
Classifying Soft Error Vulnerabilities in
Extreme-Scale Scientific Applications
Using a Binary Instrumentation Tool

Dong Li
Oak Ridge National Laboratory

lid1@ornl.gov

Jeffrey S. Vetter
Oak Ridge National Laboratory
Georgia Institute of Technology

vetter@computer.org

Weikuan Yu
Auburn University
wkyu@auburn.edu

Abstract—Extreme-scale scientific applications are at a sig-
nificant risk of being hit by soft errors on supercomputers as
the scale of these systems and the component density continues
to increase. In order to better understand the specific soft
error vulnerabilities in scientific applications, we have built an
empirical fault injection and consequence analysis tool - BIFIT -
that allows us to evaluate how soft errors impact applications. In
particular, BIFIT is designed with capability to inject faults at
very specific targets: an arbitrarily-chosen execution point and
any specific data structure. We apply BIFIT to three mission-
critical scientific applications and investigate the applications
vulnerability to soft errors by performing thousands of statis-
tical tests. We, then, classify each applications individual data
structures based on their sensitivity to these vulnerabilities, and
generalize these classifications across applications. Subsequently,
these classifications can be used to apply appropriate resiliency
solutions to each data structure within an application. Our study
reveals that these scientific applications have a wide range of
sensitivities to both the time and the location of a soft error; yet,
we are able to identify intrinsic relationships between application
vulnerabilities and specific types of data objects. In this regard,
BIFIT enables new opportunities for future resiliency research.

1. INTRODUCTION

Resiliency continues to be one of the major cross cut-
ting design goals for high-end computing systems. Today’s
Petascale systems use a combination of hardware, firmware,
and system software techniques to hide many errors from
applications, resulting in a mean time between failures or
interruptions (MTBF/I) of 6.5-40 hours [1], [2]. Looking
forward to Exascale, members of the community expect that
both the sheer scale of components, and the move toward
heterogeneous architectures, near-threshold computing, and
aggressive power management will compound the resiliency
challenge so that, with the current techniques, the time to
handle system resilience may exceed the mean time to in-
terrupt of top supercomputers before 2015 [3]. To address
this compounded challenge, the community is looking toward
new techniques where programming models, applications, and
perhaps innovative architectural capabilities shoulder more of
the responsibility for resiliency than they currently do. For
example, programming models can be extended to automat-
ically save critical application state to persistent storage [4],
[5]; applications can be modified to use algorithms that remain

stable in the face of system errors [6], [7]; and, Exascale
architectures can be extended to include nonvolatile memory
on each node to provide a fast, persistent store for redundancy
or fast checkpointing [8].

One especially difficult problem in resiliency is soft errors:
a one-time, unpredictable event that results in bit flips in
memory and errors in logic circuit outputs that corrupt and
contaminate a computing system’s state. Soft errors can result
from many causes including packaging material [9], cosmic
radiation [10], voltage fluctuation [11], and high temperatures.
More importantly, scientific applications are at a pronounced
risk of being contaminated by soft errors, because they have
long execution times, and they store most of their critical state
in the node’s DRAM memory, rather than on disk or from an
external signal [12]. Because of the high vulnerability of these
systems, we must better understand the impact of soft errors
on scientific applications.

Yet, the impact of soft errors on a scientific application
is understandably complicated. First, soft errors may not be
necessarily exposed to the application due to the hardware
correction mechanisms (e.g., memory ECC correction). Sec-
ond, if the soft error propagates through hardware to the
application, the corrupted state due to soft errors may not be
consumed by an application. For example, the corrupted state
may be overwritten by a subsequent write operation. Finally,
if contaminated application state persists, then the application
may continue to execute correctly, if the corrupted state is not
used by the application’s future execution. If, however, the
application does consume and use the corrupted state, then
multiple outcomes are possible: system abort, performance
change (degradation), or silently corrupted application data,
where the application executes normally both in terms of
control flow and performance, but the resulting answer has
unacceptable accuracy (and the application has no internal
self-consistency checks to detect it). It is also important to note
that this last scenario, silent data corruption, can accumulate
in the application state and propagate across computation
phases [13], [14]. If undetected by explicit, internal application
verification, the user will receive erroneous output without a
warning to the contrary. If detected, automatic or application
level checkpoint-restart can be employed to restart from an

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c©2012 IEEE

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:08:01 UTC from IEEE Xplore. Restrictions apply.

uncontaminated application state.
In order to better understand the specific vulnerabilities to

soft errors in scientific applications, we have built an em-
pirical fault injection and consequence analysis tool - named
BIFIT for Binary Instrumentation Fault Injection Tool - that
allows us to evaluate how soft errors impact applications.
Our approach is different than earlier approaches in that we
instrument scientific applications by contaminating specific
data structures, such as an array of chemical species or
grid geometries, and then observe the eventualities of this
contamination as the application executes. We, then, classify
each application’s data structures based on their sensitivity to
these perturbations, and generalize these classifications across
applications. These classifications can then be used in order
to target appropriate resiliency solutions to each data structure
within an application. For example, if an application has an
in-memory, read-only catalog of materials properties, such as
thermal conductivity, then the application could potentially use
a resiliency strategy of periodically checksumming the table,
and reloading or rebuilding the table if any corruption is found.
Furthermore, this strategy might allow this table to be stored in
non-ECC protected memory, which may be cheaper and faster
than other types of memories. On the other hand, if an array
contains a geometry grid for an adaptive unstructured mesh,
then the application may employ triple redundancy for the
grid and address calculations in order to prevent catastrophic
aborts, like segmentation faults, at the expense of using more
memory and processing power. Nevertheless, scientists will
need strategies to classify and understand the vulnerabilities of
their applications at a finer granularity than in the past. In this
work, we target each memory object in an application with
the aim of potentially identifying and applying a per object
resiliency strategy.

A. Contributions

In this paper, we make the following research contributions.
(a) We design and implement BIFIT - an empirical fault injec-
tion and consequence analysis tool. It provides great flexibility
to inject faults into any specified application data structure
at any specified execution point. By leveraging application
symbols and objects, we bridge the semantic gap between the
application and the fault injection site. With the assistance
of binary instrumentation, we combine “when” and “where”
information to investigate the effects of soft errors. (b) We
analyze several important extreme-scale scientific applications
in fusion, combustion, and fluid dynamics to reveal the intrin-
sic relationships among application performance, application
state, results, and fault injection points. (c) We develop a
general classification scheme that specifically provides sci-
entists with a strategy for understanding which resiliency
solution to employ for each data object in their application,
ranging from an architectural solution like a hybrid NVRAM-
DRAM memory system with different levels of resilience and
performance to an algorithm-based adaptive resilience that is
effectively resistant to soft errors.

B. Outline
The rest of the paper is organized as follows. §2 explains the

fault model used throughout the paper. §3 reviews the related
work on fault injection methods and software solutions to soft
errors. §4 describes the design of our fault injection tool. §5
then evaluates the susceptibility of three scientific applications
to soft errors using error injection experiments. §6 summarizes
our observations from the evaluation results, and discusses
the implication of our research on future resilience research.
Finally, §7 concludes the paper.

2. FAULT MODEL

Traditionally, system errors that influence application re-
liability and deteriorate a supercomputer’s reliability can be
broadly divided into two categories: soft errors and hard errors.
Soft errors are inherently transient in that they are usually
caused by temporary environmental factors. By contrast, hard
errors are either permanent or intermittent (with unstable
symptoms at times), and they are usually caused by aged
devices or inherent manufacturing defects. Permanent hard
errors are easier to detect, because hardware deterioration is
often irreversible, and their symptoms tend to be predictable
and persistent over time. Hence, they present only a minor
threat to application stability in a well-maintained environ-
ment [15]. In this paper, we focus on soft errors, because they
are problematic to detect, and can exploit vulnerabilities in
scientific applications.

The impact of soft errors on applications is complicated.
There are at least three outcomes of soft errors:

• Successful execution: This outcome indicates two things.
First, the application is able to finish without prolonged
execution time; second, computational results are either
exactly the same as the ones without soft errors, or
different but still within acceptable accuracy.

• Abort: The system or application aborts, because of
segmentation faults, erroneous arithmetic operations (e.g.,
division by zero) or internal assertion failures in applica-
tions.

• Silent data corruption (SDC): The outcome of SDC is
more complex as it has several possibilities. SDC occurs
when incorrect data is delivered by a computer system
to the user (or applciation) without any error being
logged. Although the application might be able to finish,
computational results may be different from the results
without soft errors. In some cases, the result differences
can lead to incorrect scientific answers. In other cases, the
application can hang for a significant long period of time.
For the extreme cases of iterative numerical methods, the
application may never converge to be within the expected
tolerance for a solution, and, hence, execute forever. The
stability of a numerical method can be greatly degraded
by the occurrence of SDC errors [14].

Among these outcomes, we examine SDC errors specifi-
cally. In general, we classify SDC outcomes into three types:
Type 1 extends execution time and results in different so-
lutions; Type 2 only causes different solutions; and, Type

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:08:01 UTC from IEEE Xplore. Restrictions apply.

3 only causes prolonged execution time. To detect SDC,
many systems rely on redundancy in space or time, which
wastes precious system resources and appears unfeasible on an
Exascale architecture. In some cases, a computational solution
contaminated by SDC may be acceptable if the algorithm’s
design tests for satisfactory answers within certain thresholds.
Examples include many scientific simulations [16] and ma-
chine learning algorithms [17], [18] where their algorithm
is statistical in nature and can tolerate some variance in the
algorithm’s answers.

In this paper, we study the impact of soft errors that
escape hardware correction and are exposed at the application
level. We emulate the impact of soft errors by flipping an
arbitrarily chosen bit in the target application’s data objects
at specific sampled execution points. The data object can be
a data segment in global, heap, and stack of the application
program (see §4.B for details). We do not inject faults into
system libraries (e.g., libgfortran, libgcc and ld-linux-x86-64)
and third-party libraries (e.g., netcdf and OpenMPI). Rather,
we only inject faults into the scope of data objects which are
specific to an application, because we intend to study scientific
applications themselves and characterize their vulnerability to
silent corruption of data structures. The system libraries and
third-party libraries are system-dependent and their impact on
applications can vary from one platform to another. We also
do not inject faults into the application initialization phase,
because applications read input data and setup initial structures
(e.g., grid geometries) during this phase. Not surprisingly, this
phase is known to be highly sensitive to soft errors and can be
easily perturbed by injected faults. Compared to the initializa-
tion phase, the vulnerability of the main computational phase
is largely unknown; it typically takes most of the execution
time, and has a higher possibility to be impacted by SDC.
Hence, we inject faults into the main computational phase.

3. RELATED WORK

Soft errors and their impact to application vulnerability and
system reliability have attracted a lot of attention over the past
several years. Below, we review recent work in related areas.

A. Fault Injection for Soft Error Analysis

Fault injection has been widely adopted as an approach to
investigating the impact of soft errors; Table I summarizes a
comparison of related work. Bronevetsky and de Supinski [13]
implement fault injection at random locations on the stack
or heap through manual instrumentation. They specifically
target a few iterative solvers such as CG, preconditional
Richardson and Chebyshev methods. Although these iterative
solvers are widely used in scientific applications, their study
is limited to a single computational algorithm and they do
not capture the propagation of soft errors across multiple
execution phases of a large-scale application. Debardeleben
et al. [20] leverages QEMU virtual machine to inject faults at
specific assembly instructions. Their method has the potential
to profile the vulnerability of applications at the instruction
level. However, translating those instructions back to original

high-level language instructions on virtual machines is very
complex, which makes it difficult to correlate these vulner-
ability profiles with applications in order to understand the
application specific consequences of these faults. Naughton et
al. [21] developed a fault injection framework that relies on
ptrace or the Linux kernel built-in fault injection framework.
Their set of supported injection points target the API-level
failures for memory (slab errors and page allocation errors)
and disk I/O errors, while our technique focuses on data
structures at the application level. Lu and Reed [22] leverage
the ptrace system call to halt the target process and overwrite
the content of process memory or registers to simulate soft
errors. Similar to our work, they categorize the locations
of fault injection as global, heap, and stack. However, they
randomly insert faults into those memory regions and do
not explicitly associate the locations of fault insertion with
application data structures. Thus, their work cannot provide a
good understanding of the relationship between injected faults
and applications. Shantharam et al. [14] and Malkowski et
al. [19] manually insert faults into either a random location
or a specific data structure. However, their work is limited to
specific numerical solvers. It does not investigate a complete
application that might have diverse resilience characteristics
across execution phases. Sane and Connors [23] use binary
instrumentation techniques to inject faults; however, they only
instrument random instructions that produce random answers,
while we deal with data objects and allow study of specific
areas of interest to an application.

B. Software Solutions to Soft Errors

To detect soft errors and mitigate their impact, many
software-based reliability techniques have been developed.
Huang and Abraham [24] propose algorithm-based fault tol-
erance. It exploits the algorithmic structure of codes to create
efficient, domain-specific fault tolerance schemes. Chen [6]
analyzes the block row data partitioning scheme for sparse
matrices and derives a sufficient condition for recovering
critical data without checkpointing. Ding et al. [25] construct
a column/row checksum matrix for matrix multiplication for
GPUs. During computation, the partial product matrix is
scanned so that soft errors can be detected and corrected at
runtime. Du et al. [7] proposes a hybrid fault tolerance solution
that combines checkpointing and algorithm-based checksum
for dense matrix factorizations. Process-level redundancy [26],
[27] has also been investigated as a fault tolerance mechanism.
In comparison to checkpoint/restart, this method does not have
to roll back execution to a previously known good state for
failure recovery. It uses redundant copies of processes to pro-
vide fail-over capabilities transparently. However, this method
has to be carefully deployed to avoid high costs. Multi-level
checkpoint is another promising approach for addressing fault
tolerance while avoiding high checkpointing overhead [28],
[29], [30]. It allows applications to take frequent, inexpensive
checkpoints and less frequent, more resilient checkpoints for
better efficiency and reduced load on file systems. Our work
provides important application insights for how these types

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:08:01 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of fault injection methods.

Fault injection
methods

Application
knowledge

User interven-
tion

Fault coverage Granularity OS

[13], [14], [19] Yes Yes Specific data objects in iterative solvers Limited No
[20] Very limited Limited Specific assembly instructions No Yes
[21] No No Slab error, page allocation error and disk I/O error No Yes
[22] No No Random addresses in global, heap and stack Limited Yes
This paper Yes No All data objects in global, heap and stack Yes No

of software solutions might be applied to real applications.
For example, our results can be utilized to select application-
specific protection points, so that performance and power costs
for those software solutions can be further reduced.

4. BIFIT: FAULT INJECTION TOOL

We have designed and implemented a binary instrumen-
tation tool, named BIFIT (i.e., Binary Instrumentation-based
Fault Injection Tool), based on PIN [31] to inject faults. Instead
of exhaustively using manual insertion or heavily relying on
the support of operating systems for random fault insertion,
BIFIT can insert soft errors into any specified application
data object (e.g., scalars, arrays, structures) at any specified
execution point.

	 Fig. 1: Diagram of Fault Injection Tool

A. Background: Software-based Fault Injection

Software-based fault injection is the most common tech-
nique to investigate the effect of soft errors [13], [14], [19],
[20], [21], [22], [28], [15] on real software systems. However,
existing software-based fault injection methods have several
limitations. First, application knowledge is not fully leveraged
to understand the impact of soft errors. Random faults are
usually injected to an application state at random points during
application execution. Hence, there is a significant semantic
gap between application data structures and fault sites. In this
case, users have no feedback on which part of the application
might need protection to mitigate contamination.

Second, existing fault injection methods do not offer a
tight bound between the information of when and where
the fault is injected and the impact of soft errors at a fine
granularity. It is common for contemporary extreme-scale
scientific applications to have hundreds of data objects and

have multiple execution phases. For example, we found that
the realistic combustion code S3D [16] has 420 data objects
and at least four phases to compute different physics such
as advection, diffusion, reaction and phase change. This re-
alization indicates that the application may display diverse
behaviors and tolerances to injected faults based on the specific
data structure and execution point. Hence, it is vital to combine
the information of “when” and “where”.

Finally, some of current fault injection methods rely on
manual fault insertion or heavily involve the support of the
operating system. This limitation unnecessarily confines the
scope of their fault coverage.

B. BIFIT Overview

In light of these limitations, we have developed BIFIT as
shown in Figure 1; BIFIT can insert a fault into any data object
in global, heap, and stack memory regions. For global data,
a data object can be a global array, a global data structure,
or a Fortran common block; for heap data, a data object can
be a data segment allocated through the memory allocation
subroutines; for stack data, a data object is a stack frame
associated with a subroutine invocation.

With this instrumentation infrastructure (see §4.C), BIFIT
can enable fault injection at any point during application
execution. During the fault injection test for a specific data
object, we divide the whole instruction stream into n segments.
We then conduct the fault injection test n times, during each
of which we flip a randomly chosen bit in the data object
right before the first instruction of each segment (see §4.E).
This fault injection method emulates soft errors happened
at different execution phases of the application. To give the
user improved control over the execution point to trigger
fault injection, we further define a set of APIs that the
users can insert into the application. The APIs use a simple
caliper-based approach to trigger, interrupt, or stop the fault
injection by replacing calls to the API functions with calls
to functions of the tool. This approach allows user to better
leverage the application knowledge to analyze the application’s
vulnerability.

Scientific applications, especially those executed at extreme
scales, may have hundreds of data objects. The aforementioned
method, although providing for thorough investigations, is a
resource-intensive process. It is very important to optimize
the infrastructure and instrumentation performance. Therefore,
we further developed a profiler that collects information on
data objects (see §4.D). Using this profiling information in
conjunction with a few control scripts (see §4.F), BIFIT greatly
accelerates the testing process. Although BIFIT is used to

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:08:01 UTC from IEEE Xplore. Restrictions apply.

study soft errors vulnerability in this paper, it can be used
to study the effects of permanent hard errors on global data
with only minor modifications.

C. Instrumentation Infrastructure

BIFIT’s instrumentation infrastructure provides configurable
instrumentation functionality based on the requirements of the
profiler and the fault injector. BIFIT instruments the appli-
cation binary to count the number of executed instructions.
To obtain stack information, BIFIT also instruments entry and
exit points of all function calls. At the entry point, BIFIT
records the base frame address, so that it can maintain a
shadow stack of the application. The shadow stack makes
it convenient to traverse through the call stack and attribute
the effective memory address to the corresponding function’s
frame, if required by the top-level tool components. The
shadow stack also grants the convenience of identifying heap
data objects, which will be discussed in §4.E. To obtain heap
data information, BIFIT inserts instrumentation at the entry
and exit of memory allocation routines (e.g., malloc(), calloc(),
and realloc()) to get the heap data object’s base address and the
object size. BIFIT invalidates the heap data object by inserting
an instrumentation point at the entry of free().

To obtain global data information, BIFIT relies on a third
party library, libdwarf. In particular, given an application
binary that has debugging symbols linked into it, BIFIT lever-
ages libdwarf to analyze symbol attributes and calculate the
size of each global data object. BIFIT then constructs a data
structure that encompasses symbol name, base address, and
memory size for each global data object. Then, for each fault
injection test, the global data information is communicated
to the instrumentation infrastructure after the PIN runtime is
started and right before the application is executed.

D. Profiler

BIFIT’s profiler is used to accelerate instrumentation per-
formance and facilitate the control scripts to identify data
objects. It does not impact the application’s reaction to the
fault injection. Rather, this profiler helps to optimize the testing
process. The profiler collects memory access information for
all data objects. It also eliminates those global data objects that
are never touched by the application. In particular, the profiler
detects every memory reference and attributes the memory
reference to the corresponding data object, such that we collect
total memory references for each data object. Then, during the
fault injection test, the memory reference information for the
data object specified by the control scripts is input into the
fault injector, before the application is executed. During the
execution of the instrumented application, the fault injector
records the number of memory references to the specified data
object and compare it with the input profiling information (i.e.,
the total number of memory references to this object). Before
the application reaches the specified execution point for fault
injection, if the fault injector detects that the recorded number
of memory references matches the input profiling information
(we call it the p point), then it will immediately inject a fault,

relinquish control of the application, and let the original un-
instrumented code run fast forward. We also conclude that
the injected fault will limit to the specified data object and
never affect other application data. This is based on the fact
that the total number of memory references to a data object
does not change. After the p point is reached, the program
will never touch that data object. Hence, any injected fault
into that data object will never be propagated to other system
states or application data. It does not matter to the application
at what execution point we inject the fault after the p point.
By injecting the fault and detaching instrumentation ahead
of the planned execution point for fault injection, we greatly
accelerate the instrumentation performance.

The above p point-based method has some costs, although
it improves overall performance. Particularly, it has to collect
the number of memory references to the specified data object
before fault injection, which adds extra instrumentation cost.
Depending on when the fault is planned to be injected,
this cost varies. If the planed injection point is near the
completion of the application, then this cost might offset the
performance improvement gained from the instrumentation
before detaching. Therefore, BIFIT introduces a threshold N. If
the number of executed instructions at the execution point for
fault injection is larger than N, then BIFIT does not apply the p
point-based method. Otherwise, BIFIT does. In our tests in this
paper, we conservatively selected N as half of the total number
of executed instructions of the application. This guarantees
performance improvement in our fault injection tests. With the
introduction of N and the p point-based method, we achieve
a performance improvement of about 70x for fault injection
tests for 50 data objects.

Of course, the profiler’s memory profiling with binary
instrumentation is a time-consuming process. In our exper-
iments, we measured about a 200x performance slowdown
when running the instrumented application. However, the
profiling results can be reused an unlimited number of times
in fault injection tests, amortizing the costs of many tests. In
addition, to shorten profiling time, we divide the profiler into
three tools to profile global, heap, and stack data objects sepa-
rately. The three tools can run in parallel, which condenses the
profiling process. In fact, depending on the user requirement,
we can launch any number of instances of the profiler, each
of which profiles a specific virtual address range. This brings
concurrency into the profiling process and reduces profiling
time dramatically.

E. Fault Injector

The fault injector is the core of BIFIT. Its basic functionality
is to randomly flip a single bit in the specified data object. In
combination with the profiler and under control of the control
scripts, the fault injector can inject faults at any execution
point with reasonable instrumentation performance.

The fault injector needs to identify the data object. In BIFIT,
the Memory (data) Object Identifier (MOI) is consistent across
the fault injector, profilier, and control scripts. For global
data, this is relatively easy. We construct MOI with the data

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:08:01 UTC from IEEE Xplore. Restrictions apply.

object’s virtual base address obtained from static analysis on
the application binary. At runtime, we can acquire the data
object’s symbol name and library name based on MOI with
the assistant of PIN. This brings the convenience of analyzing
fault injection results with application semantic knowledge.

For heap data, we cannot simply rely on static analysis or
use symbol names to identify data objects due to dynamic
nature of the memory allocation. In addition, frequent memory
allocation and deallocation operations within the application
make multiple heap memory regions share the same base
address and size. These issues make the identification of
dynamic data much more difficult. BIFIT’s method is to
construct an ID by hashing the names of all active subroutines,
their associated image names and the data object size when
a memory allocation happens. This is feasible by traversing
through our shadow stack (see §4.B) and recording the starting
address whenever a subroutine is called. The subroutine name
and the image name can be obtained from the starting address
of the subroutine with PIN. However, in a few cases, we
still cannot distinguish the heap data objects with the above
method. For those with conflicting hash values, we assign
another ID to each of them in an increasing order, following
the order they appear during the application execution. To
mark whether the heap data object is freed, we also associate a
validation flag with each heap data object. If the object is freed
before the fault injection point, we will immediately detach the
instrumentation and conclude that the heap data object cannot
affect the application after the fault injection point. The above
identification method positions the dynamic memory alloca-
tion within the application context, and differentiates heap data
objects. It also contains abundant application information for
the convenience of analyzing fault injection results.

For stack data, we use the subroutine name and its as-
sociated image name (avoiding subroutine name conflict) to
identify the stack data object. In addition, to inject the fault
into stack data, we must have explicit address range for each
stack data object. However, the call stack dynamically grows
and shrinks at runtime. Therefore, we monitor the stack pointer
for the topmost active routine in the stack, so that we ensure
the fault will be injected into the right data object.

In general, the above memory identification method is
independent of architecture and compiler. The IDs remain
constant throughout profiling and fault injection phases.

F. Control Script

The BIFIT control script is the only component that the user
needs to directly use. It integrates all components of the tool
and schedules fault injection tests as configured by the user.
The basic functionality of the script is threefold: test configu-
ration, performance measurement, and result collection.

For test configuration, the user can specify which data
objects into which they want to inject faults. They can be
either very general (e.g., global data, heap data, or stack data),
or very specific data objects (e.g., specific global array, or
specific subroutine stack); and, the user can also specify at
which execution points to inject a fault. The fault can happen

either multiple times, or just once as done in our tests. With
the support of our instrumentation infrastructure, the user has
great flexibility to design a significant number of fault injection
scenarios.

The control script also measures the application perfor-
mance for each fault injection test. Because of binary instru-
mentation cost, the application execution time is extended even
without the fault. This situation makes the task of quantifica-
tion of soft errors impact on the application execution time
more complex.

BIFIT uses the following method to filter out instrumen-
tation cost. For each specified memory object and specified
execution point, we conduct two tests, one with fault injection,
and the other without fault injection but with instrumentation
enabled. We measure execution times for both tests (t1 and t2
respectively). We also measure the execution time with neither
instrumentation nor fault injection (t0). Then the performance
impact due to the soft error (P) is calculated as:

P = (t1 − t2)/t0 (1)
Some fault injection tests cannot be performed. For exam-

ple, before the fault injection point, a heap memory object
may be already freed, or a subroutine associated with a stack
memory object may be already returned. For those cases, the
above no-fault-injection instrumentation test is skipped. The
control script directly calculates P as 0, which represents the
application execution time is not affected.

The control script records application responses throughout
the fault injection testing. The application reactions can be
collected from both application-specific status and system
outputs. The application-specific status includes checkpoint
files, history logs, result figures, etc. They must be customized
according to application algorithms and user requirements.
The system outputs include the outputs from the operating
system kernel’s message buffer, the standard error stream, and
application exit status. In addition, the control script will kill
the application if the application “hangs.” BIFIT deems that an
application in this state if its execution time grows beyond a
threshold. The threshold is determined by the user and preset
at the configuration phase. In our tests, we set it as 10 (i.e.,
the execution time is extended 10 times longer). This is in
consistent with previous fault injection research [13].

5. APPLICATION RESULTS

We apply BIFIT to three extreme-scale scientific appli-
cations to assess their soft error vulnerability. The applica-
tions characteristics are summarized in Table II. This section
presents the results of our investigation. We use PIN 2.10
and gcc 4.4.6 on Linux 2.6.32 in our evaluation. We apply
fault injection tests at three different execution points for each
data object (i.e., n = 3). For a data object in global or
heap, the fault injection site (i.e., a bit in the data object)
remains the same across the three fault injection tests to ensure
fair comparison. We instrument only one MPI task for each
application, but BIFIT has the ability to instrument all tasks
concurrently.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:08:01 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Applications.

Application Input problem Global Objs Heap Objs Stack Objs Tests
Nek5000 3D vortex problem with default problem size 456 151 617 3672
S3D Grid dimension: 15x15x15, default setting 128 172 120 1260
GTC (v2.0) Poloidal grid points=192, micell=3, mecell=5 207 1136 59 4206

We evaluate the effects of injected faults on applications
from the aspects of both application run time and application
states/outputs. To investigate the effects on application run
time, we categorize those executions with extended run times
into 7 classes, based on how long the run time is extended.
Specifically, the performance loss falls into one of the follow-
ing categories: (0.05, 0.1], (0.1, 0.2], (0.2, 0.4], (0.4, 0.6],
(0.6, 0.8], (0.8, 1] and >1). We regard an execution with
performance loss no larger than 5% as normal performance to
tolerate regular performance variance. We count the number
of data objects that fall into each class at each fault injection
test in Figures 3, 5, and 7. Assessing the effects of soft errors
on application states/outputs is challenging. For some scien-
tific applications, a deviation from the no-fault application
states/outputs may still be valid. Fully understanding the valid-
ness of states/outputs demands very detailed domain-specific
knowledge and also reflect subjective opinions of the users. In
our tests, we check checkpoint files of the applications in the
last time step. These checkpoint files hold application-critical
computation states. We check them to determine whether
they are different from those of the executions without fault
injection. We count the number of data objects that have an
injected fault that leads to the differences in checkpoint files
and critical application outputs in Table III. In doing so, we
enforce an objective judgment on the effects of soft errors on
application states/outputs, and do not judge the validness of
the applications states/outputs.

Gx, Hx and Sx (x=1, 2, and 3) in the following figures and
tables represent the fault injection tests performed at the x
execution point and at the global, heap, and stack data objects
respectively. To make comparison easier across the 3 execution
points and across different type of data objects, we report the
percentage of data objects within each type (i.e., global, heap
or stack). For volatile heap and stack data objects, if they
are not available at the specified execution point, the impact
of fault injection on the application is none. They are not
displayed in our results because of their trivial impacts on
applications, but this kind of fault injection tests is counted
during the testing campaigns.

A. Nek5000

Nek5000 [32] is a dynamic solver simulating unsteady
incompressible fluid flow with thermal and passive scalar
transport on two- and three-dimensional domains. It is widely
used in a broad range of scientific research, including thermal
hydraulics of reactor cores, transition in vascular flows, ocean
current modeling and combustion. Nek5000 has been deployed
on the Jaguar supercomputer at Oak Ridge National Lab. It
is a potential application to be deployed in future Exascale
systems.

TABLE III: The number of data objects (percentage) in applications
where the fault injection results in the differences of the checkpoint
file and outputs.

G1 G2 G3 H1 H2 H3 S1 S2 S3
Nek5000

checkpoint file 18 18 18 6.8 7.5 6.8 3.5 1.9 1.8
critical points 16 18 18 6.8 7.5 6.8 11 5.0 3.1

S3D
checkpoint file 3.1 3.9 25 3.1 3.2 3.2 0 0 0
C11-Y 1.6 0.78 0 0 0 54 0 3.3 0
C12-H2 0 0 0 0 0 54 0 3.3 0
C17-H2O 7.8 7.8 0 0 0 54 0 3.3 0
C22-CO 1.6 0.78 0 0.63 0 54 0 3.3 0

GTC
checkpoint file 29 34 60 0 0 0.7 0 0 0
history file 28 33 61 1.1 1.1 2.8 0 0 5.2
data1d file 28 33 60 1.1 1.1 2.1 0 0 5.2

Figure 2 summarizes the fault injection results. We notice
that the application success rate with faults injected in global
data is higher than that in other types of data objects, statis-
tically demonstrating the insensitivity of global data to those
injected faults. Type 2 SDC errors (i.e., the error only resulting
in different states/outputs) are more common than the other
types of SDC errors, which means that the execution time
is less impacted than the application states/outputs. We also
notice that faults injected in stack data at the second fault
injection time point tend to impact applications more often
than other cases (e.g., having more Type 3 SDC errors), while
we do not find the similar error rates at the first and the third
fault injection time points. This shows that the application is
sensitive to when the fault is injected.

Figure 3 displays the impact of soft errors on the execution
time. We first notice that the execution times are widely
distributed between the 7 classes. The faults injected in the
global and heap data objects tend to result in longer execution
time. Particularly, the percentage of data objects in the class
“> 1” is higher. Also, the same data object with faults injected
at different time points can result in different execution times.
This is especially demonstrated by the significant difference
of the execution time distribution in the heap data objects at
the time points 1 and 3.

Table III presents the impact of soft errors on the application
state (i.e., the checkpoint file) and the outputs (i.e., 3 velocity
components and 1 pressure component at the final time steps
for 6 critical points). We notice that the faults injected in the
global data objects tend to impact application states/outputs
more than those in other kinds of data objects. This observation
is consistent throughout the 3 fault injection time points.

B. S3D

S3D [16] is a massively parallel direct numerical solver
(DNS) for the full compressible Navier-Stokes, total energy,
species and mass continuity equations coupled with detailed

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:08:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Summary of fault injection results (Nek5000)

chemistry. S3D can greatly advance our basic understanding
of turbulent combustion processes and thus improve efficiency
of combustion devices. S3D has been deployed in Jaguar
supercomputer and is planned to be deployed in the future
Titan supercomputer in Oak Ridge National Lab.

Figure 4 summarizes the fault injection results. In S3D, the
global data objects with fault injected are responsible for most
of the abort errors throughout the application execution. S3D
seems to be more sensitive to the fault injection than Nek5000.
In particular, except the heap data objects with faults injected
at the first time points, the “success” rate in other data objects
and time points is about 10%-20% smaller than that of Nek5K.
Also, Type 3 SDC errors, instead of Type 2 errors in Nek5K,
are more common than other SDC errors.

Figure 5 displays the impact of soft errors on the execution
time. The faults injected in the global data objects have small
impact on the execution time; the heap objects with fault
injected at the time points 2 and 3 greatly extend the execution

Fig. 3: The distribution of extended run time (Nek5000)

Fig. 4: Summary of fault injection results (S3D)

time. Most of the cases with application hangs also happen in
the heap objects. The stack objects with faults injected have
diverse impact on the execution time, depending on when the
fault is injected.

Fig. 5: The distribution of extended run time (S3D)
Table III presents the impact of soft errors on the application

state (i.e., the checkpoint file) and the outputs (i.e., 4 parameter
values at the final time). S3D has more than 64 output
parameters. We only show four of them as a representative set.
The other parameters are either not affected by fault injection
or have the similar reactions as the four. Similar to Nek5000,
we observe that the faults injected in the global data objects
tend to impact application states. This is especially true at
the third fault injection time point. The faults injected in
heap data objects tend to affect the output parameters while
do not impact the application states as much as those in
global data objects do. In addition, the fault injection at a late
execution phase (i.e., the execution point 3) generally affects

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:08:01 UTC from IEEE Xplore. Restrictions apply.

the application more easily than that at other execution phases.

C. GTC

GTC [33] is a massively parallel, particle-in-cell code
for turbulence simulation in support of the burning plasma
experiment, the crucial next step in the quest for next gen-
eration (fusion) energy. GTC has been deployed in Jaguar
supercomputer in Oak Ridge National Lab.

Figure 6 summarizes the fault injection results. We first
notice that Type 1 SDC errors in the fault injection results
of global data objects, which are not often observed in the
other two applications. We also notice the high abort rates
in the fault injection tests for stack data objects. In addition,
unlike Nek5000 and S3D that typically have unbalanced Type
2 and Type 3 SDC errors, such errors in GTC have similar
possibility to appear in all data objects.

Figure 7 displays the impact of soft errors on the execution
time. Unlike Nek5000 and S3D, the execution time is signif-
icantly extended: most cases have either more than doubled
execution times or simply hang. This indicates that some
data objects in GTC, once corrupted, lead to slow converge
to the expected accuracy range and these data objects more
commonly exist in GTC than in the other applications.

Table III presents the impact of soft errors on the application
state (i.e., the checkpoint file and the history file) and the
outputs (i.e., the data1d file). It is clear that the injected faults
in the global data objects have much higher possibility to
impact application states and outputs than those in other data
objects. This is especially true at the third fault injection time
point.

6. OBSERVATIONS

The results in §5 statistically reveal several facts. First, the
application is sensitive to when and where the fault is injected.
Depending on when the fault is injected, the same affected data
object can have different impact on the application. Second,
the global data objects are usually tightly related to critical
application outputs and states. They should be well protected
to guarantee result correctness. Third, applications are different
from each other in vulnerability. They tend to react differently
to different soft errors, depending on their inherent algorithms
and workload characteristics. This indicates that a domain
specific resilience design might be able to better detect soft
errors or tolerate faults. Fourth, the soft errors happened at
the late execution phases tend to have larger impact on the
application states and outputs than those happened earlier in
the execution phases. This indicates the possibility of using
adaptive resilience designs to balance resilience costs and
application reliability. Fifth, the application execution time
is very sensitive to soft errors. It is common to double (or
even more) execution time with soft errors. Hence, software-
level symptom based fault detection techniques may monitor
execution time for anomalous software behaviors.

A. Application Implication

We link our observations with applications and use appli-
cation knowledge to further understand the results. We look

Fig. 6: Summary of fault injection results (GTC)

closely at those data objects in the global and heap of Nek5000
whose corruptions cause applications to abort. We find that
78% of them in global and 100% of them in heap are small
data objects (smaller than 1K). For global data, these small
data objects represent critical computation parameters, for
example, the ones recording size and identity of domains, the
index array for accessing multi-grids and the handle used in
calling the coarse-grid solver; for heap data, these data objects
are used for computing-dependent intermediate parameters and
results, for example, the communication tree formed during
runtime.

We also examine those data objects in the global and heap
of Nek5000 whose corruptions lead to differences in the
checkpoint file (a binary file). We compare the checkpoint

Fig. 7: The distribution of extended run tim (GTC)

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:08:01 UTC from IEEE Xplore. Restrictions apply.

files between the faulty one and the regular one, and report
how different they are in terms of percentage of different bytes
in the file. We then correlate file difference, data object size
and application knowledge. Some results are summarized in
Table IV. In these results, if a data object with fault injection
causes difference in the checkpoint file in multiple execution
time points, we count them multiple times correspondingly
to fully understand the effects of fault injection on this data
object. From the results, we notice that most data objects
that cause significant difference (>75%) in the application
states are small. After linking the observation with application
knowledge, we find that they are also critical computation
parameters, such as the extrapolation terms for magnetic field
and perturbation parameters. This result is consistent with the
above examination on data objects that cause application abort.

TABLE IV: The number of data objects in the global and heap of
Nek5000 that lead to differences in the application checkpoint file.

File Difference 0-25% 25%-50% 50%-75% 75%-100%
obj size <=1KB 72 5 14 29
obj size 1KB-1MB 60 1 1 7
obj size >1MB 0 0 0 0

We have the similar observations in S3D and GTC. For
example, in S3D, we find look-up tables that contain coeffi-
cients for linear interpolation and global arrays for chemistry
properties; in GTC, we find quite a lot of control parameters
and auxiliary radial interpolation arrays. These data objects
are typically small and the corruptions in them lead to either
abort or quite different application states. These observations
demonstrate the necessity of classifying soft error vulnera-
bilities in data objects and use diverse resilience policy to
selectively protect data.

We further notice that the velocity field (a data object
in Nek5000), if involved in a stability calculation, is highly
sensitive to soft errors. Once it is corrupted, the application can
abort. However, if it is involved in the turbulence computation,
the soft error in the velocity field can be averaged out, so
that the computation results are still correct, although the
execution time is extended. This is a realistic example of how
the application’s vulnerability to a data structure varies across
the execution phases.

B. New Research Opportunities

BIFIT and our fault injection results provide opportunities
for two additional directions of research: hybrid memory
systems and algorithm-based resilience.

Hybrid memory systems: The hybrid non-volatile memory-
DRAM/SRAM systems have been studied to leverage non-
volatile memory for either performance improvement or power
saving [34], [35], [36]. However, it has not been studied for
resilience purpose. Non-volatile memory (NVM) is resistant to
the particle strikes on the transistor and much less impacted
by thermal fluctuation than DRAM/SRAM [37]. Therefore,
it can be leveraged to place those data objects whose fault
affection can seriously impact application performance and
output accuracy. By placing those data objects into NVM,

we may simplify those costly hardware checksum and ECC
mechanisms to improve performance and save power.

Algorithm-based resilience: The algorithm-based resilience
leverages algorithmic structures of codes to create domain-
specific fault tolerance scheme (see §3.B for details). Since
BIFIT has the flexibility of fault injection at any specified
data structures at any execution phase, it provides a powerful
tool to optimize algorithm-based fault tolerance schemes. For
example, if a specific critical data is not impacted by other
faulty data structures at certain execution phases, then the
algorithm based checksum can be simplified, which will result
in performance improvement.

7. CONCLUSIONS

Resilience is becoming an important concern in the future
Exascale systems. Soft errors will significantly impact system
resilience. Understanding the impact of soft errors on scientific
applications is critical for future Exascale system designs. In
this paper, we propose a fault injection tool, named BIFIT,
based on binary instrumentation to simulate single bit errors.
BIFIT enables fault injection at any specified application data
object in global, heap and stack at any specified execution
point. With the assistance of a profiling tool and control
scripts, we greatly improve the instrumentation performance of
BIFIT, and fully automate the fault injection deployment and
result collection. We apply BIFIT to three realistic extreme
scale scientific applications, and perform thousands of injec-
tions to simulate single bit flip errors. We comprehensively
investigate the impact of soft errors on application execution
time, states and outputs. Our results statistically indicate the
relationship between the application reaction, and the fault in-
jection sites and times. BIFIT and our results provide insightful
information for the future resilience research.

ACKNOWLEDGMENTS

The paper has been authored, in part, by Oak Ridge National
Laboratory, which is managed by UT-Battelle, LLC under
Contract #DE-AC05-00OR22725 to the U.S. Government.
Accordingly, the U.S. Government retains a non-exclusive,
royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S.
Government purposes. This research is sponsored in part by
an NSF award CNS-1059376, and by the Office of Advanced
Scientific Computing Research in the U.S. Department of
Energy.

REFERENCES
[1] C. Wang, F. Mueller, C. Engelmann, and S. Scott, “Hybrid

Checkpointing for MPI Jobs in HPC Environments,” in 16th
International Conference on Parallel and Distributed Systems,
2010.

[2] K. Kharbas et al., “Combining Partial Redundancy and Check-
pointing for HPC,” in International Conference on Distributed
Computing Systems, 2012.

[3] F. Cappello et al., “Toward exascale resilience,” International
Journal of High Performance Computing Applications, vol. 23,
no. 4, pp. 374–388, 2009.

[4] IBM and the compute grid program-
ming models, “POJO Programming Model,”
http://pic.dhe.ibm.com/infocenter/wxdinfo/v6r1.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:08:01 UTC from IEEE Xplore. Restrictions apply.

[5] C. Makassikis, V. Galtier, and S. Vialle, “A Skeletal-Based Ap-
proach for the Development of Fault-Tolerant SPMD Applica-
tions,” in International Conference on Parallel and Distributed
Computing, Applications and Technologies, 2010.

[6] Z. Chen, “Algorithm-based recovery for iterative methods with-
out checkpointing,” in Proceedings of the 20th International
Symposium on High Performance Distributed Computing, 2011.

[7] P. Du et al., “Algorithm-based fault tolerance for dense matrix
factorizations,” in Proceedings of the 17th ACM SIGPLAN sym-
posium on Principles and Practice of Parallel Programming,
2012.

[8] X. Dong et al., “Leveraging 3d pcram technologies to reduce
checkpoint overhead for future exascale systems,” in Pro-
ceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, 2009.

[9] R. Baumann, “Radiation-induced soft errors in advanced semi-
conductor technologies,” IEEE Transactions on Device and
Materials Reliability, vol. 5, no. 3, 2005.

[10] T. Karnik et al., “Scaling trends of cosmic ray induced soft
errors in static latches beyond 0.18 µ,” in 2001 Symposium on
VLSI Circuits Digest of Technical Papers, 2001, pp. 61–62.

[11] S. Krishnamohan and N. Mahapatra, “A Highly-Efficient Tech-
nique for Reducing Soft Errors in Static CMOS Circuits,” in
Proceedings of the IEEE International Conference on Computer
Design, 2004.

[12] M. Heroux, P. Raghavan, and H. Simon, Parallel processing
for scientific computing (Software, Environment and Tools).
Society for Industrial Mathematics, 2006, no. 20.

[13] G. Bronevetsky and B. de Supinski, “Soft error vulnerability of
iterative linear algebra methods,” in Proceedings of the 22nd
annual international conference on Supercomputing, 2008.

[14] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Charac-
terizing the impact of soft errors on iterative methods in scien-
tific computing,” in Proceedings of the international conference
on Supercomputing, 2011, pp. 152–161.

[15] X. Li, M. Huang, K. Shen, and L. Chu, “A realistic evaluation
of memory hardware errors and software system susceptibility,”
in Proceedings of the 2010 USENIX conference on USENIX
annual technical conference, 2010.

[16] E. Hawkes, R. Sankaran, J. Sutherland, and J. Chen, “Direct
numerical simulation of turbulent combustion: fundamental
insights towards predictive models,” in Journal of Physics:
Conference Series, vol. 16, 2005, p. 65.

[17] J. Meng, S. Chakradhar, and A. Raghunathan, “Best-effort
parallel execution framework for recognition and mining ap-
plications,” in IEEE International Symposium on Parallel and
Distributed Processing, 2009.

[18] J. Meng, A. Raghunathan, S. Chakradhar, and S. Byna, “Ex-
ploiting the forgiving nature of applications for scalable parallel
execution,” in IEEE International Symposium on Parallel and
Distributed Processing, 2010.

[19] K. Malkowski, P. Raghavan, and M. Kandemir, “Analyzing the
soft error resilience of linear solvers on multicore multipro-
cessors,” in IEEE International Symposium on Parallel and
Distributed Processing, 2010.

[20] N. DeBardeleben et al., “Experimental Framework for Injecting
Logic Errors in a Virtual Machine to Profile Applications for

Soft Error Resilience,” in Workshop on Resilience in High
Performance Computing in Clusters, Clouds and Grids, 2011.

[21] T. Naughton et al., “Fault injection framework for system
resilience evaluation: fake faults for finding future failures,”
in Proceedings of the 2009 workshop on Resiliency in high
performance computing, 2009.

[22] C. Lu and D. Reed, “Assessing fault sensitivity in MPI appli-
cations,” in Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, 2004.

[23] H. Sane and D. Connors, “A framework for efficiently analyz-
ing architecture-level fault tolerance behavior in applications,”
University of Colorado Denver, Department of Electrical Engi-
neering, Tech. Rep., 2008.

[24] K. Huang and J. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. 100,
no. 6, pp. 518–528, 1984.

[25] C. Ding et al., “Matrix multiplication on gpus with on-line

fault tolerance,” in 9th International Symposium on Parallel and
Distributed Processing with Applications, 2011.

[26] A. Shye et al., “Using Process-Level Redundancy to Exploit
Multiple Cores for Transient Fault Tolerance,” in International
Conference on Dependable Systems and Networks, 1976.

[27] K. Ferreira et al., “Evaluating the viability of process replication
reliability for exascale systems,” in International Conference
for High Performance Computing, Networking, Storage and
Analysis, 2011.

[28] A. Moody, G. Bronevetsky, K. Mohror, and B. de Supinski,
“Design, modeling, and evaluation of a scalable multi-level
checkpointing system,” in International Conference for High
Performance Computing, Networking, Storage and Analysis,
2010.

[29] N. Vaidya, A Case for Multi-Level Distributed Recovery
Schemes. Texas A&M University Technical Report, 1994.

[30] E. Gelenbe, “A model of roll-back recovery with multiple
checkpoints,” in Proceedings of the 2nd international confer-
ence on Software engineering, 1976, pp. 251–255.

[31] V. Reddi, A. Settle, D. Connors, and R. Cohn, “Pin: a binary
instrumentation tool for computer architecture research and
education,” in Proceedings of the 2004 workshop on Computer
architecture education, 2004.

[32] P. Fischer and J. Lottes, nek5000 Web page. Web page:
http://nek5000.mcs.anl.gov, 2008.

[33] Z. Lin, “Tuning CUDA Applications for Fermi,”
http://phonenix.ps.uci.edu/GTC.

[34] L. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement
in Hybrid Memory Systems,” in International Conference on
Supercomputing, 2011.

[35] B. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecturing
Phase Change Mmemorhy as a Scalable DRAM Architecture,”
in International Symposium on Computer Architecture, 2009.

[36] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid
PRAM and DRAM main memory system,” in ACM/IEEE
Design Automation Conference, 2006.

[37] G. Sun, E. Kursun, J. River, and Y. Xie, “Exploring the
vulnerability of CMPs to soft errors with 3D stacked non-
volatile memory,” in International Conference on Computer
Design, 2011.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:08:01 UTC from IEEE Xplore. Restrictions apply.

