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Abstract-Featured by high portability and programmability, 
Dynamic Voltage and Frequency Scaling (DVFS) has been widely 
employed to achieve energy efficiency for high performance appli­
cations on distributed-memory architectures nowadays through 
various scheduling algorithms. Generally, different forms of slack 
from load imbalance, network latency, communication delay, 
memory and disk access stalls, etc. are exploited as energy saving 
opportunities where peak CPU performance is not necessary, with 
little or limited performance loss. The deployment of DVFS for 
communication intensive applications is straightforward due to 
the explicit boundary between Energy Saving Blocks (ESBs) at 
source code level, while for data (e.g., memory and disk access) 
intensive applications it is difficult for applying DVFS since ESB 
boundary is implicit due to mixed types of workloads. We propose 
an adaptively aggressive DVFS scheduling strategy to achieve 
energy efficiency for data intensive applications, and further save 
energy via speculation to mitigate DVFS overhead for imbalanced 
branches. We implemented and evaluated our approach using five 
memory and disk access intensive benchmarks with imbalanced 
branches against another two energy saving approaches. The 
experimental results indicate an average of 32.6 % energy savings 
were achieved with 6.2 % average performance loss compared to 
the original executions on a power-aware 64-core cluster. 

Keywords-energy; performance; DVFS; adaptive; aggressive; 
speculative; data intensive, memory accesses, disk accesses. 

I. INTRODUCTION 

With the growing severity of power and energy con­
sumption on high performance distributed-memory computing 
systems nowadays in terms of operating costs and system 
reliability [1] [2], reducing power and energy costs has been 
considered as a critical issue in high performance computing, 
in particular in this big data era [3]. Featured by high porta­
bility and programmability, Dynamic Voltage and Frequency 
Scaling (DVFS) [4] [5] techniques have been empirically 
applied for scaling down power and energy costs with little 
or limited performance loss [6] [7] [8] [9] [10] [11] [12] [13] 
[14] [15] [16]. Generally, energy efficiency can be achieved 
during runs of high performance applications by scaling down 
operating voltage and frequency of CPU, where peak CPU per­
formance is not necessary such as slack from load imbalance, 
communication delay, memory and disk access latency, etc., 
given the assumption that CPU dominates the total system­
wise energy consumption. DVFS is thus deemed an effective 
approach to address the concerns of operating costs and system 
reliability for high performance applications nowadays. 
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Per the functionality of an application, types of workloads 
within the application consist of computation, communication, 
memory accesses, and disk accesses, etc. For communication 
intensive applications, an effective way of improving energy 
efficiency, referred to as basic DVFS scheduling strategy, is to 
scale down CPU voltage and frequency during communication, 
while keep peak CPU performance when CPU is fully loaded 
during computation. This approach can be easily fulfilled, since 
at source code level the boundary between communication 
and computation is explicit. Appropriate CPU frequency can 
be assigned via DVFS techniques at the boundary between 
communication and computation. Since the execution of com­
munication is not CPU-bound, communication time will barely 
increase due to low CPU performance. Moreover, computation 
time will not grow since CPU performance during computation 
is kept the same as the orignal by not altering CPU frequency. 
Since generally voltage is proportional to frequency, energy 
savings can be achieved using basic DVFS scheduling strategy 
with negligible performance loss due to lower CPU voltage and 
frequency on average compared to the original execution. 

Similarly, peak CPU performance is not needed when 
CPU is waiting for data from memory and disk. Typically, 
for memory and disk access intensive applications, memory 
and disk access latency are performance bottleneck of the 
applications. According to the fundamental memory hierachy 
of moderm computer architectures, compared to CPU, main 
memory access takes hundreds of clock cycles while local disk 
access time is of the order of magnitude of millisecond, 106 
greater than memory access time in general. As for memory 
and disk access intensive applications, energy efficiency can be 
intuitively achieved by reducing CPU frequency when memory 
and disk accesses are performed and CPU is waiting for data. 

Despite the straightforward deployment of DVFS for com­
munication intensive applications, it is however not intuitive 
to achieve energy efficiency for other types of data inten­
sive applications such as memory and disk access intensive 
applications due to two reasons: Firstly, employing DVFS in 
our approach is implemented at source code level within the 
application via system calls for modifying CPU frequency 
configuration files at runtime. Empirically, memory and disk 
accesses are generally accompanied by CPU-bound operations 
at source code level, which causes the boundary between 
memory and disk accesses and computation implicit. As a 
consequence, it is difficult to separate memory and disk 

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:05:20 UTC from IEEE Xplore.  Restrictions apply. 



accesses from computation and then apply DVFS for energy 
savings. Secondly, the overhead on employing DVFS can be 
high: Given the iterative nature of many high performance 
applications, the time and energy costs on employing fine­
grained DVFS scheduling can be non-negligible due to a 
large number of CPU frequency switches [12] [17] [18]. A 
lightweight DVFS scheduling strategy is thus desirable. 

In this paper, we introduce an adaptively aggressive DVFS 
scheduling strategy (A2E) for energy efficient memory and 
disk access intensive applications with imbalanced branches, 
where memory and disk accesses are mixed with minor com­
putation. Instead of separating memory and disk accesses from 
computation for an Energy Saving Block (ESB) with different 
types of workloads, and then performing fine-grained DVFS 
scheduling accordingly, we aggressively apply DVFS to the 
hybrid ESB holistically, and adaptively set an appropriate CPU 
frequency to the hybrid ESB according to the computation 
time proportion within the total execution time of the ESE. In 
summary, the contributions of this paper are as follows: 

• We analyze the impact of factors such as CPU fre­
quency and execution time on energy consumption 
of applications consisting of different dominant work­
loads, which motivates our idea of A2E; 

• We demonstrate the significance of code boundary for 
achieving energy efficiency via DVFS, and thus define 
ESB to refine energy saving opportunities and model 
energy and performance efficiency of our approach; 

• We propose A2E to improve energy efficiency for 
memory and disk access intensive applications with 
mixed minor computation, and further save energy 
using speculation to mitigate DVFS overhead for 
imbalanced branches. Our approach is evaluated to 
achieve considerable energy savings (32.6% on aver­
age) and incur minor performance loss (6.2% on aver­
age) compared to the original runs of five benchmarks. 

The rest of this paper is organized as follows. Section 2 
discusses relevant research. Section 3 motivates and section 4 
introduces three energy saving approaches for data intensive 
applications. We provide implementation details and evaluate 
our approach in section 5, and section 6 concludes. 

II. RELATED WORK 

DVFS Scheduling for Compute Intensive Applications: 
A large body of work has been done for achieving energy 
efficiency in compute intensive applications by exploiting CPU 
slack or idle time from imbalanced CPU-bound applications. 
Ge et al. [13] proposed a runtime system and an integrated 
performance model for achieving energy efficiency and con­
straining performance loss through DVFS and performance 
modeling and prediction. Rountree et al. [15] presented another 
runtime system by improving and extending previous classic 
scheduling algorithms and achieved significant energy savings 
with extremely limited performance loss. Kappiah et al. [8] 
proposed a scheduled iteration method that computes the 
total slack per processor per timestep, then scheduling CPU 
frequency for the upcoming timestep. 

DVFS Scheduling for Data Intensive Applications: There 
also exists a large amount of work for energy efficient 

communication via different DVFS scheduling algorithms. A 
relatively small amount of research has been conducted for 
reducing energy costs of memory/disk access intensive appli­
cations. Kappiah et al. [8] devised a system that exploits slack 
arising at synchronization points of MPI programs by reducing 
inter-node energy gear via DVFS. Li et al. [19] proposed 
to characterize energy saving opportunities in executions of 
hybrid MPI/OpenMP applications without performance loss. 
Predictive models and novel algorithms were presented via 
statistical analysis of power and time requirements under 
different configurations. Ge et at. [1] observed that memory 
stalls in the memory-bound sequential application swim from 
the SPEC CPU2000 benchmark suite produced considerable 
slack for energy savings via DVFS with alomost no impact on 
performance. Our work focuses on improving energy efficiency 
for parallel exeuctions of memory/disk-bound applications on 
distributed-memory computing systems. 

Aggressive and Speculative Mapping and Scheduling: Liu 
et at. [20] leveraged the fact that at runtime some applica­
tions typically have shorter execution time than their worst­
case execution time, and applied DVFS to dynamically and 
aggressively reduce voltage and frequency on a heterogeneous 
system consisting of CPUs and GPUs. Luo et al. [21] proposed 
to improve energy efficiency for thread-level speculation in a 
same-ISA heterogeneous multicore system with an overhead 
throttling mechanism and a competent resource allocation 
scheme. Our work differs from them in that prior knowledge 
of the worst-case execution time of the application is not 
a prerequisite, and the target of our work is data intensive 
applications running on a distributed-memory architecture. 

III. MOTIVATION : DVFS SCHEDULING FOR DIFFERENT 

WORKLOAD INTENSIVE ApPLICATIONS 

In order to learn the impact of factors such as CPU 
frequency and execution time that may affect energy con­
sumption of applications with different dominant workloads, 
we conducted some experiments and the results are plotted 
in Figures 1 and 2. Motivated by the experimental results 
on DVFS scheduling for compute intensive and compute/non­
compute comparable applications, we observe that the propor­
tion of non-compute operations in an application determines 
whether energy consumption of the application is time-directed 
or frequency-directed. In other words, energy consumption 
is affected more by exectuion time in a compute intensive 
application, and is affected more by CPU frequency in a 
compute/non-compute comparable application, given the fact 
that energy consumption equals product of average power and 
time, where power is proportional to frequency and voltage. 

As shown in Figure 1, CPU performance degradation for 
the compute intensive application EP from NPB [22] leads 
to more energy costs due to the longer execution time that is 
the more dominant factor compared to CPU frequency. On the 
other hand, for an application with comparable proportion of 
computation and non-computation such as pdgemmO routine 
from ScaLAPACK [18] shown in Figure 2, there exists even 
a slight decrease of energy costs as CPU frequency goes 
down, despite the increasing execution time due to low CPU 
performance. We can further infer from the experimental 
results that if computation only takes a small proportion of the 
total execution time of an application as in the case of data 

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:05:20 UTC from IEEE Xplore.  Restrictions apply. 



EP (Class C) from I'IPB Benchmark Suite 
25 -,-----------------------, 20000 

_ Ti me ...... En e r gy 

'" 20 +-------------:;; 15000 ..i 

8 15 +---------....... "c...--" 
-; 1O +-----._-=;� 
E 

;: 5 
o 

CPU Frequency Scheduling strat egy 

Fig.!. DYFS Scheduling for Compute Intensive Application. 

1: while (caseA) { 
2 : 

10000 

5000 

3: buffer = (char*)malloc(num*sizeof(char)); 

4: /* MPI communication routine call I */ 

5: MPI_Bcast(&buffer, count, type, root, comm); 

6: /* Independent computation code */ 

7: computation(); 

8: /* MPI communication routine call II */ 

9: MPI_Alltoall(&sb, sc, st, &rb, rc, rt, comm); 

10: 
11: } 

Fig. 3. Typical Kernel Pattern of Communication Intensive Code. 
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intensive applications such as memory and disk access inten­
sive applications, perfonnance loss at a low CPU frequency is 
comparatively limited, and the less computation exists, the less 
perfonnance loss is incurred from reducing CPU frequency. 
Therefore, the resulting reduction of power from lowering 
frequency dominates the ultimate energy costs. Compared 
to the compute/non-compute comparable application, more 
energy savings can be achieved by aggressively reducing CPU 
frequency for a non-compute intensive application. 

Non-compute intensive applications can be any applica­
tions with a dominant proportion of non-compute workloads 
such as communication, memory accesses, and disk accesses, 
etc., where memory and disk access intensive applications are 
commonly regarded as data intensive applications. Different 
from communication intensive applications, it is challenging 
to employ DVFS on memory and disk access intensive appli­
cations for achieving energy efficiency, since data operations 
such as memory and disk accesses generally mix with minor 
computation at source code level. As we know, energy savings 
can be achieved by applying DVFS at source code level by 
lowering CPU frequency for data intensive operations where 
peak CPU performance is not necessary. It is however difficult 
to separate non-computation from computation for later assign­
ment of appropriate CPU frequency to different workloads. 
To fulfill energy efficiency for data intensive applications, our 
goals include: (a) Reducing the perfonnance loss from com­
putation accompanying data intensive operations due to low 
CPU frequency, i.e., low-perfonnance trade-off; (b) reducing 
the number of CPU frequency switches by DVFS, i.e., DVFS 
overhead. Both low-performance trade-off and DVFS overhead 
result in higher execution time and thus greater energy costs. 

IV. ENERG Y EFFICIENT DVFS SCHEDULING STRATEGIES 

FOR DATA INTENSIVE ApPLICATIONS 

In this section, we present our adaptively aggressive energy 
efficient DVFS scheduling strategy (A2E) for data intensive 

pdgemm (Matrix Size: 10240) from ScaLAPACK Library 
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Fig. 2. DYFS Scheduling for Compute/Non-Compute Comparable Application. 

1: while (caseA) { 
2 : 
3: /* Memory accesses mixed with computation */ 

4: valueA = arrayA[baseA+offset]; 

5: arrayB[baseB] += valueB; 

6: arrayC[baseC++] = arrayB[baseB++]+valueC; 

7 : 
8: /* Disk accesses mixed with computation */ 

9: buffer = (char*)malloc (num*sizeof (char) ); 

10: 
11: 
12: 
13: } 

fread(buffer, size, count, read_file_stream); 

fwrite(buffer, size, count, write_file_stream); 

Fig. 4. Typical Kernel Pattern of Memory and Disk Access Intensive Code. 

applications, e.g., memory and disk access intensive applica­
tions. Leveraging speculation, A2E can also handle conditional 
statements with imbalanced branches whose possibilities of 
occurrence are significantly different. Next we first introduce 
the concept of Energy Saving Blocks at source code level. 

A. Energy Saving Blocks 

Similarly as the common term basic block in the area of 
compilers, from the perspective of energy, an Energy Saving 
Block (ESB) is defined as a statement block of one specific 
type of workload such as computation, communication, mem­
ory accesses and disk accesses, etc., where runtime enery 
savings may be achieved by different means. For simplicity, 
such ESBs are referred to as Comp-ESB, Comm-ESB, Mem­
ESB, and Disk-ESB respectively in the later text. For instance, 
in the code example shown in Figure 5 (a), there exist six 
ESBs located at Lines 5, 7, 8, 9, 11, and 17, respectively, i.e., 
two Comp-ESBs, two Comm-ESBs, one Mem-ESB, and one 
Disk-ESB, each of which can be assigned an appropriate CPU 
frequency accordingly via DVFS for energy saving purposes. 

B. Basic DVFS Scheduling for Comp-ESB and Comm-ESB 

We can apply a basic DVFS scheduling strategy for Comp­
ESB and Comm-ESB that simply sets CPU frequency to 
as high as possible for Comp-ESB and sets CPU frequency 
to as low as possible for Comm-ESB, which can be easily 
fulfilled since the boundary of Comm-ESB is explicit as 
shown in Figure 3: Little computation is involved in the MPI 
communication routine calls at Lines 5 and 9 respectively, 
and computation independent of communication at Line 7 is 
conducted after the communication code. The basic DVFS 
scheduling strategy is shown in Figure 5 (a), where a low-high 
CPU frequency pair is assigned around the communication 
code, since CPU is barely utilized in the communication and 
peak CPU performance is thus not necessary. Yet, the basic 
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1: while (caseA) { 
2: if (caseB) {Pi 
3 : 
4: SetFreq(LDV FS); 
5: communication(); 

6: SetFreq(HDVFS); 
7: memory_access(); 

8: disk_access(); 

9: computation () ; 

10: SetFreq(LDVFS); 
11: communication(); 

12: SetFreq(HDVFS); 
13: 
14: } 
15: else { P2 (P2 « Pl l 
16 : 
17: computation () ; 

18: 
19: } 
20: } 

(a l Basic D YFS Scheduling 

1: SetFreq(LDVFS); 
2: while (caseA) { 
3: if (caseB) {Pi 
4 : 
5: communication(); 

6: memory_access(); 

7: disk_access(); 

8: computation () ; 

9: communication(); 

10: 
11: } 
12: else { P2 (P2 « Pi) 
13: 
14: SetFreq(HDVFS); 
15: computation () ; 

16: SetFreq(LDVFS); 
17: 
18: } 
19: } 
20: SetFreq(HDV FS); 
(b l Aggressive D YFS Scheduling 

with Speculation (AGGREE ) 

Fig. 5. Basic and Aggressive D YFS Scheduling for Typical Communication, 
Memory Access, and Disk Access Mixed Code with Imbalanced Branches. 

DVFS scheduling strategy suffers from two disadvantages: (a) 
It can only work at inter-ESB level but fail at intra-ESB level, 
i.e., towards single ESB with mixed workloads as shown in 
Figure 4 (we discuss it next); (b) the number of CPU frequency 
switches can be considerably large if the number of Comm­
ESBs and the number of iterations of the loop are large, which 
incurs non-negligible overhead on time and energy [I8]. 

C. Aggressive DVFS Scheduling for Mem-ESB and Disk-ESB 

Figure 4 depicts typical kernel of memory and disk access 
intensive applications. Lines 4, 5, and 6 give three typical 
memory accesses mixed with computation. At Line 4, val ueA 
is assigned until the finish of calculating the array index and 
accessing the content of corresponding memory location. Lines 
5 and 6 show how array values are involved in computation 
after and before addressing, respectively. Likewise, for disk 
accesses given at Lines 10 and 11 that read and write blocks 
of data from and into local disk files individually, the value of 
input/output buffer pointer is frequently accessed and updated 
for current and next reading/writing position as the file reading 
and writing operations proceed. If the CPU-bound computation 
time is significant among the total execution time of the 
Mem-ESBlDisk-ESB, i.e., in the case of compute intensive 
applications, considerable slowdown will be incurred from 
reducing CPU frequency for the ESB as a whole, and thus 
energy consumption grows as the trend shown in Figure 1. 

Yet for applications with a small proportion of computation 
mixed with memory and disk accesses depicted in Figure 
4, aggressively reducing CPU frequency for the whole ESB 
only causes minor performance loss while obtains considerable 
energy savings from low CPU frequency and voltage during 
waiting for memory and disk data, since memory and disk 
access time dominate the total execution time. Basic DVFS 
scheduling strategy fails to achieve energy savings for such 
applications since it is difficult to separate non-computation 
from computation and then apply DVFS accordingly. Even 
if the programmer manages to rewrite the source code for 
categorizing ESBs with explicit boundary between each other 
via the use of temporary variables, etc. (we use this method 
to calculate the proportion/percentage of different types of 

Algorithm 1 Adaptively Aggressive DVFS Scheduling Algo. 

SetDVFS(ESB, Pcomp) /*Assume fo < h < ... < fNf-1 */ 
1: Bcast(Pcomp) 
2: Nt f- GetNumFreqO 
3: P�omp f- Max(Pcomp of all ESBs) 
4: pSetO, . . .  ,Nf-1 f- GetRange(p�omp, Nt) 
5: while 0 ::; i < Nt - 1 do 
6: if (0 ::; Pcomp < pSeti) then 
7: SetFreq(fo) 
8: else if (pSeti ::; Pcomp < pSeti+1) then 
9: SetFreq(fd 

10: else if (Pcomp 2 pSetNf-1) then 
11: SetFreq(fNf -1) 
12: end if 
13: i f- i + 1 
14: end while 

workloads within a hybrid ESB), performance and energy loss 
can be caused by numerous CPU frequency switches within 
the loop of ESBs, as shown in Figure 5 (a), the kernel of an 
application with different types of workloads including com­
putation, communication, memory accesses and disk accesses. 
The basic DVFS scheduling strategy sets CPU frequency to 
low before the Comm-ESBs at Lines 5 and 11 respectively 
and sets it back to high after the Comm-ESBs. It keeps CPU 
frequency high for all Mem-ESB, Disk-ESB, and Comp-ESB 
if the Mem-ESB and the Disk-ESB are accompanied by minor 
computation as shown in Figure 4. Potential energy saving 
opportunities can be leveraged by aggressive DVFS scheduling 
(AGGREE) as presented in Figure 5 (b). Instead of fine-grained 
deployment of DVFS for setting appropriate CPU frequency 
to Comm-ESBs without exploiting energy saving opportunities 
from Mem-ESBs and Disk-ESBs, AGGREE aggressively sets 
CPU frequency to low once for the whole loop given that the 
loop is data intensive, which achieves higher energy efficiency 
than the basic DVFS scheduling strategy due to lower CPU 
power at the cost of minor performance and energy loss from 
the small proportion of computation. Moreover, AGGREE 
overcomes the excessive number of CPU frequency switches 
by croase-grained DVFS scheduling outside the loop. 

D. Adaptively Aggressive DVFS Scheduling for Mem-ESB and 
Disk-ESB 

Recall one of our goal is to reduce the performance loss 
from minor computation accompanying data intensive opera­
tions at low CPU frequency. One effective way to moderate the 
low-performance trade-off from AGGREE for data intensive 
applications is to set an intermediate CPU frequency adaptively 
on case-by-case basis for Mem-ESBs and Disk-ESBs within 
such applications, instead of always employing the lowest 
CPU frequency during executions. We refer to this adaptively 
aggressive DVFS scheduling strategy as A2E. The heuristic of 
A2E is similar to AGGREE: For those ESBs with implicit 
boundaries, we specify an appropriate CPU frequency for 
them as a whole, since fine-grained DVFS scheduling upon 
the finish of separating non-computation from computation is 
difficult. Considering the code example shown in Figure 5 
(b), AGGREE aggressively sets CPU frequency to the lowest 
possible value once outside the data intensive loop, while 
A2E calculates an intermediate CPU frequency adaptively 
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1: SetFreq(LDVFS); 
2: while (caseA) { 
3: if (caseB) {P1 
4 : 
5: communication(); 

6: memory_access(); 

7: disk_access(); 

8: computation () ; 

9: communication(); 

10: 
11: } 
12: else { P2 (P2 « P1) 
13: 
14: SetFreq(HDV FS); 
15: computation () ; 

16: SetFreq(LDVFS); 
17: 
18: } 
19: } 
20: SetFreq(HDV FS); 

(a ) Aggressive D YFS Scheduling 
with Speculation (AGGREE ) 

1: while (caseA) { 
2: if (caseB) {P1 
3 : 
4: SetFreq(LDVFS); 
5: communication(); 

6: SetFreq(MDVFS); 
7: memory_access(); 

8: SetFreq(MbvFS); 
9: disk_access () ; 

10: SetFreq(HDVFS); 
11: computation () ; 

12: SetFreq(LDVFS); 
13: communication () ; 

14 : 
15: } 
16: else {P2 (P2 « P1) 
17: 
18: 
19 : 
20: 
21: } 
22: } 

SetFreq(HDVFS); 
computation(); 

(b ) Adaptively Aggressive D YFS 
Scheduling with Speculation (A2E ) 

Fig. 6. AGGREE and A2E D YFS Scheduling for Typical Communication, 
Memory Access, and Disk Access Mixed Code with Imbalanced Branches. 

according to the proportion of computation time among the 
total execution time of an ESB, and also aggressively sets the 
calculated frequency once for the ESB with mixed workloads. 
Algorithm 1 details the steps of employing A2E. For each 
ESB in the application, we empirically obtain in advance 
the proportion of computation time Pcomp among the total 
execution time of the ESB. The A2E algorithm first broadcasts 
the Pcomp of current ESB to all other ESBs and thus the highest 
Pcomp, P�omp can be used as a threshold for future reference. 
Given a set of CPU frequencies defined for DVFS, we divide 
the range of possible Pcomp [0, P�omp] into Nt sub-ranges, 
where Nt is the number of available CPU frequencies. Which 
sub-range the Pcomp of an ESB sits determines which CPU 
frequency to apply for the ESE. Figure 6 contrasts AGGREE 
and A2E using the same code example shown in Figure 5. 

Example. Consider a data intensive application with 10 ESBs, 
among which the highest proportion of computation time 
within the total execution time is 20%, and there are four gears 
of CPU frequency available for DVFS. According to Algorithm 
1, the range of CPU frequency for adaptively aggressive DVFS 
scheduling consists of four individual sub-range from 0 to 
20%, i.e., [0,5%), [5%, 10%), [10%, 15%), and [15%, 20%]. 
If the proportion of computation time for an ESB is within the 
range of [0, 5%), we set CPU frequency to fo, i.e., the lowest 
frequency; if the proportion falls into the range of [5%, 10%), 
we set CPU frequency to iI, i.e., the second lowest frequency, 
and so on. Consequently for each ESB, we can assign a fitting 
frequency based on the amount of computation within the ESB. 

Although the low-performance trade-off is moderated by 
A2E, the overhead on employing DVFS increase a bit due to 
more CPU frequency switches issued by A2E. From Figure 
6, we can see that the number of CPU frequency switches 
approximates the number of ESBs in the if branch, since for 
each ESB, we at least set an appropriate CPU frequency for 
it once. For the code example shown in Figure 6, we do not 
need to switch CPU frequency for the ESB within the else 
branch, because we guarantee at the end of the if branch CPU 
frequency is set to high. Overall, the number of CPU frequency 

switches for A2E approximates N NiPI, comparable to that for 
the basic DVFS scheduling 2NiNm, where N is the number 
of ESBs in the loop, Ni is the number of iterations of the 
loop, and Nm is the number of Comm-ESBs in the loop. Note 
that different types of workloads do not necessarily appear in 
a loop, we let Ni = 1 when hybrid workloads are not present 
in a loop, but in a code segment without loops. In this case, 
the number of CPU frequency switches for A2E dramatically 
decreases to N PI that is of the same order of magnitude as that 
for AGGREE. In other words, the DVFS overhead of A2E and 
AGGREE are comparable when different types of workloads 
are present in a code segement without loops. 

£. Speculative DVFS Scheduling for Imbalanced Branches 

Speculation is a technique that allows a compiler or a 
processor to predict the execution of an instruction so that an 
earlier execution of other instructions depending on the specu­
lated instruction may be enabled. In our case, we speculate the 
outcome of a branching statement for energy saving purposes. 
If the application consists of conditional statements with sig­
nificantly different possibility of occurrence (i.e., imbalanced 
branches) such as the if-then-else construct shown at 
Lines 2 and 15 in the kernel of an application with different 
workloads with imbalanced branches as depicted in Figure 5 
(a). There are two branches to take where the taken possibility 
P1 of the if branch is much greater than that of the else 
branch P2, which is a real case for the benchmark OT from 
NPE. As shown in Figures 5 (b) and 6, we can speculatively set 
CPU frequency to low outside the rarely taken else branch 
inside the loop, and set CPU frequency to high for computation 
within the else branch, as a recovery mechanism used for 
incorrect speculation, so that the overall performance is not 
compromised even if the else branch is taken empirically. 

Speculation can be applied to both AGGREE and A2E to 
reduce the number of CPU frequency switches for less DVFS 
overhead. Although in comparison to AGGREE with no spec­
ulation and A2E with no speculation, the use of speculation 
within both approaches slightly increases the number of CPU 
frequency switches by additional 2NiP2 and NiP2 times, re­
spectively. Overall, the speculative DVFS scheduling together 
with AGGREE and A2E effectively reduce the number of CPU 
frequency switches from 2NiNm of the basic DVFS schedul­
ing strategy to 2 + 2NiP2 and N NiPI + NiP2 individually. 
Following the constraint P2 « PI due to the imbalanced 
branches, AGGREE with speculation is more effective on 
reducing DVFS overhead against A2E with speculation. 

F. Peiformance Model 

Next we model the performance efficiency of the three 
approaches (Basic DVFS, AGGREE, and A2E) at ESB level 
for a data intensive application. Since the application con­
sists of different types of ESBs, performance efficiency of 
each ESB reflects the overall performance efficiency of the 
application. Table I lists the notation used in the formalization 
of performance. Given an application with different types of 
workloads comprised of computation (CPU-bound), commu­
nication (network-bound), memory accesses (memory-bound), 
and disk accesses (disk-bound), we model the performance 
of the original application without any DVFS scheduling 
strategies as sum of execution time of different components: 

T = Tcomp + Tcomm + T mem + Tdisk (l) 
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TABLE J. NOTATION IN PERFORMANCE EFFICIENCY FORMALIZATION. 
T Total execution time of the application 

Tcomp Computation time of the application 

Tcomm Communication time of the application 

Tmem Average memory access time of the application 

Tdisk Average disk access time of the application 

Ocomp Time complexity of computation of the application 

1 Current CPU operating frequency 

Ih A high CPU frequency set by DVFS 

1m A medium CPU frequency set by DVFS adaptively 

11 A low CPU frequency set by DVFS 

Nc Number of cores within one node of the cluster 

NF Floating Point Unit of one core divided by 64-bit 
TDVFS Time consumed by a DVFS CPU frequency switch 

PI Taken possibility of the likely taken imblanced branch 

P2 Taken possibility of the rarely taken imblanced branch 

Ni Number of iterations of a loop with hybrid workloads 

N Number of ESBs in a hybrid loop/application 

Nm Number of Comm-ESBs in a hybrid loop/application 

Let us assume the application is executed with the optimal 
efficiency (100%), Tcomp can be represented as: 

()comp 
2 Tcomp = 

fNcNF 
( ) 

As we know, only CPU frequency f in calculating Tcomp 
is affected by DVFS, while execution time of operations other 
than computation is bounded by non-CPU hardware factors 
such as network band with and disk data transfer rate, and 
is not related to CPU frequency. Therefore we separate the 
computation accompanying memory and disk accesses from 
the actual memory and disk accesses for each approach below, 
where T:nem and T:iisk denote the actual memory and disk 
access time respectively, and the impact of DVFS on execution 
time is shown by setting different CPU frequencies. Note that 
each approach employs the same heuristic for energy efficient 
computation and communication: Keeping the highest CPU 
performance for computation and applying the lowest CPU 
performance for communication. 

()comp r , + 
()comp mem Taggree = 

fLNcNF 
+ Tcomm + Tmem fLNcNF 

T' ()comp disk T (2 2N P ) (5) + disk + f + DVFS X + i 2 
JlNcNF 

T ()comp 
+ T + T' + ()

comp_mem 
a2e = 

fhNeNF 
comm mem fmNeNF 

T' ()eomp_disk T N N P (6) + disk + 
f:nNcNF 

+ DVFS X i 1 

Without loss of generality, given a data intensive ap­
plication with different types of workloads and imblanced 
branches, since computation only takes a small proportion 

TABLE II. 

Esys 
Enode 
Pnode 

PcPu d 
Pcpu s 
Pother 

A 
C 
V 
Vh 
Vi 
n 

TABLE Ill. 

NOTATION IN ENERGY EFFICIENCY FORMALIZATION. 
Total energy consumption of the whole cluster 

Total energy consumption of all components in a node 

Total power consumption of all components in a node 

CPU dynamic power consumption in the busy state 

CPU static/leakage power consumption in any states 

Power consumption of components other than CPU 

Percentage of active gates in the CMOS-based chip 

Total capacitive load in the CMOS-based chip 

Current CPU supply voltage 

A high supply voltage set using DVFS 

A low supply voltage set using DVFS 

Time ratio between non-computation and computation 

FREQUENCY-VOLTAGE PAIRS FOR THE AMD OPTERON 
2380  PROCESSOR. 

Gear Frequency (GHz) Voltage (V) 

0 2.5 1.35 

1 1.8 1.2 

2 1.3 1.1 

3 0.8 1.025 

of the total execution time of the application, we assume 
Teomm + T:nem + T:iisk = n x Teomp = ;',OfJ:'NF' where n > 1. 
The last added items in Equations 4, 5, 6 are the overhead on 
employing DVFS. We know P2 approximates to 0 since this 
branch is rarely taken, so the DVFS overhead is negligible 
for AGGREE. Additionally, from Table III we can see that in 
our experimental platform fh � 3fl if we adopt Gear 0 as fh 
and Gear 3 as fL for AGGREE, and we assume fm = mfL 
and f:n = m'it. Thus we obtain the simplified formulae of 
performance for the three approaches as: 

(n + l)()eomp + ()eomp mem + ()comp disk 
(7) Torig � -'----'----=-"-'--'-"-------"-'-'--""'-=-'-'-'-'--'------'-'---'-"'-'''''-'-= 

3flNeNF 

T. . � (n + l)()eomp + ()eomp mem + ()comp disk 
bas,e � 

3flNeN F 
+ TDVFS x 2NiNm (8) 

T � (� + l)()eomp + ()eomp_mem + ()eomp_disk 
aggree � 

fLNeN F 
+ TDVFS x (2 + 2NiP2) (9) 

T _ (�)()eomp + �()eomp_mem + �()eomp_disk 
a2e - fLNeNF 

+ TDVFS x (NNiPd (10) 

From the comparison between Equations 7, 8, 9, and 10, 
we can see that against the original application without any 
DVFS strategies, the basic DVFS scheduling strategy only 
results in performance loss due to additional DVFS overhead, 
while both AGGREE and A2E incur performance loss from 
reducing CPU performance during computation. Compared to 
AGGREE, performance loss from A2E is moderated, since 
each coefficient of computation time complexity of A2E is 
smaller than that of AGGREE. Moreover, A2E suffers from 
DVFS overhead comparable to the basic DVFS scheduling 
strategy, while AGGREE has the minimal overhead on using 
DVFS due to the constraint P2 « P1 for imbalanced branches. 
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G. Energy Model and Energy Efficiency Analysis 

We next formalize energy saving opportunities provided 
by the three energy efficient approaches individually using the 
notation in Table ll. Within a given time interval (h, t2), the 
total energy costs of a distributed-memory computing system 
consisting of multiple computing nodes can be formulated as 
below, where we denote the execution time as T = t2 - tl and 
the nodal average power consumption as Pnode: 

#nodes #nodes . t2 #nodes 
Esys = 2..= Enode = 2..= -I Pnodedt = 2..= Pnode X T (II) 

1 1 
Jt! 1 

Assuming each node in the computing system has the same 
hardware configuration and local energy efficiency results in 
global energy efficiency according to Equation 11, we only 
consider nodal energy consumption in the later discussion. 
Generally, we break down nodal power consumption as: 

Pnode = PCPU_d+PCPU_s+Pother; PCPU_d � ACfV2 (12) 

In (12), we categorize the nodel power consumption by 
power consumption of CPU and other components. By substi­
tuting PCPU_d, we obtain the ultimate nodal power consump­
tion formula with DVFS-dependent parameters f and Vas: 

Pnode � ACfV2 + PCPu_s + Pother (13) 

In our case, PCPu_s and Pother barely change during the 
execution and thus we denote PCPu_s + Pother as a constant 
Pc. From Equation 9, we know that the DVFS overhead of 
AGGREE is negligible due to the presence of P2. Following 
the constraints of Equations II, 12, and 13, we can calculate 
energy costs of running a data intensive application with 
different DVFS scheduling strategies respectively. Further, we 
model the energy savings achieved by AGGREE and A2E in 
contrast to the original application individually as below: 

hE - Eorig Eaggree _ porig T. .  paggree T. 
U aggree - node - node - node X ong - node X aggree 

� (AC fh V; + Pc)Torig - (AC it V/2 + Pc)Taggree (14) 

hE Eorig Ea2e porig T. pa2e T. 
U a2e = node - node = node X orig - node X a2e 

� (AC fh V; + Pc)Torig - (AC fV2 + Pc)Ta2e (15) 

From Equations 14 and 15, we observe that there exists 
a performance-energy trade-off that should be considered to 
determine the optimal CPU frequency to employ in different 
requirements. In our scenario, achieving the maximal energy 
savings with minor performance loss is the goal. For evalu­
ating if the energy efficiency achieved and the performance 
degradation incurred are balanced, we adopt an integrated 
metric to quantify the energy-performance efficiency: Energy­
Delay Product (EDP), a widely used metric to weigh the 
comprehensive effects of energy and performance for a given 
application under different configurations [23]. Therefore, we 
leverage the EDP metric and its variant ED2P to evaluate 
among the three energy efficient approaches, which one is 
able to achieve the optimal energy-performance efficiency 
(the smaller value, the better efficiency) for data intensive 
applications. Details of the implementation and evaluation of 
all three energy efficient approaches are illustrated next. 

TABLE IY. BENCHMARK DETAILS. 
Benchmark Source Test Case Category 

DT NPB Class B 
Memory Access Intensive 
and Imbalanced Branches 

MG NPB Class C 
Memory and Disk 
Access Intensive 

SPhot ASC 
Track 4000 

Memory Access Intensive 
particles 

MPIBZIP2 bzip2 
Compress a 

Disk Access Intensive 
O.77GB file 

cp_MPI Linux 
Copy a file 

Disk Access Intensive 
of 54.4MB 

V. IMPLEMENTATION AND EVALUATION 

We have implemented all three energy efficient DVFS 
scheduling strategies and evaluated their effectiveness towards 
five high performance data intensive applications with different 
dominant workloads such as memory and disk accesses with 
imbalanced branches. Instead of assigning appropriate CPU 
frequencies to an ESB with differet types of workloads in a 
fine-grained fashion, we aggressively schedule CPU frequency 
to an intermediate value for memory and disk accesses mixed 
with minor computation adaptively according to the proportion 
of computation time among the total execution time, in order 
to achieve considerable energy savings at the cost of minor 
performance loss. As for imbalanced branches, we adopt 
speCUlative DVFS scheduling to reduce the number of CPU 
frequency switches to minimize the overhead on employing 
DVFS. The DVFS technique in our approach through modify­
ing CPU frequency configuration files dynamically at system 
level enables us to scale CPU voltage and frequency up and 
down if necessary for energy efficiency. Benchmarks used 
consist of various sources of memory and disk access intensive 
programs with imbalanced branches, such as DT and MG from 
NPB and ASC benchmark suites [22] [24], an MPI version 
of the high-quality data compressor bzip2 [25], and an self­
written MPI version of the Linux standard file copy command 
cp [26]. Table IV shows the details of benchmarks. 

A. Experimental Setup 

We applied the three DVFS scheduling approaches indi­
vidually to the five benchmarks to assess their effectiveness of 
energy savings and performance loss trade-off. Experiments 
were performed on a computing cluster with an Ethernet 
switch consisting of 8 computing nodes with two Quad­
core 2.5 GHz AMD Opteron 2380 processors (totalling 64 
cores) and 8 GB RAM running 64-bit Linux kernel 2.6.32, 
The power-aware and DVFS-enabled cluster was equipped 
with power sensors and meters for energy measurement. In 
our experiments, time was measured using the M P I_WtimeO 
routine. Energy consumption was measured using PowerPack 
[23], a comprehensive software and hardware framework for 
energy profiling and analysis of high performance systems 
and applications. The range of CPU frequency on HPCL 
was {0.8, 1.3, 1.8, 2.5} GHz. PowerPack was deployed and 
running at a meter node within the cluster to collect energy 
costs on all involved components such as CPU, memory, disk, 
motherboard, etc. on all 8 computing nodes of the cluster. The 
collected energy information was recorded into a log file in the 
local disk and accessed after execution of these benchmarks. 
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Fig. 7. Performance Loss and Energy Savings on a Cluster with 8 Nodes, 64 
Cores of {O.8, 1 .3 ,  1 .8 , 2.5} GHz CPU frequencies, and 8 GB Memory/Node. 

B. Performance Degradation 

All three DVFS scheduling approaches improve energy 
efficiency for data intensive applications at the cost of minor 
performance loss as shown in Figure 7, where the x axis 
label Original denotes the original application without any 
DVFS scheduling strategies, and Basic DVFS, AGGREE 
DVFS, and A2E represent the basic, AGGREE, and A2E 

DVFS scheduling strategies introduced in the last section, 
respectively. We can see that in general A2E incurs similar 
performance loss as the basic DVFS scheduling strategy com­
pared to the original no-DVFS executions: 6.2% and 4.7% on 
average, respectively, while AGGREE degrades performance 
more (8.1 % on average) due to aggressively lowering down 
CPU performance regardless of minor computation within the 
data intensive application. 

The overhead on employing DVFS in the basic DVFS 
scheduling strategy primarily results from two factors: (a) The 
additional time spent on modifying CPU frequency configura­
tion files dynamically at system level and (b) CPU frequency 
transition latency. Thus the number of CPU frequency switches 
by DVFS determines the DVFS overhead. Some application 
such as MG incurs up to 13.0% performance loss due to 
applying DVFS, since there exist a great amount of alternate 
Comm-ESBs and Comp-ESBs as shown in Figure 5 (a), which 
requires a large amount of CPU frequency switches by DVFS 
as well. The communication time for some application like 
cp_M P I  is negligible and the amount of Comm-ESBs is 
limited. Therefore constrained by both factors, the overhead 
on employing DVFS for cp_M P I  is also negligible (1.5%). 

As discussed before, performance loss from AGGREE 
is attributed to low performance of the small proportion of 
computation mixed with memory and disk accesses. According 
to Equation 5, reducing CPU frequency aggressively results 
in longer execution time for the CPU-bound computation 
and thus incurs overall performance degradation, although 
performance of memory and disk accesses is barely affected. 
Since the ratio between computation and non-computation 
is significantly low in memory and disk access intensive 
applications, the impact of performance loss from computation 
is limited on the total execution time. A2E further decreases 
the performance loss by adaptively scheduling an appropriate 
CPU frequency to an ESB according to the computation time 
proportion instead of always setting the lowest CPU frequency . 
On the other hand, AGGREE and A2E successfully reduce the 
number of CPU frequency switches by applying DVFS outside 
of a loop of ESBs and inside a rarely taken branch, respec­
tively. The DVFS overhead is reduced accordingly compared to 
the basic DVFS scheduling strategy where there exist a larger 
number of CPU frequency switches due to fine-grained DVFS 
scheduling before and after each Comm-ESB within the loop. 
Consequently, with less DVFS overhead, AGGREE and A2E 
only suffer from 3.4% and 1.5% more performance loss than 
that of the basic DVFS scheduling strategy, respectively. 

C. Energy Savings for Memory Access Intensive Applications 

Figure 7 also reflects energy efficiency achieved by the 
three approaches. Compared to the basic and AGGREE DVFS 
scheduling strategies, A2E is able to achieve more energy 
savings, since energy saving opportunities from memory and 
disk accesses that the basic DVFS scheduling strategy fails to 
leverage are exploited by AGGREE and A2E as depicted in 
Figures 5 (b) and 6 (b) respectively, and further moderation 
of low-performance trade-off is performed by A2E against 
AGGREE. Specifically, considering energy consumption of the 
original executions as the baseline, 32.6% on average energy 
savings are fulfilled by A2E, in contrast to 17.3% and 31.7% 
energy savings on average achieved by the basic and AGGREE 
DVFS scheduling strategies individually. 
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Fig. 8. Performance and Energy Efficiency upon Employing Speculation in 
AGGREE and A2E for the DT Benchmark with Imbalanced Branches. 

The most energy savings 43.4% AGGREE achieves is for 
the memory access intensive application SPhot, while A2E 
manages to achieve less energy savings 40.9%. We applied 
AGGREE and A2E to a code segment within SPhot, where a 
great amount of memory accesses mixed with calculating array 
indices before accessing corresponding memory locations are 
present in a double-loop. The basic DVFS scheduling strategy 
only obtains 13.9% energy savings, since it fails to handle 
Mem-ESBs accompanied by computation but only saves en­
ergy for Comm-ESBs. With AGGREE employed, performance 
of SPhot is degraded by 7.2% due to low performance of 
memory address calculation interleaved in memory accesses as 
a consequence of aggressively scaling down CPU frequency. 
Performance loss is moderated by A2E to 4.9% at the cost 
of less energy savings, since the Mem-ESBs of SPhot have 
similar proportion of computation time and thus most CPU 
frequencies adaptively assigned are close to the highest one. 

D. Energy Savings for Disk Access Intensive Applications 

Besides memory access intensive applications, A2E per­
forms better than the other two approaches in gaining energy 
efficiency for disk access intensive applications. Regarding the 
disk access dominant application cp_M PI ,  the basic DVFS 
scheduling strategy saves a limited amount of energy (2.1 %) 
since the communication time is significant low compared to 
the disk access time. AGGREE and A2E can obtain more 
energy savings for this type of applications, since aggressively 
reducing CPU frequency barely affects performance of the ap­
plication. As for cp_M PI ,  most execution time is spent on non­
CPU-bound opertions, disk accesses, whose execution time is 
constrained by non-CPU hardware factors such as average seek 
time and disk data transfer rate. Low CPU performance brings 
in considerable energy savings from CPU during data waiting 
time without significant performance loss as a whole. Another 
disk access intensive application M P I BZ I P2 also benefits from 
the moderation of low-performance loss by A2E with 40.5% 
energy savings achieved compared to 37.1 % from AGGREE. 

Note that although similar percentage of energy savings 
are fulfilled for memory access intensive and disk access 
intensive applications, performance degradation for employing 
aggressive DVFS scheduling strategies like AGGREE and A2E 
towards the two types of applications differ: Despite MG, an 
application with comparable memory and disk accesses, mem­
ory access intensive applications (OT and SPhot) suffer from 
average performance loss of 7.2% for AGGREE and 4.7% for 
A2E, while disk access intensive applications ( M P I BZI P2 and 
cp_M P I )  only sacrifice minor performance loss on average of 
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Fig. 9 .  Energy-Performance Efficiency Trade-off in Terms of EDP and ED2P. 

3.4% for AGGREE and 2.7% for A2E. This is attributed to 
two causes: (a) Memory access time is much smaller than disk 
access time (typically with a ratio of the order of magnitude 
1/ 106 ) and thus is closer to CPU clock cycles; (b) The amount 
of computation mixed with memory accesses is generally more 
than that with disk accesses. Both reasons make the impact 
of CPU performance degradation on the total execution time 
of memory access intensive applications greater than that of 
disk access intensive applications. It is notable that moderating 
performance loss from A2E shrinks the gap. 

E. Energy Savings for Imbalanced Branches 

AGGREE and A2E adopt speculation to further gain energy 
efficiency for code with imbalanced branches by reducing 
the DVFS overhead. OT is a memory intensive graph appli­
cation where a great amount of imbalanced branches exist. 
Figure 8 shows energy consumption and execution time of 
OT using AGGREE and A2E with and without speculation 
individually. We can see that employing speculation within 
AGGREE and A2E mitigates performance degradation and 
thus saves energy: Performance loss from AGGREE drops 
from 10.8% to 7.1 %, while energy savings increase from 
22.7% to 27.4%; performance loss from A2E drops from 
6.8% to 4.4%, while energy savings increase from 27.3% to 
28.6%. The effectiveness of speculation for saving time and 
energy results from aggressively reducing CPU frequency for 
the frequently taken branch while keeping CPU frequency high 
for computation within the rarely taken branch as the recovery 
mechanism used for incorrect speculation, as shown in Figures 
5 (b) and 6. Note that A2E is empirically less effective than 
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AGGREE in reducing the DVFS overhead upon the use of 
speculation, which is consistent with the performance loss 
from employing DVFS calculated formally in section 4. 

F. Energy and Peiformance Efficiency Trade-off 

From Equations 14 and 15, we observe there exists an 
energy-performance efficiency trade-off for AGGREE and 
A2E. In general, moderating CPU performance degradation 
by adaptively scheduling an intermediate rather than always 
the lowest CPU frequency for a Mem-ESB or a Disk-ESB 
deceases performance loss at the cost of higher average power, 
since power is proportional to CPU frequency and voltage. 
Variation of performance and energy efficiency at different 
operating points can be quantified by an integrated metric 
that both impacts of performance and energy are considered. 
We adopt the EDP (Energy-Delay Product) metric and its 
variant ED2P (Energy-Delay-Squared Product) to evaluate the 
balance between energy and performance efficiency for the 
three energy saving approaches, as presented in Figure 9. 

Since a smaller value in the EDP and ED2P metrics 
represents higher energy and performance efficiency as a 
whole, we can see that for data intensive applications, the basic 
DVFS scheduling strategy is not the optimal approach since it 
fails to exploit the energy saving opportunities present in the 
operations other than communication. Except that for SPhot, 
A2E and AGGREE have similar EDP and ED2P values, A2E 
is superior to AGGREE for all other applications in terms 
of the balance of energy-performance efficiency. The average 
values of EDP and ED2P for A2E and AGGREE over all five 
benchmark consolidate this observation. 

VI. CONCLUSIONS 

Driven by the growing energy concerns, DVFS techniques 
have been widely applied to improve energy efficiency for high 
performance applications on distributed-memory computing 
systems nowadays. Energy saving opportunities from slack 
in terms of load imbalance, network latency, communication 
dalay, memory and disk access stalls, etc. are exploited to 
save energy through scaling up and down CPU voltage and 
frequency via DVFS, since peak CPU performance is not 
necessary during the slack. We propose an adaptively ag­
gressive energy efficient DVFS scheduling strategy (A2E) for 
data intensive applications such as memory and disk access 
intensive applications with imbalanced branches. Instead of 
assigning CPU frequency in a fine-grained fashion towards an 
Energy Saving Block (ESB) with different types of workloads, 
A2E adaptively schedules an appropriate CPU frequency for 
the hybrid ESB aggressively as a whole and reduces the 
overhead on employing DVFS via speculation to save energy 
with minor performance loss. The experimental results indicate 
the effectiveness of A2E for saving energy of running target 
applications with minor performance loss. 
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