreduce in Figure 7) and use it as an upper-bound

of the slack we can disperse. The rationale is that any gap

(Δt) will be reflected as a shortened wait time and our slack

should never be longer than the wait time. If the computed

slack is longer than the wait time, we simply disperse the

wait time minus DVFS overhead. This heuristic enhances

the accuracy of our prediction and decreases the effective ε
value from 1.6 to 0.2 for IRS.

Simply using the wait time to estimate the slack is

insufficient. The wait time, including communication time,

has higher variance across iterations due to minor network

perturbations. Thus, recorded wait time can lead to too high

an estimate of slack. The slack computed from Equation (9),

on the other hand, reflects the slack which is actually

available in the tasks and therefore is a more reliable value

that is often less than the actual wait time.

The selection of an appropriate ε depends on prediction

accuracy and other factors as discussed above. According to

our results (shown in Figure 3) and practical experiences, a

value between 0.1 and 0.2 effectively compensates for errors

while allowing energy-saving in most cases. We use ε ≤ 0.2
for our evaluation, which results in negligible performance

loss. This value corresponds to prediction errors of 20% or

less, which captures most of our results.

B. Selecting Frequencies

We choose an appropriate frequency for each OpenMP

phase based on predictions of slack and computation time

for each OpenMP phase under different frequency config-

urations. We adjust the frequency used for all phases that

meet our time constraint (Equation 5) and minimize energy

consumption (Equation 6).

We formulate the problem of selecting frequencies for

OpenMP phases as a knapsack problem. Each OpenMP

phase time under a particular frequency is an item. We

associate a weight w = Δtijk and a value p = tijkfk with

each item. The weight is the time change under frequency

fk and the value captures relative energy. The total weight

of all phases must be less than the slack, Δtslack
i , and the

total value of all phases should be minimized. Some items

cannot be selected at the same time since we cannot select

more than one frequency for each OpenMP phase. This is

a variant of the 0-1 knapsack problem [18], which is NP-

complete.

Dynamic programming can solve the knapsack problem

in pseudo-polynomial time. If each item has a distinct value

per unit of weight (v = p/w), the empirical complexity is

O((log(n))2) where n is the number of items. We designed

a unique dynamic programming solution to our problem.

For convenience in its description, we replace tijkfk with

[(−1) · tijkfk] to solve the problem of maximizing the total

value. Let L be the number of available CPU frequency

levels, w(i−1)∗L+1, w(i−1)∗L+2, . . . ,wi∗L be the available

weights of OpenMP phase i, and p(i−1)∗L+1, p(i−1)∗L+2,

. . . ,pi∗L be the available values of OpenMP phase i. We

denote the maximum attainable value with weight less than

or equal to Y using items up to j as A(j, Y), which we

define recursively as:

A(0, Y) = −∞, A(j, 0) = −∞ (10)

A(j, Y) = A(j − L, Y) + pj ,

if all wj−1, . . . , wj−L+1are greater than Y.
(11)

A(j,Y)=max (A(j−L,Y)+pj , maxi(pi+A(j−L,Y−wi))),

for any i ∈ [j − L + 1, j − 1], and wi ≤ Y.
(12)

We solve this problem by calculating A(n, Δtslack
x) for task

x, where n is the number of items. For a given total weight

limitation W , the time complexity of this solution is linear

in n.

VII. PERFORMANCE EVALUATION

We implemented our power-aware MPI/OpenMP system

as a runtime library that performs online adaptation of DVFS

and DCT. The runtime system predicts execution times of

OpenMP phases based on collected hardware event rates and

controls the execution of each OpenMP phase in terms of

the number of threads, their placement on cores and the

DVFS level. To use our library, we instrument applications

with function calls around each adaptable OpenMP phase

and selected MPI operations (collectives and MPI Waitall).

This instrumentation is straightforward and could easily be

automated using a source code instrumentation tool, like

OPARI [19], in combination with a PMPI wrapper library.

In this section, we evaluate our model with the Multi-

Zone versions of NPB benchmarks (NPB-MZ) and two

benchmarks (AMG and IRS) from the ASC Sequoia bench-

mark suite. The NPB-MZ [20] suite has three benchmarks

(LU-MZ, SP-MZ and BT-MZ). Each has the same program

flow, which Figure 8 shows. The benchmark loop has one

procedure to exchange boundary values using point-to-point

MPI communication. Therefore, the entire benchmark loop

has only one OpenMP phase group. A bin-packing algorithm

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

Figure 8: NPB-MZ
flow graph Figure 9: Simplified

IRS flow graph

Figure 10:
Simplified

AMG flow graph

balances the workload of the OpenMP phases between all

tasks. Under this algorithm, LU-MZ and SP-MZ allocate

the same number of zones for each task and each zone

has the same size. For BT-MZ, zones have different sizes

and each task owns a different number of zones, however

each task has almost the same total zone size. For our

experiments, we introduce an artificial load imbalance in

BT-MZ by modifying the load balancing code so that each

task owns the same number of zones, but each task has a

different total zone size. This load imbalance increases the

energy saving opportunities of slack reclamation.

IRS uses a preconditioned conjugate gradient method for

inverting a matrix equation. Figure 9 shows its simplified

computational kernel. We group the OpenMP phases into

four groups. Some OpenMP phase groups include serial

code. We regard serial code as a special OpenMP phase

with the number of threads fixed to 1. Although DCT

is not applicable to serial code, it could be imbalanced

between MPI tasks and hence provide opportunities for

saving energy through DVFS. We use input parameters

NDOMS=8 and NZONES PER DOM SIDE=90. The IRS

benchmark has load imbalance between the OpenMP phase

groups of different tasks.

AMG [21] is a parallel algebraic multigrid solver for

linear systems on unstructured grids. Its driver builds linear

systems for various 3-dimensional problems; we choose a

Laplace type problem (problem parameter set to 2). The

driver generates a problem that is well balanced between

tasks. We modified the driver to generate a problem with

imbalanced load. The load distribution ratio between pairs

of MPI tasks in this new version is 0.45:0.55.

We categorize hybrid MPI/OpenMP applications based on

their OpenMP phases’ workload characteristics: (1) imbal-

anced and constant workload per iteration (e.g., modified

BT-MZ) or nearly constant workload per iteration (e.g.,

IRS); (2) imbalanced and non-constant workload per iter-

Figure 11: Adaptive DCT/DVFS control of NPB-MZ

Figure 12: Adaptive DCT/DVFS control of AMG and IRS

ation (e.g., AMG); (3) balanced workload (e.g., SP-MZ and

LU-MZ).

We first run all benchmarks on two homogeneous nodes,

each with four AMD Opteron 8350 quad-core processors (a

total of 16 cores per node). The baseline is the execution

under the configuration using 4 processors and 4 cores per

processor, all running at the highest processor frequency.

DVFS on the AMD Opteron 8350 has five frequency settings

and we apply DVFS to the whole processor (all cores on a

single socket). Figures 11 and 12 show the results.

Our DCT scheme selects the same concurrency configura-

tion as the performance baseline for BT-MZ, which leads to

no performance or energy gains. Due to good scalability of

the OpenMP phases, the DCT strategy maintains maximum

concurrency and cannot save energy. However after we apply

DVFS, we achieve energy savings (10.21%) at ε = 0.2 with

no performance loss. When ε < 0.2, we run each processor

at a lower frequency but consume more energy due to

increased execution time. The OpenMP phases in SP-MZ do

not scale well, so we can save energy (5.72%) by applying

DCT alone (pure DCT). Due to the balanced load in SP-

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

MZ, our DVFS algorithm cannot save energy, as shown by

Pure DCT and DCT+DVFS, ε = 0 having the same energy

consumption. The LU-MZ benchmark has scalable OpenMP

phases and balanced load and hence our runtime system

does not have any opportunity to save energy. However,

this test case shows that our system has negligible overhead

(0.736%).

Our AMG problem has non-constant workload per it-

eration, which makes our predicted configurations based

on sampled iterations incorrect in later iterations. After

profiling its OpenMP phases, we find that AMG has a

periodic workload. OpenMP phase group 1 has a period of

14 iterations and OpenMP phase group 2 has a period of

7 iterations. Thus, we can still apply our control schemes,

but with application-specific sampling. Since the workload

within a period varies from one iteration to another, we select

configurations for every iteration within a period. We use

more sample iterations during at least one period and change

configurations for each iteration within a period. The results

show that pure DCT achieves 11.56% energy saving and

7.39% performance gain. The best energy saving (13.80%)

is achieved by applying DCT plus DVFS (ε = 0.1) and

the performance gain with DCT plus DVFS is 7.21%. In

IRS, we observe 7.5% performance gain and 12.25% energy

saving by applying only DCT. By applying DVFS, we can

further reduce energy however with a slight performance

loss, compared to the performance of pure DCT because the

workload in OpenMP phases varies slightly and irregularly.

The selection of our DVFS scheme based on sample itera-

tions may hurt performance in the rest of the run. The best

energy saving (13.31%) is achieved with combined DCT

and DVFS with a performance loss of only 1.91%. We can

reduce the performance loss by increasing ε, but this reduces

energy saving while having limited performance gains.

To summarize, our hybrid MPI/OpenMP applications

present different energy-saving opportunities and the energy-

saving potential depends on workload characteristics. Our

model can detect and leverage this potential. In particular, for

imbalanced and constant (or close to constant) per iteration

workloads, our algorithm is effective, saving energy while

maintaining performance. For imbalanced and non-constant

per iteration workload, if the workload is periodic, we can

still apply our algorithm after detecting the periodicity of the

workload; if the workload is totally irregular, our algorithm

can fail. For balanced workloads, if OpenMP phases are non-

scalable, we can save energy with pure DCT; if OpenMP

phases are scalable, our algorithm does not save energy,

but also does not hurt performance. We could detect the

period of a workload by testing the applications with small

problem sets. Alternatively, many scientific applications use

a recursive computation kernel, thus creating a periodic

workload that we could track based on the stack trace depth.

We extend our analysis into larger scales in order to

investigate how our model reacts as the number of nodes

changes. The following experiments consider the power

awareness scalability of HPC applications, which we call

the scalability of energy saving opportunities. We present

results from experiments on the recently built System G

supercomputer at Virginia Tech. System G is a unique

research platform for Green HPC, with thousands of power

and thermal sensors. System G has 320 nodes powered by

Mac Pro computers, each with 2 quad-core Xeon processors.

Each processor has two frequency settings for DVFS. The

nodes are connected by Infiniband (40Gb/s). We vary the

number of nodes and study how our power-aware model per-

forms under strong and weak scaling. We use the execution

under the configuration using 2 processors and 4 cores per

processor and running at the highest processor frequency,

which we refer to as (2,4), as the baseline by which we

normalize reported times and energy.

Figure 13 displays the results of AMG and IRS under

strong scaling input (i.e., maintaining the same total problem

size across all scales). Actual execution time is shown

above normalized execution time bars, to illustrate how

the benchmark scales with the number of nodes. On our

cluster, the OpenMP phases in AMG scale well, and hence

DCT does not find energy-saving opportunities in almost

all cases although, with 64 nodes or more, DCT leads to

concurrency throttling on some nodes. However due to the

small length of OpenMP phases at this scale, DCT does

not lead to significant energy savings. When the number

of nodes reaches 128, the per node workload in OpenMP

phases is further reduced to a point where some phases

become shorter than our DCT minimum phase granularity

threshold and DCT simply ignores them. On the other

hand, our DVFS strategy saves significant energy in most

cases. However, as the number of nodes increases, the

ratio of energy-saving decreases from 3.72% (4 nodes) to

0.121% (64 nodes) because the load difference between tasks

becomes smaller as the number of nodes increases. With 128

nodes, load imbalance is actually less than DVFS overhead,

so DVFS becomes ineffective. In IRS, our DCT strategy

leads to significant energy-saving when the number of nodes

is more than 8. We even observe performance gains by DCT

when the number of nodes reaches 16. However DCT does

not lead to energy-saving in the case of 128 nodes for similar

reasons to AMG. DVFS leads to energy-saving with less

than 16 nodes but does not provide benefits as the number

of nodes becomes large and the imbalance becomes small.

Figures 14 displays the weak scaling results. We adjust

the input parameters (AMG and IRS) or change the input

problem definition (BT-MZ) as we vary the number of

nodes so that the problem size per node remains constant

(or close to it). For IRS and BT-MZ, the energy-saving

ratio grows slightly as we increase the number of nodes

(from 1.9% to 2.5% for IRS and from 5.21% to 6.8% for

BT-MZ). Slightly increased imbalance, as we increase the

problem size, allows additional energy savings. For AMG,

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

4 nodes 8 nodes 16 nodes 32 nodes 64 nodes 128 nodes

701.39s 703.01s
706.22s

357.29s 357.31s
359.12s

182.69s 182.91s 182.96s 88.71s

89.18s
89.39s

44.83s

45.13s
45.01s

23.21s

23.38s 23.36s

AMG

4 nodes 8 nodes
16 nodes 32 nodes 64 nodes

128 nodes

1336.52s 1340.08s 1343.11s 722.82s 723.00s 727.16s 176.80s 178.04s 178.17s 124.93s 125.50s 125.51s 96.68s
98.03s

362.51s
358.24s 360.08s

98.10s

IRS

Figure 13: Results from strong scaling tests of our adaptive DCT/DVFS control on System G

we observe that the ratio of energy-saving stays almost

constant (2.17%∼2.22%), which is consistent with AMG

having good weak scaling. Since the workload per node is

stable, energy saving opportunities are also stable as we vary

the number of nodes.

In general, energy-saving opportunities vary with work-

load characteristics. They become smaller as the number of

nodes increases under a fixed total problem size because the

subdomain allocated to a single node becomes so small that

the energy-saving potential that DVFS or DCT can leverage

falls below the threshold that we can exploit. An interesting

observation is that, when the number of nodes is below the

threshold, some benchmarks (e.g., IRS with less than 16

nodes) present good scalability of energy saving opportu-

nities for DCT because of the changes in their workload

characteristics (e.g., scalability and working data sets) as the

allocated sub-domain changes. With weak scaling, energy-

saving opportunities are usually stable or increasing and

actual energy-saving from our model tends to be higher than

with strong scaling. Most importantly, under any case our

model can leverage any energy saving opportunity without

significant performance loss as the number of nodes changes.

VIII. RELATED WORK

Several software-controlled techniques use DVFS to save

energy in MPI programs. A heuristic by Freeh et al. [1] pri-

marily attacks intra-node (memory) bottlenecks by choosing

frequencies based on previously executed program phases.

Kappiah et al. [8] address inter-node bottlenecks by using

DVFS to exploit the net slack expected in an iteration. A

scheduler that Springer et al. [4] propose selects node counts

and CPU frequencies to minimize energy consumption and

execution time. Rountree et al. [3] develop an offline method

that uses linear programming to estimate the maximum en-

ergy saving possible for MPI programs based on critical path

analysis. Subsequent work [22] provides a critical path-based

online algorithm that uses simple predictions of execution

times for program regions based on prior executions of the

regions.

Our work differs from prior DVFS-based power man-

agement approaches in three ways. First, we choose CPU

frequency configurations based on a scalable performance

model instead of direct measurements or static analysis of

slack time. Increasing numbers of processors, cores and

available frequencies make scalable prediction models that

prune the optimization space essential. Second, we consider

hybrid MPI programs with nested OpenMP parallel phases

that can be scaled using DVFS and DCT. Thus, the solution

design space is more challenging although potential energy-

efficiency improvements are also higher. Third, we consider

systems with larger node counts and cores per node than

earlier studies and, thus, derive insight into the implications

of strong scaling, weak scaling, and multi-core processors

for power management.

Curtis-Maury et al. study prediction models for adaptation

via DCT and/or DVFS [9], [11], [16]. Their work targets

pure OpenMP programs running on shared memory multi-

core systems. They estimate performance for each OpenMP

phase in terms of useful instructions per second for DVFS

and DCT, which is sufficient within a shared memory

node. We target hybrid MPI/OpenMP programs running

on large-scale distributed systems and therefore must con-

sider the implications of MPI communication on slack and

the interactions between MPI communication events and

OpenMP phases. Thus, our model must generalize their

multi-dimensional prediction models for OpenMP phases

and directly use the predicted time. We also address a

shortcoming of their work, namely the lack of analysis of

the implicit penalty of DCT on memory performance, which

we analyze to design a new coordinated DCT algorithm that

mitigates the penalty. Finally, we choose CPU frequencies

under the constraints of both slack time and minimizing

energy consumption instead of minimizing only execution

time or only energy consumption.

Extensive prior research has explored optimization of

power/thermal and performance properties of programs us-

ing feedback from hardware event counters. Isci et al. [7]

and Merkel et al. [23] use hardware event counters to

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

4 nodes 8 nodes 16 nodes 32 nodes 64 nodes 128 nodes

354.92s
357.40s 357.50s

358.41s 360.78s 361.18s
359.80s 361.84s 362.13s

362.23s
367.49s 368.21s

395.19s
399.22s 400.51s

397.69s 399.58s
401.71s

AMG

8 nodes 27 nodes 64 nodes 125 nodes 216 nodes

781.74s
783.16s 783.32s

1161.47s
1163.96s 1165.18s

1521.17s
1524.22s

1525.89s

1880.98s

1886.02s 1887.21s

2654.85s
2660.47s

2664.87s

IRS

4 nodes 8 nodes 16 nodes 32 nodes 64 nodes 128 nodes

1122.35s
1123.79s

1124.91s
1283.46s

1285.71s 1285.91s
1561.84s 1562.37s

1564.01
1969.22s 1970.84s

1975.31s

2412.91s 2413.16s 2414.21s 2908.28s 2911.39s
2914.14s

BT-MZ

Figure 14: Results from weak scaling tests of our adaptive DCT/DVFS control on System G

determine the degree of utilization of each functional unit in

a processor, from which they estimate power consumption

or temperature. Based on these power and temperature

estimates, they propose process scheduling algorithms. We

use hardware event counters to capture statistical correlation

between event samples and performance. By collecting spe-

cific counter events in sample iterations, our model learns

program execution properties and makes accurate prediction

for untested configurations thus reducing the design space

for energy-efficiency optimization of large-scale, multicore

systems.

IX. CONCLUSIONS

In this paper, we presented models and algorithms for

energy-efficient execution of hybrid MPI/OpenMP applica-

tions and we characterized energy-saving opportunities in

these applications, based on the interaction between com-

munication and computation. We used this characterization,

to propose algorithms using two energy-saving tools, DCT

and DVFS, to leverage energy-saving opportunities without

performance loss.

Our work improves existing DCT techniques by charac-

terizing the potential performance loss due to concurrency

adjustment. We use this insight to provide performance

guarantees in our new “one phase approach”, which balances

between DCT performance penalties and energy savings. We

also present a more accurate model for measuring slack time

for DVFS control and solve the problem of frequency selec-

tion using dynamic programming. We apply our model and

algorithm to realistic MPI/OpenMP benchmarks at larger

scales than any previously published study. Overall, our

new algorithm yields substantial energy savings (4.18% on

average and up to 13.8%) with either negligible performance

loss or performance gain (up to 7.2%). Further, our results

are the first to characterize how energy saving opportunities

vary under strong and weak scaling, on systems with large

node and core counts.

In future work we intend to tune the accuracy of our

prediction model. In particular, we will explore predictions

that reflect the interference between concurrency-adjusted

neighboring OpenMP phases. We will also include more

factors that affect performance into our time prediction,

which in turn should provide better guidelines for DCT and

DVFS.

ACKNOWLEDGMENT

This work has been supported by NSF (CNS-

0905187, CNS-0910784, CCF-0848670, CNS-0709025,

CNS-0720750) and the European Commission through the

MCF IRG project I-Cores (IRG-224759) and the HiPEAC

Network of Excellence (IST-004408, IST-217068). Part of

this work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National

Laboratory under contract DE-AC52-07NA27344 (LLNL-

PROC-422990).

REFERENCES

[1] V. Freeh and D. Lowenthal, “Using Multiple Energy

Gears in MPI Programs on a Power-Scalable Clus-

ter,” in Proceedings of the Eleventh ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming (PPoPP), 2007.

[2] R. Ge, X. Feng, and K. W. Cameron, “Performance-

Constrained Distributed DVS Scheduling for Scientific

Applications on Power-Aware Clusters,” in SC ’05:

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

Proceedings of the 2005 ACM/IEEE Conference on

Supercomputing, 2005.

[3] B. Rountree, D. Lowenthal, S. Funk, V. Freeh, B. R.

de Supinski, and M. Schulz, “Bounding Energy Con-

sumption in Large-Scale MPI Programs,” in SC ’07:

Proceedings of the 2007 ACM/IEEE Conference on

Supercomputing, 2007.

[4] R. Springer, D. Lowenthal, B. Rountree, and V. Freeh,

“Minimizing Execution Time in MPI Programs on an

Energy-Constrained, Power-Scalable Cluster,” in Pro-

ceedings of the Eleventh ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming

(PPoPP), 2006.

[5] A. Miyoshi, C. Lefurgy, E. Hensbergen, R. Rajamony,

and R. Rajkumar, “Critical Power Slope: Understand-

ing the Runtime Effects of Frequency Scaling,” in Proc.

of the International Conference on Supercomputing

(ICS), 2002.

[6] C.-H. Hsu and W.-C. Feng, “A Power-Aware Run-Time

System for High-Performance Computing,” in SC ’05:

Proceedings of the 2005 ACM/IEEE Conference on

Supercomputing, 2005.

[7] C. Isci and M. Martonosi, “Runtime Power Monitoring

in High-End Processors: Methodology and Empirical

Data,” in Proc. of the Annual International Symposium

on Microarchitecture, 2003.

[8] N. Kappiah, V. Freeh, and D. Lowenthal, “Just In Time

Dynamic Voltage Scaling: Exploiting Inter-Node Slack

to Save Energy in MPI Programs,” in Proceedings of

the 2005 ACM/IEEE Conference on Supercomputing,

2005.

[9] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos,

and D. S. Nikolopoulos, “Online Power-Performance

Adaptation of Multithreaded Programs using Event-

Based Prediction,” in Proc. of the 20th ACM Interna-

tional Conference on Supercomputing (ICS), 2006.

[10] M. A. Suleman, M. K. Qureshi, and Y. N. Patt,

“Feedback-Driven Threading: Power-Efficient and

High-Performance Execution of Multi-Threaded Work-

loads on CMPs,” in Proceedings of the 13th Interna-

tional Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASP-

LOS), 2008.

[11] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos,

and D. S. Nikolopoulos, “Prediction-Based Power-

Performance Adaptation of Multithreaded Scientific

Codes,” IEEE Transactions on Parallel and Distributed

Systems (TPDS), 2008.

[12] W. D. Gropp, “MPI and Hybrid Programming Models

for Petascale Computing,” in Proceedings of the 15th

European PVM/MPI Users’ Group Meeting on Recent

Advances in Parallel Virtual Machine and Message

Passing Interface, 2008.

[13] R. Rabenseifner and G. Wellein, “Communication and

Optimization Aspects of Parallel Programming Models

on Hybrid Architectures,” Int.J.High Perform. Comput.

Appl., vol. 17, 2003.

[14] T.Mudge, “Power: A First-Class Architectural Design

Constraint,” IEEE Computer, vol. 34, no. 4, 2001.

[15] T. Horvath and K. Skadron, “Multi-Mode Energy Man-

agement for Multi-Tier Server Clusters,” in Proc. of

the 17th International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT), 2008.

[16] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S.

Nikolopoulos, B. R. de Supinski, and M. Schulz,

“Prediction Models for Multi-dimensional Power-

Performance Optimization on Many Cores,” in Proc.

of the 17th International Conference on Parallel Ar-

chitectures and Compilation Techniques (PACT), 2008.

[17] W. Gropp and E. Lusk, “Reproducible Measurements

of MPI Performance Characteristics,” in Proceedings

of the 6th European PVM/MPI Users’ Group Meeting

on Recent Advances in Parallel Virtual Machine and

Message Passing Interface, 1999.

[18] M. Silvano and P. Toth, Knapsack Problems: Algo-

rithms and Computer Implementations. John Wiley

and Sons, 1990.

[19] B. Mohr, A. D. Malony, S. Shende, and F. Wolf,

“Design and Prototype of a Performance Tool Interface

for OpenMP,” in Proceedings of LACSI 2001, 2001.

[20] H. Jin and R. Van der Wijingaart, “Performance Char-

acteristics of the Multi-Zone NAS Parallel Bench-

marks,” in Proc. of the International Parallel and

Distributed Processing Symposium (IPDPS), 2004.

[21] V. E. Henson and U. M. Yang, “BoomerAMG: A Par-

allel Algebraic Multigrid Solver and Preconditioner,”

Applied Numerical Mathematics, vol. 41, 2000.

[22] B. Rountree, D. K. Lownenthal, B. R. de Supinski,

M. Schulz, V. W. Freeh, and T. Bletsch, “Adagio: Mak-

ing DVS Practical for Complex HPC Applications,” in

Proceedings of the 23rd International Conference on

Supercomputing, 2009.

[23] A. Merkel and F. Bellosa, “Task Activity Vectors: A

New Metric for Temperature-Aware Scheduling,” in

Third ACM SIGOPS EuroSys Conference, 2008.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

