
Power-aware MPI Task Aggregation Prediction for High-End Computing Systems

Dong Li† Dimitrios S. Nikolopoulos‡ Kirk Cameron† Bronis R. de Supinski� Martin Schulz�

† Virginia Tech

Blacksburg, VA, USA

{lid,cameron}@cs.vt.edu

� Lawrence Livermore National Lab

Livermore, CA, USA

{bronis,schulzm}@llnl.gov

‡ FORTH-ICS and University of Crete

Heraklion, Crete, GREECE

dsn@ics.forth.gr

Abstract—Emerging large-scale systems have many nodes
with several processors per node and multiple cores per
processor. These systems require effective task distribution
between cores, processors and nodes to achieve high levels
of performance and utilization. Current scheduling strategies
distribute tasks between cores according to a count of available
cores, but ignore the execution time and energy implications
of task aggregation (i.e., grouping multiple tasks within the
same node or the same multicore processor). Task aggregation
can save significant energy while sustaining or even improving
performance. However, choosing an effective task aggregation
becomes more difficult as the core count and the options
available for task placement increase. We present a framework
to predict the performance effect of task aggregation in both
computation and communication phases and its impact in
terms of execution time and energy of MPI programs. Our
results for the NPB 3.2 MPI benchmark suite show that our
framework provides accurate predictions leading to substantial
energy saving through aggregation (64.87% on average and up
to 70.03%) with tolerable performance loss (under 5%).

Keywords-MPI; performance modeling; power-aware high-
performance computing.

I. INTRODUCTION

Modern high-end computing systems have many nodes

with several processors per node and multiple cores per

processor. The distribution of tasks across the cores of

multiple nodes impacts both execution time and energy.

Current job management systems, which typically rely on a

count of available cores for assigning jobs to cores, simply

treat parallel job submissions as a 2D chart with time along

one axis and number of cores along the other [1], [2].

They regard each job as a rectangle with width equal to the

number of cores requested by the job and height equal to the

estimated job execution time. Most scheduling strategies are

based on this model, which has been extensively studied [3],

[4], [5]. Some job scheduling systems also consider commu-

nication locality factors such as the network topology [6].

Unfortunately, job schedulers ignore the power-performance

implications of the layouts of cores available in compute

nodes to execute tasks from parallel jobs.

Task aggregation refers to aggregating multiple tasks

within a node with shared memory. A fixed number of tasks

can be distributed across a variable number of nodes, using

different degrees of task aggregation per node. Aggregated

tasks share system resources, such as the memory hierarchy

and network interface, which has an impact on performance.

This impact may be destructive, because of contention

for resources. However, it may also be constructive. For

example, an application can benefit from the low latency and

high bandwidth of intra-node communication through shared

memory. Although earlier work has studied the performance

implications of communication through shared-memory in

MPI programs [7], [8], [9], the problem of selecting the

best distribution and aggregation of a fixed number of tasks

has been left largely to ad hoc solutions.

Task aggregation significantly impacts energy consump-

tion. A job uses fewer nodes with a higher degree of task

aggregation. Unused nodes can be set to a deep low-power

state while idling. At the same time, aggregating more tasks

per node implies that more cores will be active running tasks

on the node, while memory occupancy and link traffic will

also increase. Therefore, aggregation tends to increase the

power consumption of active nodes. In summary, task aggre-

gation has complex implications on both performance and

energy. Job schedulers should consider these implications

in order to optimize energy-related metrics while meeting

performance constraints.

In this paper we propose a model to predict the impact

of task aggregation, which entails several issues:

• How can we model and predict the performance impact

of aggregation on computation phases? The prediction

should capture the likely impact of increased hardware

utilization and contention on scalability.

• How can we model and predict the impact of aggre-

gation on communication phases? Can we predict this

impact based on the aggregation pattern?

• How can we integrate predictions for computation and

communication to predict the optimal aggregation level,

given an optimization criterion based on performance,

energy, or a combination thereof?

The main contributions of this paper are:

• A framework to collect information from execution

samples in HPC applications and use this information

to predict the impact of MPI task aggregation;

• A model for predicting the impact of aggregation on

the computation phases of MPI programs;

• An analysis of the effects of concurrent inter-task

communication under varying aggregation levels and a

method of predicting an upper bound of communication

978-1-4244-6443-2/10/$26.00 ©2010 IEEE

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

time across different aggregation levels;

• A formalization of the problem of deciding which MPI

tasks should be aggregated, given the aforementioned

analysis of communication; this formalization maps the

problem into a graph partitioning problem, which we

solve with a heuristic algorithm;

• An evaluation of task aggregation on system scales of

up to 1024 cores.

Our results show that our prediction captures accurately

the performance impact of different aggregation patterns.

Our prediction for the computation phases has 1.08% error

on average. Our prediction for total execution time time,

which includes an upper bound of communication time, has

28.97% error on average. This seemingly large error arises

due to the inability of modeling overlapping communication

operations and communication with computation in our

framework. Nevertheless, the error tends to be uniform

across aggregation patterns, therefore our prediction tends to

rank correctly aggregations in terms of the objective metric

(minimizing energy under a performance constraint). The

predicted task aggregations yield substantial energy saving

(64.87% on average and up to 70.03%) with tolerable per-

formance loss (under 5%). We correctly predict the optimal

aggregation in most cases on system scales from 16 nodes

up to 128 nodes. Even in mispredicted cases, our prediction

is close to the optimal and achieves 68.12% energy saving

on average. In addition, our scaling study (up to 1024 cores)

demonstrates improved performance with more aggregation.

The rest of this paper is organized as follows. Section II

formulates the problem of task aggregation. Section III

presents our method for predicting the performance of com-

putation phases after task aggregation. Section IV presents

our graph partitioning algorithm for task grouping. Section V

presents our communication performance prediction method.

Section VI discusses our method for ranking aggregation

patterns. Section VII presents our experimental analysis.

Section VIII discusses related work and Section IX con-

cludes the paper.

II. PROBLEM STATEMENT

We target the problem of how to distribute MPI tasks be-

tween and within nodes in order to minimize execution time,

or minimize energy, under a given performance constraint.

The solution must make two decisions: how many tasks to

aggregate per node; and how to assign the tasks scheduled on

the same node to cores, which determines how these tasks

will share hardware components such as caches, network

resources, and memory bandwidth. In all cases, we select a

task aggregation pattern based on performance predictions.

We assume the following:

1) The number of MPI tasks is given and fixed throughout

the execution of the application;

2) The number of nodes used to execute the application

and the number of tasks per node is decided at job

Figure 1: Impact of task aggregation on the NAS PB suite

submission time and this decision depends on a pre-

diction of the impact of different aggregation patterns

on performance and energy;

3) Any aggregation must assign the same number of tasks

to each node;

4) Jobs are SPMD (Single Program Multiple Data) pro-

grams;

5) MPI communication patterns—including message size

and communication target—can vary across tasks;

6) Aggregation patterns must not result in total DRAM

requirements that exceed a node’s physical memory.

Allowing aggregation patterns that place more tasks on

some nodes than others may be more efficient in imbalanced

applications, however, the resulting load imbalance would

hurt performance and waste energy in well balanced SPMD

applications. In these cases, the system could leverage slack

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Aggregation patterns on our test platform

to save energy. Energy saving opportunities due to slack

have been studied elsewhere [10] and are beyond the scope

of this work.

A series of tests with the NPB 3.2 MPI benchmarks [11]

(problem size D) on 16 nodes of a cluster under various

aggregation patterns demonstrates the effect of aggregation

on execution time and energy. Each node of this cluster has

two Xeon E5462 quad-core processors, each of which has

two dies shared by two cores and 8 GB of physical memory.

Figure 1 shows the results for the eight possible aggregation

patterns on this platform. Energy and energy-delay product

data are normalized to the results with aggregation pattern

1. Figure 2 depicts the aggregation patterns with the cores

assigned to tasks indicated with stripes. Pattern 8 is not

available for some benchmarks as each task requires more

than an eighth of the memory on a node. Our results

for FT use more grid points and iterations than in the

standard problem size D to achieve longer execution time.

As seen in the execution time and energy consumption of

the benchmarks across all feasible aggregation patterns, no

single pattern always provides the best results. For example,

using one core of each die (pattern 5) for CG uses the

least energy but results in sub-optimal execution time, while

using one core of each processor (pattern 2) for FT provides

the lowest execution time but does not minimize energy

consumption.

We decompose the aggregation problem into three sub-

problems:

1) Predicting the impact of task count per node on

computation;

2) Predicting the communication cost of all aggregation

patterns;

3) Combining the computation and communication pre-

dictions.

We study the impact of aggregation on computation and

communication separately, since the same aggregation pat-

tern can impact computation and communication differently.

We present a prediction-based framework to solve the

aggregation problem. The framework exploits the iterative

structure of parallel phases that dominate execution time in

scientific applications. We collect samples of hardware event

counters and communication pattern information at runtime.

From this data, we predict the performance under all feasible

aggregation patterns and then rank the patterns to identify a

preferred aggregation pattern.

III. PREDICTING COMPUTATION PERFORMANCE

We predict performance during computation phases by

predicting IPC. We derive an empirical model based on

previous work [12], [13], [14], which predicts IPC of

computation phases in OpenMP applications. We use iter-

ation samples collected at runtime on specific aggregation

patterns to predict the IPC for each task on other untested

aggregation patterns. The IPC for each aggregation pattern

is the average value of the IPC of all tasks.

The execution samples provide statistical indicators about

the execution properties of computation phases that impact

IPC. Different aggregation patterns imply different patterns

in resource sharing and contention, which in turn influence

IPC. If we can accurately predict the impact of sharing and

contention on IPC we can also identify the aggregations

that improve energy efficiency.

Based on this discussion, we build an empirical model

derivation shown in equation (1):

IPCt =

|S|∑

i=1

(IPCi · α(t,i)(e(1···n,i))) + λt(e(1···n,S)) + σt (1)

The model predicts the IPC of a specific aggregation

pattern t, based on information collected in S samples. We

collect n hardware event rates e(1···n,i) and IPCi in each

sample i. The function α(t,i)() scales the observed IPCi in

sample i up or down based on the observed values of event

rates while λt is a function that accounts for the interaction

between events and σt is a constant term for the aggregation

pattern t. For a specific sample s, αt is defined as:

αt(e(1···n,s)) =

n∑

j=1

(x(t,j) · e(j,s) + y(t,j)) + zt (2)

where e(j,s) is a hardware event in sample s, and x(t,j),

y(t,j) and zt are coefficients.

λt is defined as:

λt(e(1···n,S)) =

n∑

i=1

(

|S|−1∑

j=1

(

|S|∑

k=j+1

(μ(t,i,j,k) · e(i,j) · e(i,k))))+

|S|−1∑

j=1

(

|S|∑

k=j+1

(μ(t,j,k,IPC) · IPCj · IPCk)) + lt

(3)

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

where e(i,j) is the ith event of the jth sample. μ(t,i,j,k),

μ(t,j,k,IPC) and lt are coefficients.

We approximate the coefficients in our model with multi-

variate linear regression. IPC, the product of IPC and each

event rate, and the interaction terms in the sample aggrega-

tion patterns serve as independent variables, while the IPC

on each target aggregation pattern serves as the dependent

variable. We record IPC and a predefined collection of

event rates while executing the computation phases of each

training benchmark with all aggregation patterns. We use

the hardware event rates that most strongly correlate with the

target IPC in the sample aggregation patterns. We develop a

model separately for each aggregation pattern and derive sets

of coefficients independently. The training benchmarks are

the twelve SPEC MPI 2007 benchmarks [15] under different

problem sets, which demonstrate wide variation in execution

properties such as scalability and memory-boundedness.

We classify computation phases into four categories based

on their observed IPC during the execution of the sample

aggregation patterns and use separate models for different

categories in order to improve prediction accuracy. Specif-

ically, we classify phases into four categories with IPC

[0, 1), [1, 1.5), [1.5, 2.0) and [2.0, +∞). Thus our model

is a piecewise linear regression that attempts to describe

more accurately the relationship between dependent and

independent variables by separately handling phases with

low and high scalability characteristics.

We test our model by comparing our predicted IPC with

the measured IPC of the computation phases of several

NPB MPI benchmarks. We present results from tests on the

Virginia Tech System G supercomputer (see Section VII) in

Figure 1. Patterns 4 and 5 from Figure 2 serve as our sample

aggregation patterns. Our model is highly accurate, as the

results in Table I show, with worst-case absolute error of

2.109%. The average error in all predictions is 1.079% and

the standard deviation is 0.7916.

IV. TASK GROUPING

An aggregation pattern determines how many tasks to

place on each node and processor; we must also determine

which tasks to collocate. If an aggregation groups k tasks

per node and a program uses n tasks, there are
(
n
k

)
ways

to group the tasks to achieve the aggregation. For nodes

with p ≥ k processors, we then can place the k tasks

on one node in
(

p
k

)
k! = p!

(p−k)! ways on the available

cores. The grouping of tasks on nodes and their placement

on processors has an impact on the performance of MPI

point-to-point communication. Computation phases are only

sensitive to how tasks are laid out in each node and not

to which subset of tasks is aggregated in each node since

we assume SPMD applications with balanced workloads

between processors. The impact of task placement for MPI

collective operations depends on the characteristics of the

network; they are relatively insensitive to task placement

Measured
IPC

Predicted
IPC

Error rate

lu.D.16, pattern1 1.926 1.944 0.9510%

lu.D.16, pattern2 1.921 1.937 0.8234%

lu.D.16, pattern3 1.924 1.942 0.9109%

lu.D.16, pattern6 1.846 1.834 0.6689%

lu.D.16, pattern7 1.763 1.743 1.137%

lu.D.16, pattern8 1.699 1.669 1.741%

bt.D.16, pattern1 2.033 2.028 0.2475%

bt.D.16, pattern2 2.048 2.032 0.7474%

bt.D.16, pattern3 2.051 2.041 0.4738%

bt.D.16, pattern6 2.014 2.008 0.3041%

bt.D.16, pattern7 1.989 1.995 0.3033%

ft.D.16, pattern1 1.441 1.469 1.934%

ft.D.16, pattern2 1.568 1.601 2.109%

ft.D.16, pattern3 1.512 1.543 2.032%

ft.D.16, pattern6 1.451 1.479 1.948%

ft.D.16, pattern7 1.291 1.314 1.730%

sp.D.16, pattern1 1.952 1.976 1.259%

sp.D.16, pattern2 1.956 1.971 0.7839%

sp.D.16, pattern3 1.99 1.955 0.3166%

sp.D.16, pattern6 1.755 1.789 1.951%

sp.D.16, pattern7 1.610 1.628 1.110%

Table I: IPC prediction of computation phases

Figure 3: Intra-node vs. inter-node latency comparison

with flat networks such as fat trees. Thus, we focus on point-

to-point operations as we decide which specific MPI ranks

to locate on the same node or processor.

We demonstrate how MPI point-to-point communication

is sensitive to locations of communication source and target

in Figure 3, which shows results of single ping-pong pattern

tests with the Intel MPI benchmark [16] using OpenMPI-

1.3.2 [17]. Each test has two tasks involved in an MPI point-

to-point communication. For the inter-node results, we used

two nodes connected with a 40Gb/s InfiniBand network.

Each node has two Intel Xeon E5462 quad-core processors.

We also test the three possible intra-node placements (same

die; different dies, same processor; different processors —

see Figure 2).

The results reveal that intra-node communication has low

latency for small messages, while inter-node high bandwidth

communication is more efficient for large messages. These

conclusions are consistent with previous results on the

Myrinet2000 network [7]. In theory, intra-node communi-

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

cation can leverage the low latency and high throughput of

the node memory system. Therefore, it should outperform

inter-node communication. In practice, sharing the node’s

memory bandwidth between communicating tasks while

they exchange large messages incurs sufficient overhead to

make it less efficient than inter-node communication. We

also find that the performance of intra-node communication

is sensitive to how the tasks are laid out within a node: intra-

node communication can benefit from cache sharing due to

processor die sharing or whole processor sharing.

Based on these results, we prefer aggregations that colo-

cate tasks based on whether their communication is in the

latency or bandwidth regime. However, we cannot decide

whether to colocate a given pair of tasks based only on

individual point-to-point communications between them.

Instead, we must consider all communication performed

between those tasks and all communication between all

tasks. Overall performance may be best even though some

(or all) point-to-point communication between two specific

tasks is not optimized.

Task grouping is an NP-complete problem [18]. We for-

malize the problem as a graph partitioning problem and use

an efficient heuristic algorithm [19] to solve it. We briefly

review this algorithm in the following section.

A. Algorithm Review

The algorithm partitions a graph G of kn nodes with

associated edge costs into k subpartitions, such that the total

cost of the edge cut, the edges connecting subpartitions,

is minimized. The algorithm starts with an arbitrary par-

titioning into k sets of size n and then tries to bring the

partitioning as close as possible to being pairwise optimal

by repeated application of a 2-way partitioning procedure.

The 2-way partitioning procedure starts with an arbitrary

partitioning {A,B} of a graph G and tries to decrease the

initial external cost T (i.e., the total cost of the edge cut) by a

series of interchanges of subsets of A and B. The algorithm

stops when it cannot find further pair-wise improvements. To

choose the subsets of A and B, the algorithm first selects two

graph nodes a1, b1 such that the gain g1 after interchanging

a1 with b1 is maximum. The algorithm temporarily sets

aside a1 and b1 and chooses the pair a2, b2 from A− {a1}
and B − {b1} that maximizes the gain g2. The algorithm

continues until it has exhausted the graph nodes. Then, the

algorithm chooses m to maximize the partial sum
∑m

i=1
gi.

The corresponding nodes a1, a2, ..., am and b1, b2, ..., bm are

exchanged.

This algorithm has a reasonable probability of finding the

optimal partition. The number of subset exchanges before

the algorithm converges to a final partition for a 2-way

partitioning is between 2 and 4 for a graph with 360

edges [19]. In our experiments we execute programs with

at most 128 tasks (as shown in Section VII). In this case,

the subset exchanges for 2-way partitioning (2 cluster nodes)

is at most 2 and the number of total subset exchanges for

16-way partitioning is at most 1200.

B. Applying the Algorithm

Task aggregation must group T tasks into n partitions,

where n is the number of nodes we want to use for a

specific aggregation pattern. We regard each MPI task as

a graph node and communication between tasks as edges.

Aggregating tasks into the same node is equivalent to placing

graph nodes into the same partition. We now define an edge

cost based on the communication between task pairs.

The original algorithm tries to minimize the total cost of

the edge cut. In other words, it tries to place graph nodes

with a small edge cost into different partitions. Thus, we

must assign a small (large) cost value on the edge which

favors inter-node (intra-node) communication. We observe

two further edge cost requirements:

1) The difference between the small cost value (for inter-

node communication) and the large cost value (for

intra-node communication) should be large;

2) The edge values should form a range that reflects the

relative benefit of intra-node communication.

A large difference between edge costs reduces the probabil-

ity of the heuristic algorithm selecting a poor partitioning.

The range of values reflects that colocation benefits some

task pairs that communicate frequently more than others.

To assign edge costs, we measure the size of every

message between each task pair during execution to obtain a

communication table. We then estimate the communication

time for each pair of communicating tasks i and j if we place

them in the same partition (tintra
ij) and if we place them in

different partitions (tinter
ij). We estimate these communica-

tion times experimentally by using data similar to that shown

in Figure 3. Our intra-node communication time prediction

is conservative, since we use the worst-case intra-node com-

munication (i.e., two tasks with no processor or die sharing).

Finally, we compare tintra
ij and tinter

ij to decide whether the

tasks i, j benefit from colocation. If tintra
ij > tinter

ij then we

set the edge cost to cij = 1.0/(tintra
ij −tinter

ij). Alternatively,

if tintra
ij ≤ tinter

ij , we set cij = C + (tinter
ij − tintra

ij). These

edge costs provide a range of values that reflect the relative

benefit of intra-node communication as needed.

C is a parameter that ensures the difference of edge costs

for pairs of tasks that favor intra-node communication and

pairs of tasks that favor inter-node communication is large.

We define C as:
C = k

2
Δt (4)

where k is the number of tasks per node (i.e., k = T/n).

k2 is the maximum number of edge cuts between the

two partitions. Δt is defined as max{1.0/(tintra
ij − tinter

ij)}
between all task pairs (i, j) that benefit from inter-node

communication.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

Overall, our edge costs reflect whether the communication

between a task pair is in the latency or bandwidth regime.

We apply the graph partitioning algorithm based on these

edge costs to group tasks into n nodes. We then use the

same algorithm to determine the placement of tasks on

processors within a node. Thus, this algorithm calculates

a task placement for each aggregation pattern.

V. PREDICTING COMMUNICATION PERFORMANCE

Communication performance prediction must estimate the

impact of sharing resources such as memory, buses or

other node-level interconnects, network interfaces, links, and

switches. We use the term communication interference if this

sharing causes performance loss.

We study how communication operations performed by

tasks in the same node affect performance. In particular,

we investigate if the placement of tasks in the node (i.e.,

how MPI tasks are distributed between processors, sockets,

and dies in the node) and task intensity (i.e., the number

of tasks assigned to the node) affect performance. Figure 4

displays the performance of intra-node MPI point-to-point

communication between two tasks, which we call the “ob-

served communication operation”, while there is interference

from other concurrent intra-node communication operations,

which we call “noise”. We use the Intel MPI benchmark

to perform concurrent ping-pong tests within a node, and

present results from the same system as in Section IV. The

observed communication operation and noise start at the

same time and use the same message size.

Figure 4(a) shows that task placement impacts commu-

nication performance. In the following, we refer to the

numbering of patterns presented in Figure 2 for conciseness.

The intra-node communication in groups 1, 2, and 3 follows

communication patterns 4, 3 and 2 respectively. Each group

has three tests: test 1 is a reference with no noise; test

2 and test 3 each have a task pair introducing noise by

performing intra-node communication. In test 2, the layout

of the task pair introducing noise and the layout of the

observed task pair follow pattern 6 for group 1 and pattern 5

for group 2 and group 3. In test 3, the layout of the task pair

introducing noise and the layout of the observed task pair

follow pattern 7 in group 1 and 2, and pattern 6 in group

3. The performance penalty of intra-node communication

under noise can range from negligible to as high as 182%,

depending on where the tasks that introduce noise are

located.

Figure 4(b) shows that task intensity has a significant

impact on communication performance. In these tests, the

two tasks performing the observed communication operation

do not share a processor. The tasks introducing noise do not

share a processor either. Test 1 is again a reference with

no noise, while test 2 has one pair of tasks introducing

noise and test 3 has two pairs of tasks introducing noise.

The intra-node communication of tasks introducing noise

(a) Impact of task placement

(b) Impact of task intensity

Figure 4: Impact of communication interference

in test 2 and test 3 occupy a different processor than

the task pair performing the observed communication. Test

4 has three task pairs introducing noise by performing

intra-node communication that, together with the observed

pair, fully occupy all cores. The performance of intra-node

communication is significantly affected by other intra-node

communication operations running concurrently on the same

node, especially if the message size is large.

We conducted exhaustive tests to cover all combinations

of intra-node communication and inter-node communication

under different aggregation patterns. The tests show that both

intra-node communication and inter-node communication

are sensitive to interference from concurrent communication

operations. They also show that the performance of MPI

communication is sensitive to task placement and task

intensity. Thus, we must capture the impact of these factors

and integrate them into our prediction framework.

Modeling and predicting communication time in the pres-

ence of noise is challenging, due to the following reasons:

• Computation/communication overlap;

• Overlap and interference of concurrent communication

operations;

• Even in the absence of overlap, many factors, including

task placement, task intensity, communication type (i.e.,

intra-node or inter-node), and communication volume

and intensity impact communication interference.

Thus, we propose an empirical method to predict a rea-

sonable upper bound for MPI point-to-point communication

time.

We trace MPI point-to-point operations to gather the

endpoints of communication operations. We also estimate

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Examples of symmetric task placements

potential interference based on the proximity of the calls.

We use this information to estimate parameters for task

placement and task intensity that interfere with each com-

munication operation for each aggregation pattern. Since

we predict an upper bound, we assume that the entire

MPI latency overlaps with noise from other concurrent

communication operations. This assumption is reasonable

for well-balanced SPMD applications, because of their bulk-

synchronous execution pattern.

We construct a prediction table based on our extracted

parameters, namely type of communication (intra-node/inter-

node), task intensity, task placement for both communicating

and interfering tasks, and message size. We populate the

table by running MPI point-to-point communication tests

under various combinations of input parameters. We reduce

the space that we must consider for the table by considering

groups of task placements with small performance difference

as symmetric. The symmetric task placements have identical

hardware sharing characteristics with respect to observed

communication and noise communication. Figure 5 depicts

two symmetric examples with one observed intra-node task

pair and one task pair introducing noise. We mark the

cores occupied by task pairs that introduce noise with dots

and the cores occupied by the observed task pairs with

stripes. Placement A and placement B are symmetric, so

are placement C and placement D.

We use a similar empirical scheme for MPI collectives.

However, the problem is simplified since collectives on

MPI COMM WORLD involves all tasks; we leave extend-

ing our framework to handle collective operations on derived

communicators as future work. Thus, we only need to test

the possible task placements for specific task counts per node

for the observed communication.

We apply our communication prediction methodology to

the NPB 3.2 MPI benchmarks and compare it with the

communication time measured and reported by mpiP [20].

Figure 6 shows a subset of the results. We use 10 iterations

of the main computation loop in bt.D.16 and ft.D.16, and 50

iterations of the main computation loop in mg.D.16, to min-

Figure 6: Measured vs. predicted communication time

imize measurement error. Most MPI operations in BT and

MG are point-to-point operations. We clearly overpredict

communication overhead due to the overlap of computation

and communication and our pessimistic prediction of the

overlap between interfering communication operations. On

the contrary, MPI operations in FT are collective operations

and our prediction methodology is accurate in these cases.

VI. CHOOSING AN AGGREGATION PATTERN

Our prediction framework allows us to predict the ag-

gregation pattern that either optimizes performance, or op-

timizes energy under a given performance constraint.

We predict the best aggregation pattern based on our

computation and communication performance predictions.

Since our goal is to minimize energy under a performance

constraint, we pick candidates based on their predicted

performance and then rank them considering a ranking of

their energy consumption.

We predict performance in terms of IPC (Section III).

To predict performance in terms of time, we measure the

number of instructions executed with one aggregation pattern

and assume that this number remains constant across aggre-

gation patterns. We verify this assumption by counting the

number of instructions under different aggregation patterns

for 10 iterations of all NPB MPI benchmarks on a node

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

of our cluster. The maximum variance in the number of

instructions executed between different aggregation patterns

is a negligible 8.5E-05%.

We compare aggregation patterns by measuring their dif-

ference to a reference pattern, where there is no aggregation

of tasks in a node. We compute the difference as:

Δt = t
comp

1
+ t

comm

1 − t
comp

0
− t

comm

0 (5)

where t
comp

1
, t

comm

1
is our estimated computation time and

communication time upper bound for the given aggregation

pattern respectively and t
comp

0
, t

comm

0
is the computation and

communication time for the reference pattern respectively.

Comparing patterns in terms of difference with a reference

pattern partially compensates for the effect of overlap and

other errors of time prediction, such as the gap between the

actual and predicted communication time. Our analysis in

Sections III and V estimates performance for each task. For

a specific aggregation pattern, Equation (5) uses the average

computation time of all tasks and the longest communication

time.

We choose candidate patterns for aggregation using a

threshold of 5% for the performance penalty that any

aggregation pattern may introduce when compared to the

reference pattern. We discard any aggregation pattern with a

higher performance penalty, which ensures that we select

aggregations that minimally impact user experience. An

aggregation may actually improve performance; obviously,

we consider any such aggregations.

We choose the best aggregation candidate by considering

energy consumption. Instead of estimating actual energy

consumption, we rank aggregation patterns based on how

many nodes, processors, sockets, and dies they use. We rank

aggregation patterns that use fewer nodes (more tasks per

node) higher. Among aggregation patterns that use the same

number of nodes, we prefer aggregation patterns that use

fewer processors. Finally, among aggregation patterns that

use the same number of nodes and processors per node, we

rank aggregation patterns that use fewer dies per processor

higher. In the event of a tie, we prefer the aggregation

pattern with the better predicted performance. According

to this ranking method, the energy ranking of the eight

aggregation patterns for our platform in Figure 2 from most

energy-friendly to least energy-friendly corresponds with

their pattern IDs.

VII. PERFORMANCE

We implemented a tool suite for task aggregation in MPI

programs. The suite consists of a PMPI wrapper library

that collects communication metadata, an implementation

of the graph partitioning algorithm, and a tool to predict

computation and communication performance and choose

aggregation patterns. To facilitate collection of hardware

event rates for computation phases, we instrument applica-

tions with calls to a hardware performance monitoring and

sampling library.

We evaluate our framework with the NAS 3.2 MPI

benchmark suite, using OpenMPI-1.3.2 as the MPI commu-

nication library. We present experiments from the System G

supercomputer at Virginia Tech. The system has thousands

of power and thermal sensors and uses power-scalable

components. It is also equipped with intelligent power strips

to log power data for each node. System G has 320 nodes

powered by Mac Pro computers, each with two Quad-Core

Xeon E5462 processors clocked at 2.8GHz. The nodes are

connected by 40Gb/s Infiniband.

We set the threshold of performance loss to 5% and use

one task per node as the reference aggregation pattern. The

choice of the reference aggregation pattern is intuitive, since

we aim at demonstrating the potential energy and perfor-

mance advantages of aggregation and our reference performs

no task aggregation. More specifically, energy consumption

is intuitively greatest with one task per node since it uses the

maximum number of nodes for a given run. Task aggregation

attempts to reduce energy consumption through reduction

of the node count. Given that each node consumes a few

hundred Watts, we will save energy if we can reduce the

node count without sacrificing performance. Using one task

per node will often improve performance since that choice

eliminates destructive interference during computation or

communication phases between tasks running on the same

node. However, using more than one task per node can

improve performance, e.g., if tasks exchange data through

a shared cache. Since the overall performance impact of

aggregation varies with the application, our choice of the

reference aggregation pattern enables exploration of the

energy saving potential of various aggregation patterns.

Figure 7 shows that our prediction selects the best ob-

served aggregation pattern, namely the pattern that mini-

mizes energy while not violating the performance constraint,

in all cases. We indicate the best observed and predicted task

aggregations with stripes. The performance loss threshold is

shown with a dotted line. We achieve the maximum energy

saving with sp.D.16 (70.03%) and average energy saving of

64.87%. Our prediction of the time difference between ag-

gregation patterns for both computation and communication

follows the variance of actual measured time. For FT and

BT, we measure performance gains from some aggregation

patterns in computation phases and our predictions correctly

capture these gains.

The applications exhibit widely varied computation

to communication ratios, ranging from communication-

intensive (FT) to computation-intensive (LU). The com-

munication time difference across the different aggregation

patterns depends on message size and communication fre-

quency. Small messages or less frequent communication

result in a smaller communication time difference. For

example, 99.98% of the MPI communication operations in

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

lu.D.16 transfer small messages of size close to 4KB. The

communication time differences in patterns 2–6 are all less

than 10.0%; the communication time differences in patters

7 and 8 (most intensive aggregation patterns) are less than

22.7%.

On the contrary, the FT benchmark runs with an input of

size 1024 × 512 × 1024 and has MPI Alltoall operations,

in which each task sends 134MB data to other tasks and

receives 134MB data from other tasks; the communication

time differences in patterns 2–6 range between 28.96% and

144.1%; the communication time difference in pattern 7

(most intensive aggregation pattern) is as much as 209.7%.

We also observe that CG is very sensitive to the ag-

gregation pattern: different patterns can have significant

performance differences due to CG’s memory intensity [21].

Colocating tasks saturates the available memory bandwidth,

resulting in significant performance penalties. Finally, we

observe MG communication can benefit from task aggre-

gation due to the low latency of communicating through

shared-memory. In particular, communication time at pat-

terns 2, 3 and 4 reduce by 12.08%, 25.68% and 48.81%

respectively.

To investigate how aggregation affects energy consump-

tion on a larger system scale, Figure 8 shows the results

for LU (Class D) with more nodes in strong scaling tests.

As we scale up the processor count, performance improves

with more aggregation. In particular, lu.D.32 has an optimal

aggregation pattern of four tasks per node with each task

occupying a separate die, while both lu.D.64 and lu.D.128

have optimal aggregation patterns of eight tasks per node.

This difference occurs because tasks have smaller workloads

and therefore exercise less pressure on shared resources at

large processor counts. This result confirms the intuition that

maximal aggregation is the preferred way of running parallel

jobs on large-scale clusters, for the purpose of economizing

on energy and hardware resources, while sustaining perfor-

mance.

We also note that we predict a different best aggregation

than the observed best for lu.D.64 and lu.D.128 although our

choices perform similarly. Our predictions choose the second

optimal aggregations with energy saving 68.46% (lu.D.128)

and 67.77% (lu.D.64), while the optimal aggregations have

energy saving 80.70% (lu.D.128) and 80.65% (lu.D.64). In

both cases, our prediction of time difference for the observed

best is higher than the real time difference. As a result, we

eliminate that aggregation pattern as exceeding the max-

imum acceptable performance loss. In general, prediction

error increases as the time scale during which the program

runs decreases. Using more samples for prediction is a

potential solution to this problem.

VIII. RELATED WORK

Communication-aware task mapping techniques are an ac-

tive research area. Leng et al. [7] use the High Performance

Figure 8: Strong scaling and task aggregation for lu.D

Linpack benchmark to demonstrate how task re-mapping

can improve overall performance. However they manually

arrange the process mapping based on communication path

characteristics and MPI message information, which is not

a feasible solution for complex systems.

Orduna et al. [18], [22], [23], [24], [25] explore

communication-aware task mapping strategies that account

for the communication requirements of parallel tasks and

bandwidth in different parts of the network. They model

the network resources as a table of costs for each pair of

communicating processors. Their heuristic random search

method attempts to identify the best mapping for a given

network topology and communication pattern. Their work

targets heterogeneous inter-node networks and does not

consider intra-node communication. Also, their evaluation

only maps one process to each processor. Thus, they do not

account for potential interference between tasks executing

communication operations on the same node.

Our work improves on prior research by considering both

intra-node and inter-node communication for large scale

SMP clusters, which are the most common HPC platforms.

Our work further improves on prior research by accounting

for the impact of task aggregation on computation phases,

which we find to be significant.

Network communication models have been studied ex-

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

Figure 7: Results for the NPB 3.2 MPI benchmark suite

tensively. Well-known communication models include the

LogP [26] and LogGP models [27]. They usually predict

communication time with linear equations enclosing mea-

sured parameters. These models, however, do not consider

concurrent communication operations between groups of

tasks and ignore resource sharing, both essential factors

in understanding performance under different aggregation

scenarios.

Several researchers have focused on communication shar-

ing effects. Kim et.al [28] develop a model for predicting

delays of messages that share links in Myrinet. Their study

is based on the GM and BIP network protocols, whereas we

focus on MPI. Also their study does not consider intra-node

communication.

Martinasso et. al [29], [30] introduce a notion of resource

sharing within communication patterns. Their work decom-

poses a chain of sources of communication interference into

several elementary sources of interference and then predicts

communication time by the flow cut of each source. They

evaluate their model on SMP clusters with dual processors.

Nodes with more processors and complex core layouts

introduce complications in resource sharing that have not

been considered in their work. Furthermore, their model

requires careful analysis to decompose communication into

sources of interference manually, which makes it infeasible

for complex communication patterns. Our work considers

both intra-node and inter-node communication interference.

In addition, we predict worst case performance for the

communication conflicts to provide an upper bound on

communication time, a simplification that leads to a feasible

solution.

Several works have explored dynamic voltage and fre-

quency scaling (DVFS) to save energy. Software-controlled

energy saving in MPI programs has attracted considerable

interest recently. Rountree et al. [31] use linear programming

to estimate the maximum energy saving possible in MPI pro-

grams based on critical path analysis. The same authors [32],

propose a critical path-based online algorithm that uses

simple predictions of execution time for program regions

based on prior executions of the same regions. Springer [33]

propose a scheduler that selects node counts and CPU

frequencies to minimize energy consumption and execution

time. DVFS strategies for saving energy complement our

approach, which reduces energy by aggregating tasks and

releasing system resources.

IX. CONCLUSIONS

High-end computing systems continuously scale up to

more nodes, with more processors per node and more cores

per processor. The multitude of options for mapping parallel

programs to these systems creates optimization challenges.

In this paper we show that varying the aggregation and

placement of MPI tasks can provide significant energy

saving and occasional performance gain. Our framework

predicts a task aggregation pattern that minimizes energy

under performance constraints in MPI applications. We

derive an empirical model to predict computation time under

all feasible aggregation patterns. We formalize the problem

of grouping tasks as a graph partitioning problem and solve

it with a heuristic algorithm that considers communication

patterns. We also derive a communication time upper bound

for concurrent MPI point-to-point communication. Overall,

our predictions capture the performance impact of aggrega-

tion for both computation and communication phases. Based

on our prediction model, we further propose a method to

select aggregations. We apply our framework to the NPB

3.2 MPI benchmark suite and observe significant energy

saving (64.87% on average and up to 70.03%). We also

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

apply it at scales of up to 128 nodes and observe increasing

energy saving opportunities which allow more intensive task

aggregation under tight performance constraints.

In future work, we plan on designing an online framework

that can dynamically change the task aggregation pattern

according to dynamic performance predictions. This ap-

proach will require process migration, which is challenging

to implement efficiently and to model accurately in MPI

programs, yet feasible through the use of native MPI task

migration tools or virtualization frameworks. We also plan to

apply our framework to parallel programming models other

than MPI, including hybrid models.

ACKNOWLEDGMENT

This work has been supported by NSF (CNS-

0905187, CNS-0910784, CCF-0848670, CNS-0709025,

CNS-0720750) and the European Commission through the

MCF IRG project I-Cores (IRG-224759) and the HiPEAC

Network of Excellence (IST-004408, IST-217068). Part of

this work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National

Laboratory under contract DE-AC52-07NA27344 (LLNL-

PROC-422991).

REFERENCES

[1] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn,

“Parallel Job Schueduling - A Status Report,” Lecture

Notes in Computer Science, vol. 3277, pp. 1–16, 2005.

[2] S. Srinivasan, R. Keetimuthu, V. Subramani, and P. Sa-

dayappan, “Characterization of Backfilling Strategies

for Parallel Job Scheduling,” in Proceedings of the

2002 International Workshops on Parallel Processing,

2002.

[3] D. Tsafrir, D. G. Feitelson, and Y. Etsion, “Backfiling

Using System-Generated Predictions Rather than User

Runtime Estimates,” IEEE Transactions on Parallel

and Distributed Systems, vol. 18, pp. 789–803, 2007.

[4] C. B. Lee and A. E. Snavely, “Precise and Realistic

Utility Functions for User-Centric Performance Anal-

ysis of Schedulers,” in Proceedings of the 16th inter-

national symposium on High performance distributed

computing, 2007.

[5] L. Barsanti and A. Sodan, “Adaptive Job Scheduling

via Predictive Job Resource Allocation,” Lecture Notes

in Computer Science, vol. 4376, pp. 115–140, 2007.

[6] O. Sonmez, H. Mohamed, and D. Epema,

“Communication-aware job placement policies

for the koala grid scheduler,” in Proc. of the Second

IEEE International Conference on e-Science and Grid

Computing (e-Science’06), 2006.

[7] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi, and

R. Rooholamini, “Performance Impact of Process Map-

ping on Small-Scale SMP Clusters-A Case Study Using

High Performance Linpack,” in Proceedings of IEEE

Parallel and Distributed Processing Symposium, 2002.

[8] L. Chai, Q. Gao, and D. K. Panda, “Understanding the

Impact of Multi-Core Architecture in Cluster Comput-

ing: A Case Study with Intel Dual-Core System,” in 7th

IEEE International Symposium on Cluster Computing

and the Grid, 2007.

[9] L. Chai, A. Hartono, and D. K. Panda, “Designing High

Performance and Scalable MPI Intra-node Communi-

cation Support for Clusters,” in IEEE International

Conference on Cluster Computing, 2006.

[10] N. Kappiah, V. Freeh, and D. Lowenthal, “Just In Time

Dynamic Voltage Scaling: Exploiting InterNode Slack

to Save Energy in MPI Programs,” in Proceedings of

the international conference on Supercomputing, 2005.

[11] “NAS Parallel Benchmarks.” [Online]. Available:

http://www.nas.nasa.gov/Resources/Software/npb.html

[12] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos,

and D. S. Nikolopoulos, “Prediction-Based Power-

Performance Adaptation of Multithreaded Scientific

Codes,” IEEE Transactions on Parallel and Distributed

Systems, vol. 19, pp. 1396–1410, 2008.

[13] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos,

and D. S. Nikolopoulos, “Online Power-Performance

Adaptation of Multithreaded Programs using Event-

Based Prediction,” in Proc. of the 20th ACM Interna-

tional Conference on Supercomputing (ICS), 2006, pp.

157–166.

[14] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S.

Nikolopoulos, B. R. de Supinski, and M. Schulz,

“Prediction Models for Multi-dimensional Power-

Performance Optimization on Many Cores,” in Proc.

of the 17th International Conference on Parallel Ar-

chitectures and Compilation Techniques (PACT), 2008.

[15] “SPEC MPI 2007.” [Online]. Available: http://www.

spec.org/mpi

[16] “Intel MPI Benchmarks 3.2.” [On-

line]. Available: http://software.intel.com/en-us/

articles/intel-mpi-benchmarks/

[17] “Open MPI: Open Source High Performance Comput-

ing.” [Online]. Available: http://www.open-mpi.org/

[18] J. M. Orduna and F. S. J. Duato, “On the Development

of A Communication-aware Task Mapping Technique,”

Journal of Systems Architecture, vol. 50, pp. 207–220,

2004.

[19] B.W.Kernighan and S. Lin, “An Efficient Heuristic Pro-

cedure for Partitioning Graphs,” Bell System Technical

Journal, vol. 49, pp. 291–308, 1970.

[20] J. Vetter and C. Chambreau, “mpiP: Lightweight, Scal-

able MPI Profiling.”

[21] Y. Zhang, V. Tipparaju, J. Nieplocha, and S. Hariri,

“Parallelization of the NAS Conjugate Gradient Bench-

mark Using the Global Arrays Shared Memory Pro-

gramming Model,” in Proceedings of International

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

Parallel and Distributed Processing Symposium, 2005.

[22] R. Tornero, J. Orduna, M. Palesi, and J. Duato,

“A Communication-aware Topological Mapping Tech-

nique for NoCs,” Lecture Notes in Computer Science,

vol. 5168, pp. 910–919, 2008.

[23] J. Orduna, V. Arnau, A. Ruiz, R. Valero, and J. Du-

ato, “On the Design of Communication-aware Task

Scheduling Strategies for Heterogeneous Systems,” in

Proceedings of International Conference on Parallel

Processing (ICPP-2000), 2000.

[24] J. Orduna, V. Arnau, and J. Duato, “Characterization of

Communication between Processes in Message-passing

Applications,” in Proceedings of International Confer-

ence on Cluster Computing (Cluster-2000), 2000.

[25] J. Orduna, F.Silla, and J. Duato, “A New Task Map-

ping Technqiues for Communication-aware Scheduling

Strategies,” in Proceedings of International Conference

on Parallel Processing (ICPP-2001), 2001.

[26] D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos,

K. Schauser, R. Subramonian, and T. von Eicken,

“LogP: A Practical Model of Parallel Computation,”

Communications of ACM, vol. 39, pp. 78–85, 1996.

[27] A. Alexandrov, M. Ionescu, K. Schauser, and

C. Scheiman, “LogGP: Incorporating Long Messages

into the LogP model - One step closer towards a

realistic model for parallel computation,” in 7th Annual

Symposium on Parallel Algorithms and Architectures,

1995.

[28] S. Kim and S. Lee, “Measurement and Prediction of

Communication Delays in Myrinet Network,” Journal

of Parallel and Distributed Computing, vol. 61, pp.

1692–1704, 2001.

[29] M. Martinasso and J.-F. Mehaut, “Model of Concurrent

MPI Communications over SMP Clusters,” in Techni-

cal Report 00071352, HAL-INRIA, 2006.

[30] J. Vienne, M. Martinasso, J.-M. Vincent, and J.-F.

Mehaut, “Predictive Models for Bandwith Sharing in

High Performance Clusters,” in Proceedings of the

IEEE Cluster Conference, 2008.

[31] B. Rountree, D. Lowenthal, S. Funk, V. Freeh, B. R.

de Supinski, and M. Schulz, “Bounding Energy Con-

sumption in Large-Scale MPI Programs,” in SC ’07:

Proceedings of the 2007 ACM/IEEE Conference on

Supercomputing, 2007.

[32] B. Rountree, D. K. Lownenthal, B. R. de Supinski,

M. Schulz, V. W. Freeh, and T. Bletsch, “Adagio: Mak-

ing DVS Practical for Complex HPC Applications,” in

Proceedings of the 23rd international conference on

Supercomputing, 2009.

[33] R. Springer, D. Lowenthal, B. Routree, and V. Freeh,

“Minimizing Execution Time in MPI Programs on an

Energy-Constrained, Power-Scalable Cluster,” in Pro-

ceedings of the Eleventh ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming

(PPoPP), 2006.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:12:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

