Rethinking Algorithm-Based Fault Tolerance with a
Cooperative Software-Hardware Approach

Dong Lif, Zizhong Chen*, Panruo Wu+, and Jeffrey S. Vetterfs

fOak Ridge National Laboratory, *University of California, Riverside,
sGeorgia Institute of Technology
lid@ornl.gov, {chen, pwu011}@cs.ucr.edu, vetter@computer.org

ABSTRACT

Algorithm-based fault tolerance (ABFT) is a highly efficient
resilience solution for many widely-used scientific computing
kernels. However, in the context of the resilience ecosystem,
ABFT is completely opaque to any underlying hardware re-
silience mechanisms. As a result, some data structures are
over-protected by ABFT and hardware, which leads to re-
dundant costs in terms of performance and energy. In this
paper, we rethink ABFT using an integrated view includ-
ing both software and hardware with the goal of improving
performance and energy efficiency of ABFT-enabled appli-
cations. In particular, we study how to coordinate ABFT
and error-correcting code (ECC) for main memory, and in-
vestigate the impact of this coordination on performance,
energy, and resilience for ABFT-enabled applications. Scal-
ing tests and analysis indicate that our approach saves up
to 25% for system energy (and up to 40% for dynamic mem-
ory energy) with up to 18% performance improvement over
traditional approaches of ABFT with ECC.

Keywords

algorithm-based fault tolerance, error-correcting code, adap-
tive resilience

1. INTRODUCTION

As high-end computing systems scale towards exascale,
two trends will bring even more complex challenges and un-
certainty in resilience and reliability. First, at the device
level, the inherent reliability of hardware may decrease be-
cause of the advanced design and manufacturing techniques
for power management (e.g., near-threshold voltage). Sec-
ond, at the whole-system level, the sheer number of compo-
nents required for an exascale system will certainly scale at
least linearly in system error and fault rates compared to a
similar, but smaller counterpart.

Algorithm-based fault tolerance (ABFT) is a software-
based resilience solution that has attracted considerable re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00
http://dx.doi.org/10.1145/2503210.2503226.

search attention recently [7, 8, 10, 13, 14, 15, 26, 39]. By
either leveraging redundant information inherent in numeri-
cal algorithms, or exploiting invariant relationships between
data structures, ABFT can efficiently detect and correct er-
rors occurring in critical application data.

ABF'T has attractive characteristics that do not commonly
exist in alternative resilience solutions. First, it can reduce
or even eliminate the expensive periodic checkpoint /rollback;
and, hence, greatly boosting performance and energy effi-
ciency [7, 10, 26]. Second, it usually brings negligible per-
formance loss for many widely used applications, especially
when it is deployed at large scale [7, 8, 10, 14, 39]. Finally,
it requires no architectural modifications and few system
software modifications.

On the other hand, ABFT can only protect algorithm-
specific data structures, and cannot protect all program data
and instructions, such as those managed by the operating
system. Note that, in the context of the resilience ecosys-
tem, ABFT is completely opaque to any underlying hard-
ware resilience mechanisms. Likewise, these hardware re-
silience mechanisms are also unaware of ABFT, and they im-
plicitly assume that all data and instructions are uniformly
vulnerable to contamination even if critical data are already
protected by highly efficient ABFT (an assumption that we
have recently investigated in [21]). As a result, some data
structures are over-protected by both ABFT and hardware,
which directly leads to redundant costs in terms of perfor-
mance and energy efficiency.

In this paper, we rethink ABFT using a cooperative software-

hardware approach with the goal of improving performance
and energy efficiency of ABFT-enabled applications. In par-
ticular, we investigate how to integrate ABFT and hardware-
based error-correcting code (ECC) for main memory, and we
measure with simulation the impact of this integration on
performance, energy, and resilience for ABFT-based appli-
cations.

The ECC mechanism for main memory employed by mod-
ern HPC systems is rigid. Typically, ECC protection is en-
forced uniformly on all main memory devices, regardless of
vulnerability differences of system and application data they
are assigned. Although recent research on flexible ECC en-
ables adaptive ECC based on memory access granularity and
redundancy overhead [24, 40, 41, 42], they cannot be ap-
plied to ABFT, because there is a significant semantic gap
for error detection and location between ECC protection
and algorithm-based protection. This gap prohibits easy
combination of these two approaches. In addition, the cur-
rent flexible ECC proposals employ extensive modifications

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

to various system components (e.g., memory management
unit, and additional ECC address translation unit), which
make them very difficult to implement. With those ECC
proposals, data with different vulnerabilities could also in-
terleave in the same page with a unified ECC protection,
which decreases resilience guarantees.

By contrast, we propose an explicitly-managed ECC by
ABFT, motivated, in part, by the idea of explicitly managed
memory hierarchy in current architectures [6, 27]. With
limited modifications to the current architecture, we pro-
pose customization of memory resilience mechanisms based
on algorithm requirements, and thus, provide a method to
seamlessly integrate ABFT and ECC. Furthermore, we ex-
pose critical architecture features into the OS and runtime,
and introduce algorithm semantics into error detection. This
change results in new performance improvements in ABFT.
With ECC relaxed for most of the execution time, the ABFT-
based applications are able to save up to 25% system energy
(and up to 40% for dynamic memory energy) with perfor-
mance improvement up to 18%, compared to the traditional
uncooperative ABFT with ECC. Furthermore, this paper
demonstrates the necessity and potential benefits of using a
co-design and adaptive policy to direct end-to-end, overall
resilience for the application and architecture.

The major contributions of the paper are:

e To the best of our knowledge, this is the first explo-
ration that considers ABFT using a holistic view from
both software and hardware; it provides the first prin-
cipled understanding of interactions between ABFT
and other resilience solutions.

We classify error handling scenarios in light of ABFT

and ECC integration, and further establish fault mod-

els to investigate the implication of this integration for
overall system resilience.

e We enhance the memory controller and system soft-
ware to bridge the semantic gap for error location and
detection, and allow co-existence of multiple ECC and
runtime ECC transition. Our method provides sup-
port for efficient integration of ABFT and ECC.

e We investigate how ABFT can leverage the error noti-
fication mechanism from architecture to improve per-
formance. In cooperation with ABFT, we demonstrate
better performance and energy efficiency with our ECC
than with the state-of-the-art ECC mechanism.

2. BACKGROUND
2.1 Algorithm-Based Fault Tolerance

In this section, we review ABFT and briefly explain the
four representative ABFT algorithms that we use in this
paper.

General Matrix Multiplication. We use a fault toler-
ant general matrix multiplication algorithm, which targets
fail-continue errors [39] (labeled as FT-DGEMM through-
out the paper). Fail-continue means that the failed process
continues working when a failure occurs. For the matrix
multiplication C' = AB, this ABFT algorithm encodes ma-
trices A, B into a new form with checksums (the following e
is a checksum vector to generate checksums):

T A c
A" = [eTA] , B¢ = [B Be]

To protect the result matrix C, new versions of A and B
with checksums are employed. The result C¥ includes the
desired multiplication result C.

AB ABe }

r e o C Ce . f
A'B" = [eTAB el ABe :| =:C

o {eTC’ eTCe

The checksum elements employed by this ABFT algorithm
maintain a specific relationship between all entries within
the same row or within the same column. In every few itera-
tions of the computation, the algorithm examines checksums
to detect and correct errors. With sophisticated checksum
vectors, this ABFT algorithm can detect or correct multiple
errors in each examining period. We apply relaxed ECC to
the matrix C in later discussions.

Cholesky Factorization. We develop a fault tolerant
Choleksy factorization algorithm [38] targeting fail-continue
errors (labeled as FT-Cholesky throughout the paper). To
explain FT-Cholesky, we first explain the regular algorithm
without fault tolerance. Given an input matrix A (n x n),
the regular right looking blocked Cholesky algorithm used
in popular LAPACK/ScaLAPACK factors A into a lower
triangular matrix L, such that L times L transpose is A.
The algorithm iteratively factors small blocks of the input
matrix A as follows:

A11 Ang _ Lll 0 Lr{l Lgl
As1 Ago Loy Loo 0 L%

A11 is a small square block matrix with size b x b; A2 is a
column of blocks with size (n—b) x b; A2 is a trailing matrix
with size (n — b) x (n —b). The regular Cholesky algorithm
follows 4 steps: (1) factor A1; = L1 LF) to obtain Lii; (2)
solve Ly from Aoy = Loi LY, using forward substitution;
(3) update the trailing matrix Az = A2z — Loy LT and (4)
repeat the above procedure for the trailing matrix Asa.

To make the regular algorithm fault tolerant, F'T-Cholesky
introduces checksums for each block like A11. These check-
sums maintain invariant relationships between all entries in
A1 throughout the above 4 steps. By periodically examin-
ing checksums at each step in each iteration of the algorithm,
we can detect and correct multiple errors occurring in multi-
ple columns of all relevant blocks. FT-Cholesky protects the
matrix A. It protects L as well, because the factorization
happens in-place (i.e., the result L gradually overwrites A).
We apply relaxed ECC to the matrix A (L as well) later.

Preconditioned Conjugate Gradient. We use a fault
tolerant preconditioned conjugate gradient (CG) method with
the goal of tolerating fail-continue errors [8] (labeled as FT-
CG or FT-Pred-CG throughout the paper). CG solves the
input equation Az = b, where A is a symmetric positive-
definite matrix. The regular CG is generally described in
Figure 1.

Unlike the above ABFT, FT-CG does not employ check-
sums. Rather, they detect and correct errors based on the
following numerical invariant at every few iterations of the
computation.

Pt 4@ — ¢
pOHD 4 Az(+D —p (1)

Equations (1) are used to detect and solve errors in 7, p, ¢, ©
and b. They can also be used to detect errors in M and p,
because errors occurring in M and p can be propagated to

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

1 : Compute 70 =b— Ax(0) 20 = py—1,(0) p(0) = ,(0)
and pg :r(O)Tz(D) for some initial guess z(©)

2 for 1 =0,1,...

3 q® = Ap(®

4 a=pi/p® 7 g®

5 : 2+ = () 4 o, p()

6 p(i+D) = 1 () — ;4

7 solve Mz(i+1D) = p(i+1) yhere M = MT

8 : pip1 = r+DT (i+1)

9 : Bi = piy1/pi

10: p(i+1) = 2(i+1) 4 ﬁip(i)

11: check convergence; continue if necessary

12: endfor

Figure 1: preconditioned conjugate gradient algo-
rithm.

the next iterations and damage the orthogonality relation-
ship established in Equations (1). We apply relaxed ECC to
r,p,q,x and b in our later discussions.

High Performance Linpack. We use a fault-tolerant
high performance linkpack (HPL) algorithm, targeting fail-
stop errors [10] (labeled as FT-HPL throughout the paper).
Fail-stop refers that the failed process stops working when
a failure occurs. HPL is the standard benchmark to test
performance and efficiency of supercomputers. It solves a
linear equation Az = b by applying LU decomposition with
partial pivoting on the matrix A, such that the equation can
be rewritten as PLUx = b.

FT-HPL maintains row checksums for the matrix A at
each step of the algorithm. Whenever an error occurs in
the middle of the computation, the error can be recovered
from the row checksum relationship. FT-HPL can protect
the matrix A. Because the factorization occurs in-place, it
can also protect the matrix U. Later, we apply relaxed ECC
to the matrix A (U as well).

2.2 Traditional Main Memory with ECC Pro-
tection

Hardware ECC is pervasively employed in high-end servers
to protect memory from errors. In general, DIMMs with
ECC provide storage for regular data and redundant ECC
information, and actual error detection/correction takes place
at the memory controller (MC).

The single-bit-error-correcting and double-bit- error-detecting

(SECDED) [19] is a widely used ECC. An 8-bit SECDED
code protects 64-bit data, creating a 72-bit wide data path.
As its name indicates, SECDED can tolerate a 1-bit er-
ror, and detect 2-bit errors. The chipkill-correct [12] is an-
other ECC scheme that provides stronger reliability than
SECDED and commonly exists in high-end servers [20, 33,
35]. It employs Single Symbol Correct and Double Sym-
bol Detect (SSCDSD), and operates on b-bit symbols (b is
the symbol width) rather than individual bits. All errors of
all lengths within a single symbol can be corrected. With
x4 DRAMs (b is also 4) and 4-check-symbol code, 32 data
symbols are protected by 4 ECC symbols, creating a 144-
bit data path (128 bits of data with 16 bits ECC). This is
typically implemented as two ECC DIMMSs, each of which
has 18 chips, reading/writing two 64-byte cache lines at a
time on a standard DDR3 channel [36]. This x4 chipkill
configuration is common in modern architectures [2, 4].

ECC protection comes with overhead, even in fault free
operations. First, ECC brings energy overhead, because
the system has to fetch more data in memory with ECC
than that without ECC. For chipkill, the system activates
a larger number of chips than absolutely required, increas-
ing overfetching with DRAM chips, and resulting in sub-
stantially increased energy consumption. Second, ECC pro-
tection brings performance overhead. When using chipkill,
fetching a single cache line invokes multiple memory chan-
nels and forces prefetch. If there is not enough locality,
the extra bits in all the active DIMMs are wasted. There
are also fewer opportunities for rank-level parallelism, po-
tentially losing performance, because a larger number of
chips is made busy on every access. Third, ECC protection
brings storage overhead, e.g., 12.5% extra storage required
for SECDED and for 4-check symbol chipkill (x4 DRAM),
18.75%-37.5% for 3-check symbol chipkill (x8 DRAM) [36].

3. ABFT-DIRECTED FLEXIBLE ECC FOR
MAIN MEMORY

We propose a flexible memory protection mechanism that
allows ABFT to control the usage of ECC. By coordinat-
ing ABFT and ECC with appropriate protection level, we
propose an elastic architecture with better energy efficiency
and performance. Our general design policy is to evolve the
existing ECC mechanisms and avoid drastic modification to
the system software stack. We review our design in this
section.

3.1 Architecture

Our proposed architecture supports multiple ECC mech-
anisms simultaneously in a node’s main memory system
These different ECC mechanisms has different implications
for reliability, performance and energy cost. We use x4
DRAM as an example to explain the idea, but our approach
easily generalizes to other DRAM chips (e.g., x8 chips).
In this design, we evaluate three levels of protection using
two ECC mechanisms. (1) Chipkill-correct ECC to provide
strong protection. The two physical memory channels (typ-
ically 72-bit wide) works in lock-step to construct a 144-bit
wide logical channel, protecting read and write operations
for 64-byte cache lines. (2) SECDED ECC to provide weak
protection. Each physical memory channel enables 72-bit
memory access with 8 bits for ECC. (3) No ECC protection,
which uses 64-bit wide memory channel for regular 64-byte
cache lines.

Each memory channel is physically 72-bit wide for all ECC
mechanisms, with 8 bits disabled (or ignored) for no ECC
protection. The memory controller (MC) has ECC logic for
both SECDED and chipkill. As shown in [23], a MC can in-
clude multiple ECC logic mechanisms, and it has marginal
increases in power consumption and latency, and has an ac-
ceptable increase in area size. Each MC has two physical
memory channels, and can control them independently for
SECDED and no-ECC or simultaneously for chipkill.

We control ECC protection level at the granularity of
page frame. By default, page frames are protected with
a strong protection scheme, unless the users specify which
page frames can be protected by relaxed ECC because of
protection by ABFT (or other software protection schemes).
In particular, in a user scenario, a block of page frames are
protected by SECDED (or no ECC) plus ABFT, while the

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

other page frames are protected by chipkill. In another user
scenario, a block of page frames are protected by ABFT
without ECC, while the other page frames are protected by
SECDED (i.e., a relatively strong ECC). Controlling ECC
protection at the granularity of page frame minimizes mod-
ification to virtual memory management at OS (which will
be discussed in the next subsection).

Both chipkill and SECDED have dedicated ECC DRAM
chips for ECC code. They have the same storage overhead
(i-e., 4 chips out of each 36 chips for chipkill, or 2 chips out
of each 18 chips for SECDED). In addition, we use a data
layout compatible to both chipkill and SECDED [24, 41].
With the same ECC storage overhead and compatible data
layout, switching ECC schemes for a specific block of page
frames does not disrupt existing data. In addition, using
this data layout means we do not need to change existing
DRAM devices.

We introduce a set of configurable registers (named ECC
registers) into the MC to specify address ranges of each
block of page frames protected by ABFT, and to specify
which ECC scheme is applied to each frame. The registers
can be mapped into memory address space to enable pro-
grammability of ECC strategies. This register-based design
is feasible, given wide adoption of registers in the modern
MC (e.g., timing registers and refresh control registers to
configure the MC to meet DDRx specifications). Whenever
read/write requests issued from the last level cache, the MC
checks if the requested cache line resides in the page frames
specified by ECC registers. If yes, the corresponding ECC
scheme assigned to the page frames is enforced by the MC.

Besides ECC logic, the MC also manages error detec-
tion. In particular, once an ECC-uncorrectable error oc-
curs, MC locates the memory fault site (i.e., finding the
chip/row/column), and records it with two registers (called
error registers). The error registers are mapped into the
memory address space to allow OS to read. Locating a
memory fault site demands the support from BIOS and the
chipset. Based on recent reported work on Google servers
and Blue Gene/L [20], this kind of support exists in prac-
tice. MC reports errors to the processor by generating an
interrupt. Given the rareness of these errors, the perfor-
mance impact of these costly interrupts has not been a ma-
jor problem. For those very frequent occurrences of errors
because of a hard fault, the critical impact of these inter-
rupts will be obvious to users or system administrator so
that they can replace DIMMs or invoke OS to remap data
to the spare page frames (i.e., using memory page retire
and data migration [34]). It is possible that the new er-
rors happen and flush away old ones before ABFT (or other
application-level fault tolerance) is able to correct old ones.
To solve this problem, we use n registers (n = 6) to record
n/2 or more error events (multiple error events may happen
at the same fault site). The determination of n depends on
the possibility of occurrences of n/2 errors within an error-
examination period of ABFT (typically tens to hundreds of
seconds). Given the typical error rates shown in Table 5 and
short error-examination period of ABFT, n = 6 per MC is
a sufficient configuration.

One lingering concern is error propagation. If an error oc-
curs in ABFT protected data, and it is not corrected quickly
by ABFT, it may be propagated to data which is outside
the scope of ABFT. Fortunately, ABFT guarantees that er-
ror propagation is limited within the ABFT error-detectable

data and the errors are still correctable by ABFT.

Figure 2 depicts our evaluation architecture. Coupled
with system software, this architecture and memory orga-
nization provide flexibility to customize ECC protection as
guided by the needs of ABFT.

’m Memory controller
Common

Chipkill logic | |ogic

Addr mapping
scheme SECDED logic
72-bit j[Phy chan0 72-bit j[J_LPhy chanl
data path ddr/cmd data path Addr/cmd
————————— o e ———————— . g ————————

1] o
L ECEIEI I I E
/] v B A

x4 ECC DRAM

Figure 2: Architecture overview. D represents a
byte in a 64B block, and E represents an 8-bit ECC.

3.2 Software

In order to support efficient integration of ABFT and
ECC, system software has to be changed. In addition, be-
cause of the support from hardware, we can optimize ABFT
to improve performance.

3.2.1 System Software Support

OS handles the ECC-error interrupt. In particular, in re-
sponse to an interrupt, an interrupt handler reads memory-
mapped registers for the fault site information and deter-
mines if the corrupted data are protected by ABFT. If they
are, the virtual address of the corrupted data is exposed
to a memory space shared between the kernel and the user
spaces (e.g., via sysfs in linux), and left to ABFT to cor-
rect. If they are not, the system will go to the panic mode
as usual cases. The existing high-end systems always go to
the panic mode [17, 29], and maybe log the error, when an
ECC-unrecoverable error occurs. This conservative protec-
tion strategy is based on the assumption that OS context
and the application-critical data may be mangled by errors,
such that continuous execution will lead to further corrup-
tion. This strategy is blind to where the error happens and
whether the application knowledge can be exploited to cor-
rect the error. As a result, the system has to resort to check-
point/restart more frequently than absolutely necessary. In
contrast, our method coordinates software and hardware,
and makes best efforts to correct errors with ABFT and
avoid restart, resulting in improvement of performance and
energy efficiency.

To determine if the corrupted data are protected by ABFT,
OS must be aware of the address mapping scheme employed
in MC (i.e., how to convert a physical address into a specific
location in DIMMs), and basic memory organization, such
that OS can derive the physical address given fault site infor-
mation. We can implement the address mapping scheme as
a kernel module to enable configurability of address deriva-
tion, and expose memory organization as configurable com-
ponents of the virtual file system to allow user to explicitly
inform OS of memory organization. Note that although MC
has all information (address mapping and memory organi-

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

zation) to derive physical addresses, we ask OS to do that
to simplify logic in MC.

By default, all memory, including OS kernel memory and
user memory, is heavily protected by chipkill or SECDED, as
in current high-end servers. However, the users can control
which data structures should be protected by which weaker
ECC protection schemes. We introduce three ECC control
APIs.

e void *malloc_ecc(size_t n, int ecc_type);
e void free_ecc(void *ptr);
e void assign_ecc(void *ptr, int ecc_type);

A call to malloc_ecc allocates contiguous physical pages, and
asks OS to set the address range of those pages and set as-
signed ECC schemes into ECC registers in MC. There are
limited number of ECC registers in MC (16 in our design
for setting 8 address ranges), due to concerns of control-
ling area size of MC. This indicates that limited number
of ABFT protected data structures are recognized in MC.
However, multiple data structures may use the same relaxed
ECC scheme, and their address ranges may be combined to
use the same ECC registers. Furthermore, typically only a
few data structures are protected by ABFT (no larger than
5 in the 4 representative ABFT), hence using those limited
number of the registers are sufficient. A call to free_ecc frees
a block of memory previously allocated with malloc_ecc. As
a result, the ECC address registers are updated to elimi-
nate the freed memory range. A call to assign_ecc assigns a
specific ECC scheme to a block of pages allocated by mal-
loc_ecc. This allows dynamic refinement of ECC protection
based on the application needs. To maintain a consistent
ECC protection when paging in from auxiliary storage, we
also incorporate ECC type in the page data structure such
that data can be fetched into physical memory devices with
desired ECC protection.

To leverage the above system and architecture, ABFT
needs to be slightly changed. In particular, at the initial
phase, ABFT allocates those data structures protected by
ABFT by the above ECC control APIs and records their
virtual addresses; at the error correction phase, ABFT iden-
tifies which data element should be recovered by recognizing
the virtual address of the corrupted data exposed by OS.

3.2.2 ABFT Optimization

While ABFT introduces little overhead in most cases,
depending on the input problem size and algorithm, the
worst case ABFT overhead (which are often small scale de-
ployment) can be as high as 35% [14]. For those worst
case ABFT scenarios, the proposed cooperative software-
hardware approach can provide an opportunity to reduce
the overhead of ABFT when tolerating fail-continue errors.
The overhead of fail-continue ABFT comes from two parts:
the increased computation to maintain checksums (if the
checksum is employed by ABFT), and the periodical verifica-
tion to detect/locate errors. Figure 3 displays the overhead
breakdown for the three ABF'T for fail-continue errors, each
of which runs one task with the input problems described in
Table 3. We observe that the verification is responsible for
a large part of the overhead.

Because hardware and OS can explicitly locate corrupted
data, ABFT can significantly simplify its verification phase
when a worst ABF'T case occurs. In these bad cases, instead
of recomputing checksum and making verification, ABFT

can just check error information exposed by OS and hard-
ware. This overhead, which involves reading shared memory
and mapping virtual addresses of the corrupted data to the
specific elements of the protected data structure, is much
smaller than the worst case ABFT overhead. We simplify
the verification phases of the three ABFT in their worst case
scenarios and rerun them without any ECC relaxing. Ta-
ble 1 demonstrates that the simplified ABFT achieve 6.0%-
12.2% performance improvement.

Checksum overhead “ Verification overhead

100%
90% -
80% -
70%
60% -
50% -
40% -
30% -
20% -
10% -
0%

M\

NN\

FT-DGEMM FT-Cholesky FT-Pred-CG

Figure 3: ABFT overhead breakdown

Table 1: ABFT performance improvement with sim-
plified verification
[FI-DGEMM [FT-Cholesky [FT-Pred-CG |
[Improvement | 8.6% | 6.0% | 12.2% |

4. FAULT MODELS

The combination of ABFT with either weak ECC schemes
or no ECC protection has complicated implications on sys-
tem performance, energy consumption and resilience. We
discuss those implications in this section. Our discussion is
general, and targets on soft /hard errors and single/multi-bit
errors. The notations for the discussion are summarized in
Table 2.

Table 2: Notations for the fault models

MTTF Mean time to failure

MTT Fhetero | Mean time to failure for memory with het-
erogeneous ECC protection

FR Memory failure rate (The number of fail-
ures per time unit per Mbit)

MC, Memory capacity per node

N Number of nodes

A The average DIMM lifetime

f(A) The age function relating error rates with
DIMM lifetime

me;, fri The memory capacity and the failure rate
of a memory region with ECC 3

fi(4) The age function of a memory region with
ECC 1

To The native execution time without ECC
protection

T The performance impact ratio of ECC

N, The number of main memory related errors

The introduction of relaxed ECC has impact on the num-
ber of errors. In general, MTTF, an indicator of the error
rate, is a function of memory capacity, node counts, and
memory ages. MTTF without considering ECC is formal-
ized with Equation (2).

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

MTTF = 1/(FR* MCq f(A) * N) (2)

We assume that all nodes use the same memory organiza-
tion and the same memory technologies (e.g., 90nm DDR3
SDRAM). This assumption is true for most of high-end com-
puting systems. With ABFT and flexible ECC, a single node
can equip main memory with heterogeneous ECC protec-
tion against faults. We formalize the above statement using
Equation (3).

MTT Fretero = 1 /(Z(frixme x fi(A)*N) (3)

k3

We assume that the native execution time of ABFT with-
out any protection of ECC is Tp. Using various ECC strate-
gies can impact Ty by 7, We can estimate the total number
of errors with heterogeneous ECC protection using Equa-
tion (4).

N. =Ty # (14 7)/MTT Fherero (4)

With a weak ECC or no ECC, ABFT execution poten-
tially faces more errors than ABFT execution with a strong
ECC. Based on the above fault models, we can calculate
number of errors, based on which we can derive recovery
cost and energy benefit for ABFT plus relaxed ECC (ARE).
we use this method to evaluate ARE in large scales and com-
pare it with the traditional setting (i.e., ABFT plus strong
ECC (ASE)) in Section 5.2.

With error-free execution, ARE has superior performance
and energy saving than ASE because of strong ECC over-
head in ASE discussed in Section 2 and shown in Section 5.1.
When errors occur, comparing ARE and ASE is challenging
because of various error recovery cost and error rate asso-
ciated with various ECC and ABFT. We classify error sce-
narios based on whether ABFT and strong ECC can correct
the errors, and compare ARE and ASE as follows. We do
not consider cases where the errors can be corrected by both
weak ECC in ARE and strong ECC in ASE, because ARE
and ASE have similar recovery cost for those cases.

Case 1: both strong ECC and ABFT can cor-
rect the errors. When this case happens, ARE relies on
ABFT to correct the errors, while ASE uses strong ECC to
correct them. For ABFT, the error correction cost varies
across algorithms: for the checksum-based approaches (FT-
DGEMM, FT-Cholesky, and FT-HPL), the correction cost
is to restore the corrupted state using checksums, which
involves some floating point operations and memory refer-
ences on the specific matrix rows/columns; for FT-CG that
leverages algorithm-inherent invariant to correct errors, the
correction cost is comparable to compute a matrix-vector
multiplication. On the other hand, with ASE, the error
correction by strong ECC typically just takes a few clock
cycles [12, 23]. The error correction latency in strong ECC
may not even be added into the critical path, because the
latency can be hidden by memory parallelism. In terms of
energy consumption for error correction, using strong ECC
to correct an error takes less than 1 pJ [23], mainly con-
sumed by correction logic in the memory controller; using
ABFT to correct an error takes up to hundreds of Joules,
depending on the input numerical problem size in ABFT.

In summary, using ABFT to correct errors due to relaxed
ECC is much costly than using a strong ECC. Hence, if the
error rate is high enough, the correction cost using ABFT

can potentially outweigh energy and performance benefit we
obtain from relaxed ECC. For those cases with high error
rate, we should employ strong ECC throughout all data,
even if we have ABFT protection, to avoid potential perfor-
mance loss and energy cost with ABFT-based error recovery.
Note that even though using ABFT is costly to correct er-
rors, for those cases with high error rate it is still beneficial
to use ABFT with strong ECC, because ABFT can solve
errors uncorrectable by ECC, and reduce or even eliminate
expensive checkpoint/restart. Checkpoint/restart is gener-
ally much more costly than ABFT.

We formalize the above discussion, and calculate the error
rate sweet point (MTT Fipr) to determine if ARE should be
used or not. The performance of using ARE is a multivari-
able function. Firstly, the performance is related with which
specific weak ECC mechanism (or no ECC) is employed on
ABFT protected data. Since different ECC mechanism is
accompanied with different performance and energy cost,
we must know which ECC mechanism is used for compari-
son purpose to estimate benefit. Second, the performance is
related with the number of accesses to memory cell arrays
protected with relaxed ECC. Third, the performance is re-
lated with memory architecture and memory access pattern
of the application, because they have compound impact on
memory access parallelism and data locality.

The performance loss of using ARE (T¢) comes from the
recovery cost, shown in Equation (5). We assume that the
recovery cost per recovery operation is a constant (t.). We
also assume each recovery corrects one error. This is a con-
servative assumption. Depending on the error patterns and
recovery algorithm, a single recovery operation may recover
multiple errors. For example, the invariant-based error re-
covery in FT-CG can correct multiple errors in a vector.
Hence, Equation (5) gives the worst performance loss (Tare
in the equation quantifies performance impact of ARE):

T. = Nexte =To* (1 + Tare)/MTT Fretero te (5)

Based on the above performance analysis, we can calcu-
late the performance benefit of using ARE, shown in Equa-
tion (6) (Tase in the equation quantifies performance impact
of ASE):

AT = TO * (1+Tase) 7TO *(1+Ta7‘e) = TO * (Tase 77—(1’7‘8) (6)

To get benefit from ARE, we must have performance ben-
efit larger than performance loss. Based on this target,
we can derive the MTTF threshold for performance benefit
(MTTFiprt), shown in Equation (7).

T. < AT =
TO * (1 + Tare)
—_— tc T ase — lare
MTTFhetero * < dox (T T) =
t
MTTFthr,t - % (7)
Tl 1

We can follow the similar process to derive the MTTF
threshold for energy benefit (MTT Fipr en). To guarantee
no performance loss while having energy benefit, the MTTF
threshold should be chosen as Equation (8).

MTTFUW‘ == MAX(MTTFthTJ, MTTFthr,len) (8)

Case 2: ABFT can correct the errors while strong
ECC cannot. To give a concrete example for this case, we
assume that a FT-DGEMM has multiple errors occurred in

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

multiple matrix columns. Those errors are still correctable
by ABFT. However, those widely dispersed error bits may
be caused by multiple memory bank column failures beyond
the correction capability of chipkill (e.g., errors distributed
on 33 data symbols) and SECDED (e.g., 4-bits errors).

When this case happens, ASE may crash the system, if the
errors are not exposed to the application level and ABFT
has no opportunity to correct them. As a result, the system
has to restart from the last checkpoint. If the errors are
exposed to the application in ASE, then the errors are de-
tected and corrected by ABFT, similar to in ARE. For the
former scenario (i.e., system crashes), ASE has to pay much
higher recovery cost than ARE; for the latter scenario, the
recovery cost is about the same in both ARE and ASE, but
ARE wins over ASE in general, due to benefits in error-free
execution.

Case 3: strong ECC can correct the errors while
ABFT cannot. When this case happens, ASE can continue
execution without falling back to the previous checkpoint;
ARE, on the other hand, cannot correct the errors and has
to restart from the last checkpoint. The performance loss
and energy cost in ARE are those in association with the
application restart. Depending on when the last checkpoint
and the errors occur, ARE can be significantly inferior than
ASE, in terms of both performance and energy consumption.

The occurrences of this case depends on the error pattern,
i.e., how the error bits are distributed within the ABFT pro-
tected data structure and how they are distributed between
memory devices. This case may be rare because of the fol-
lowing reasons. ABFT cannot correct the errors when they
frequently and collectively happen within specific data bits
of a data structure (e.g., a specific matrix row). However,
the frequent occurrences of such coincident errors within a
short time (i.e., the time period for ABFT examining errors,
typically a few tens of computing iterations) is rare. Also,
using weak ECC in ARE can further reduces the occurrent
opportunities of those errors. In addition, even if this type of
burst errors happens, it is highly possible that ECC cannot
fully correct them either, because of the limitation inherent
in ECC (e.g., the number of correctable bits).

Case 4: neither strong ECC nor ABFT can cor-
rect the errors. This case happens when the errors occur
beyond the correction capabilities of both strong ECC and
ABFT (e.g., errors highly disperse across memory devices,
and happen frequently). Both ARE and ASE have to rely
on the checkpoint /restart scheme. Hence, both of them have
the same recovery cost. However, they differ during error-
free execution. As discussed before, ARE can save energy
and improve performance over ASE for error-free execution.

Discussion: In general, given the rareness of errors, ARE
wins over ASE in terms of performance and energy for most
of cases. As shown in our scaling tests in Section 5.2, energy
benefit of ARE is usually much larger than recovery cost,
even if in very large scales with frequent occurrence of errors.
However, if the error rates are extremely high or the errors
frequently and coincidentally happen within specific data
bits, ARE loses to ASE because of high recovery cost, which
is rare in real cases.

S. EVALUATION

We evaluate coordination of ABFT and ECC in this sec-
tion. We use McSim [28], a Pin [30] based manycore sim-
ulation infrastructure. McSim provides event-driven tim-

ing simulation and models cores, caches, directories, on-chip
networks, and memory channels. We modify McSim to in-
tegrate DRAMSim2, a memory system simulator [31], to
account for the impact of the proposed system on mem-
ory power, bandwidth and performance. We also modify
DRAMSim2 to implement the proposed memory controller
and memory organization. We estimate processor power
consumption using an IPC-based linear scaling of the maxi-
mum power consumption of a 45nm Intel Xeon, similar to [3,
40]. We estimate DRAM power consumption using a power
model developed by Micron Corporation [1] and embedded
within DRAMSim2. To control the occurrences of mem-
ory errors for resilience study, we combine McSim with BI-
FIT [21], a Pin-based fault injection infrastructure, to enable
fault injection at specific time and data location. Figure 4
generally depicts this evaluation platform. Table 3 summa-
rizes important system parameters for simulation. During
the simulation, we skip the initialization phases of each algo-
rithm and simulate a few iterations or representative compu-
tation phases. Different ECC strategies have different impli-
cations on performance, energy consumption and resilience.
We study error-free scenarios in Section 5.1, and study error
scenarios with scaling tests and analytical models in Sec-
tion 5.2. We compare our work with the state-of-the-art
ECC in Section 5.3.

conﬁguration
Pintool _l’ {,
e | f S
S| fault injection mem tran .
& [BIFIT McSim I
B I ——-——-f ___Ca_”Pa_C'iS ________ !
S]
<l Pin |
instrumentation

Figure 4: Simulation framework to evaluate coordi-
nation of ABFT and ECC

Table 3: System parameters for simulation
Parameter Value
Processor 4 in-order cores and 4 threads per core

L1 cache split I/D caches, each 16KB, 4way, 64B
block, private cache
L2 cache a unified 8MB cache, 16way, 64B

block, shared cache
Clock rate 2 GHz

DRAM device DDR3-667Mhz, x4, 1.5v
Memory organiza- | 4 memory channels, 2DIMMs per

tion channel, 4ranks per DIMM, 8 banks
per rank

Capacity 8GB

Row buffer policy open

Chipkill 128b data+16b ECC, 2 channels

SECDED 64b data+8b ECC, 1 channel

FT-DGEMM matrix dim per task: 3000 x 3000, dp

FT-Cholesky matrix dim per task: 3000 x 3000, dp

FT-Pred-CG matrix dim per task: 3000 x 3000, dp

FT-HPL matrix dim per task: 8192 x 8192, dp

5.1 Basic Tests

We investigate ABFT in combination with various ECC
strategies. We perform the simulation with the smallest-
scale deployment for each ABFT. In particular, for FT-HPL,
we run each simulation with 4 MPI tasks (a 2x2 process

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

grid); for FT-DGEMM, FT-Cholesky and FT-CG, we run
each simulation with one task. For each ABFT, we perform
simulation with 6 ECC strategies: (1) ABFT without ECC
(labeled as No ECC'); (2) ABFT with chipkill applied to all
data (labeled as W_CK); (3) ABFT without ECC for those
ABFT protected data and with chipkill applied to other data
(labeled as P_.CK+No_ECC); (4) ABFT with SECDED ap-
plied to all data (labeled as W_SD); (5) ABFT without ECC
for those ABFT protected data and with SECDED applied
to other data (labeled as P_SD+No_ECC); (6) ABFT with
chipkill applied to those data without ABFT protection and
with SECDED applied to those data with ABFT protection
(labeled as P_-CK+P_SD). We call the tests 2 and 4 whole
ECC, and call the tests 3, 5, 6 partial ECC in the later
discussion.

Figure 5 presents memory energy data for the 6 ECC
strategies. The results are normalized to the ones for No
ECC tests (the baseline cases). We notice that chipkill
greatly increases energy consumption. For FT-CG, the most
memory intensive ABFT in our tests, there is 68% increase
in memory energy. This large energy consumption is be-
cause chipkill must activate twice the number of DIMMs to
access a single cacheline, which consumes more power and
bandwidth. In addition, without enough locality overfetch-
ing data can block parallel accesses to various DIMMs, which
hurts performance and further causes extra energy consump-
tion. With relaxed chipkill protection on ABFT protected
data, we have significant energy benefit. In particular, com-
paring with the tests 2 (i.e., whole chipkill), the tests 3 and
6 (i.e., partial chipkill) result in 49% and 48% energy saving
for FT-DGEMM, and 38% and 33% energy saving for FT-
CG. The tests 6 consume slightly more energy than the tests
3, because of the application of the second ECC mechanism,
SECDED. However the tests 6 can be more energy efficient
than the tests 3 when considering error recovery cost in large
scales, shown in Section 5.2. SECDED is not as costly as
chipkill, shown by the tests 4 (whole SECDED), but it still
results in about 12% more energy consumption in average
than those cases without ECC. With partial ECC (the tests
5), we reduce energy consumption for SECDED by 11% for
FT-DGEMM. We also notice that dynamic memory energy
is more sensitive to ECC strategies than standby memory
energy, because ECC overhead happens when MC actively
fetch/write back data from/to the memory cell arrays.

tion. The results are shown in Table 4. FT-DGEMM has
the largest ratio of cacheline references with ABFT protec-
tion to cacheline references without ABFT. This explains
why the three partial ECC strategies have the similar en-
ergy consumption in FT-GDEMM, shown in Figure 5. In
particular, the small number of references to data without
ABFT protection make FT-DGEMM not sensitive to what
kind of ECC protection is applied to those data without
ABFT protection. This is in contrast with FT-CG, which
has the smallest ratio. We also notice that the dynamic
memory energy saving in percentage shown in Figure 5 is
generally much smaller than the possible energy saving esti-
mated based on the reference ratio shown in the table. We
attribute it to row buffers in memory devices. The row buffer
serves as a fast cache. If cache blocks can be fetched from
row buffers, then memory arrays are not accessed, which
saves some ECC energy overhead. Hence, if access locality
is good (i.e., the row buffer hit rate is high), then the dy-
namic energy saving is limited when we apply partial ECC.

Table 4: Classification of cacheline accesses based on
their ABFT protection

ABFT #Ref to blocks | #Ref to blocks | Ratio
w/t ABFT w/o ABFT
FT-DGEMM | 158667478 242534 654
FT-Cholesky 4589419 335321 14
FT-CG 413087770 158081435 3
FT-HPL 90397449 4548042 20

Figure 6 displays system energy normalized to the ones for
the tests 1 (i.e., No ECC). We report processor and mem-
ory energy, because they are the major energy consumption
components within the system. We observe that processor
energy varies with ECC strategies. This is especially true for
the memory intensive FT-CG, because ECC impacts mem-
ory parallelism and bandwidth which in turn affects instruc-
tion issuing and scheduling in processors. In addition, we
notice system energy saving because of using relaxed ECC.
Comparing with the whole chipkill, partial chipkill results
in up to 22%, 8%, 25% and 10% energy saving for FT-
DGEMM, FT-Cholesky, FT-CG and FT-HPL respectively.
Comparing with whole SECDED, partial SECDED results
in up to 5% energy saving (the FT-DGEMM case).

1.4
13 O Memory energy @ Processor energy
S L
a0 1.2 FT-DGEMM ET-Choleck
gL FT-DGEMM FT-Cholesky | FT-cG _ FT-HPL
] A
S 11 —
E 1 HIHH
o)
g 09 HI—1H FHHH A HEH
g 08 HI—1H I H A
2 o7 Hi—HH T
® [L
g 06 1 L
5 05 HE—1H L 1
o o © o o © o o © o o ©
§|2|m|§|w|n §|2'm|s'm'n §|2'm|s'm'n §|2'm|s'm'n
m 0 w e} wv m 0 w m 0 w
AR7TEF97 BRRTEPT ARTEPT BRFER7T
CF oz %z 70 " 7 30 ° % &
o o
| [_— | [_— | [_— | [_—
m 'm O m 'm0 m 'm0 m 'm0
Qa o Qa o a q a q
o o o o o o o o

1.8
B Dynamic energy @ Standby energy A
> 1.6
2 FT-DGEMM FT-Cholesky FT-CG FT-HPL
214 - —
& A
£12
5 1
=
< I I []
£ 08
>
< 0.6 1 1 1
2
5 04 1 1 1 |
£ H
S02 e 11
0 e o s e B e e e e e i e e
§ESE0s SESEun SESE0S FESZuG
BR78%7 B3238%% R238fF B78E%
z zZ © z z © z z © z z o
° oy ° ° [° Sy ° oy
m m O m m O m m O m m O
[} [} [} [} [} [} [} [}
(e} (el [} (] (e} [a] [} (ol

Figure 5: Memory energy for ABFT with different
ECC strategies

To further understand energy consumption data, we pro-
file last level cache misses and separately count accesses to
blocks with ABFT protection and without ABFT protec-

Figure 6: System energy for ABFT with different
ECC strategies

Figure 7 displays performance (instruction per cycle or
IPC) normalized to the ones for the tests 1 (i.e., No ECC).
We notice that selectively applying ECC because of ABFT
can make performance comparable to the ones without ap-

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

plying ECC. This is especially true for FT-DGEMM and
FT-Cholesky (i.e., the performance of tests 3 is pretty close
to that of tests 1). We also notice that performance variance
across ECC strategies is generally smaller than energy vari-
ance, because memory parallelism can partially hide mem-
ory access latency due to ECC protection.

14
FT-DGEMM FT-Cholesky FT-CG FT-HPL
1S
=
12
K]
©
E 1 ¥
5
i I I
0.8 I I
O'GZS-uS-vv zsoso zsos O zsmosO
J I I I 1 1 I 1 1 1 [} J
22282 22%'%8% 32%%8% 32%%%32
[} z z © o 4 z © (sl z z © (sl z z ©
g F g g g g g g
m w8 m ' S m ' S 'm 'm S
B B 2 3 2 3 B B
8 8 8 8 8 8 8 8
Figure 7: Performance for ABFT with different

ECC strategies

5.2 Scaling Tests with Fault Modeling

We discuss how the system scale and error rate impact en-
ergy efficiency and resilience of our proposed schemes in this
section. In general, large scale systems suffer from higher
error rate than smaller systems. Given the relatively large
recovery cost of ABFT, we want to investigate whether it is
beneficial to use ABFT in combination with various ECC
strategies when the number of errors is large and varies
across scales. We compare energy benefit and recovery cost.
Energy benefit refers to system energy saving because of
applying relaxed ECC on those ABFT protected data. For
partial chipkill (P-CK+No_ECC and P_-CK+P_SD), the en-
ergy baseline for calculating energy benefit is the energy
consumption when W_CK is applied; for partial SECDED
(P_SD+No_ECC), the baseline is the energy consumption
when W_SD is applied. Recovery cost refers to system en-
ergy consumption used to correct errors with ABFT instead
of with ECC. We study FT-CG in this section, because its
recovery cost is higher than other ABFT, and hence repre-
sents the worst cases when using ABFT to recover errors.

We assume that bit errors are uniformly distributed across
time and space, and independent of each other; the memory
aging effect is reflected in Table 5. Hence, given application
execution time and memory footprint, we can analytically
estimate number of errors for ABFT deployed in large scales,
based on the error rates shown in Table 5 and Equation 4. In
addition, we consider the case 1 errors (see Section 4) which
are correctable by both ABFT and ECC, because they are
most likely to happen in reality, and it is arguable whether
ABFT can bring energy advantage for those cases. In sum-
mary, we inject the errors into ABFT protected data for the
case 1 errors, and the number of injected errors across scales
is based on the analytical models.

When calculating energy benefit, we must have perfor-
mance, processor core energy, and memory energy data. For
performance data, we factor in the parallel efficiency when
scaling from a single process to large scales based on work-
load characterization and performance projection [5, 37]. To
calculate processor core energy, we must know processor core
power. We assume that processor core power remains con-

stant as we scale the system. For strong scaling tests, this
assumption may not be valid, but the processor energy vari-
ance across different schemes is minor, based on the results
shown in Figure 6. Hence this assumption does not sig-
nificantly impact energy benefit calculation (i.e., processor
energy is mostly zero out when calculating energy benefit).
To calculate standby memory energy, we first measure it
with the simulator for a single ABFT process and then scale
down the memory energy for strong scaling results or di-
rectly use it for weak scaling results for each ABFT process.
To calculate dynamic memory energy, we first profile last
level cache misses on a single process for each scaling test
like Section 5.1, and then use dynamic memory energy from
Section 5.1 as baseline cases and scale it down in proportion
to the cache miss ratio of the calculation cases and the base
line cases. To quantify recovery cost, we use BIFIT to in-
ject errors and measure energy consumption for the recovery
phase. We also assume one recovery operation recovers one
error, which conservatively maximizes recovery cost.

Table 5: Error rate with ECC in place (FIT=failures
per billion hours)

ECC Protection Error Rate (FIT/Mbit)
No ECC 5000 [23, 25]
Chipkill correct 0.02 [25, 34]
SECDED 1300 [25, 36]

Figure 8 displays the weak scaling results with matrix di-
mension 3000x3000 on a single FT-CG process. For the
weak scaling, the memory footprint increases as the system
scales up, hence the number of errors increases. As a result,
the recovery cost increases quickly shown in the right figure.
However, the energy benefit increases as well. The increasing
of energy benefit and recovery cost is almost in proportion
to the increasing of system scales. The energy benefit is
also much larger than the recovery cost in general. We also
notice that the scheme P_CK+P_SD has the similar energy
benefit to P_.CK+No_ECC while the recover cost is much
smaller than other schemes in large scales. This is because
of using SECDED to protect those ABFT protected data.
P_CK+P_SD pays limited energy cost for using SECDED
while reducing the possibility of using expensive ABFT to
recover, hence it is more energy efficient than other strate-
gies.

Figure 9 presents the strong scaling results. In order to
increase memory footprint and memory error counts, we use
a mixture of strong and weak scaling, similar to a deploy-
ment suggested by [37]. In [37], they use strong scaling
as far as possible, and then increase the problem size with
weak scaling, in order to reach the concurrencies required in
large scales. Following their methodology, in our cases we
deploy weak scaling using 100 FT-CG processes (each with
matrix dimension 12Kx12K), and then use strong scaling
on them to collect strong scaling results. We first notice
that the energy benefit increases as system scales up and
then decreases afterwards. This is because of the contra-
dicting effects of system scaling on ABFT and ECC. On one
hand, scaling the application involves more processes, each
of which brings energy benefit because of ECC relaxation.
On the other hand, as the system scales up, the numerical
problem per FT-CG becomes smaller, and hence the main
memory accesses become less because of caching (ECC re-
laxation becomes less efficient for energy saving). Therefore,
there is a sweet point for energy benefit for using relaxed

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

10000000
1000000
100000
10000
1000
100
10 &

—+— P_CK+No_ECC
1 x P_CK+P_SD

0.1 — & — P_SD+No_ECC

0.01

0.001

Energy benefit (K))

100 3200 12800 51200 204800 819200
Number of FT-CG processes

100
. —+— P_CK+No_ECC
=2 J0 — »— - P_CK+P_SD
= — & — P_SD+No_ECC
S 1
=
<L
3 o1
=3
L
— 0.01
[
[=a)
<C0.001 -
180 3200 12800 51200 204800 819200

0.0001
Number of FT-CG processes

Figure 8: Weak scaling tests to compare energy benefit and ABFT recovery cost with fault modeling

ECC for strong scaling cases. We further notice that the re-
covery cost becomes smaller as the system scales up. This is
because the numerical problem per FT-CG process becomes
smaller and the recovery operation becomes cheaper as sys-
tem strong scaling. In general, the energy benefit is larger
than the recovery cost in our cases. We also notice that
P_CK+P_SD is more energy efficient than other schemes,
consistent with what we have observed in the weak scaling.

5.3 Comparison with State-of-the-Art ECC

Dynamic Granularity Memory System (DGMS) is a hardware-

based flexible ECC mechanism [42]. Like other flexible ECC
work, this state-of-the-art mechanism cannot be applied to
ABFT, due to the lack of support for error detection and
location for ABFT (see discussions in Sections 1 and 6).
However we compare DGMS with our work for error-free
cases. DGMS employs spatial pattern prediction to select
which ECC should be chosen based on memory access gran-
ularities. To use DGMS, we choose chipkill (64 bytes access
granularity, the same as before) for strong protection and
SECDED (16 bytes access granularity [42], different from the
previous SECDED) for relaxed ECC protection. To make
comparison fair, we also use the same chipkill and SECDED
in our scheme for strong and weak protection respectively.
We implement prediction controller, spatial pattern predic-
tor and use sub-ranked DRAM employed in DGMS.

Figure 10 display the results for FT-DGEMM (a represen-
tative ABFT with high spatial locality), and FT-Pred-CG
(a representative ABFT with relatively low spatial local-
ity). These results are normalized to those without ECC.
We found that the performance and energy for DGEMM
with DGMS is similar to those with W_CK. Further inves-
tigation reveals that all memory accesses are attributed with
coarse-grained chipkill protection, because FT-DGEMM has
high spatial locality and DGMS associates high locality ac-
cesses with chipkill. Our method, however, enables 18% per-
formance improvement and 49% memory energy saving over
DGMS, because ABFT and ECC cooperation enables weak
ECC protection for ABFT protected data. For CG, perfor-
mance with DGMS is close to that with our method, but
memory energy consumption is still about 24% more. Fur-
ther investigation reveals that DGMS employs chipkill for
some memory accesses to p and ¢, while our method employs
cheaper SECDED. Without ABFT knowledge, DGMS sim-
ply bases its ECC decision on memory access tracing, which
results in costly ECC assignment. Note that the energy con-
sumption of new hardware components (e.g., predictors and
register/demux) in DGMS is not considered. These compo-
nents will add further energy consumption in DGMS.

% 1: /2BGI'=\'AF?ECCCO—0D :
g ' i " Ener, v V//
§1<4 Time : Energy éé
g 1.2 ~ 1 i
A —— -
M . ——
4l I Emaas 1]
2% % Z
E Z I : Z W
g 04 —/ — 7 7 7 -
Eoz fé 7? : é 72 —
7 7 ! 7 %

Figure 10: Performance and energy comparison be-
tween the state-of-the-art ECC (DGMS) and our
work

6. RELATED WORK

Algorithm-Based Fault Tolerance: ABFT has been
actively researched for a handful of popular algorithms, in-
cluding general matrix multiplication [39], iterative methods
for solving linear equations [8], factorization (Cholesky [38],
LU [9, 10, 14] and QR [14]). However, previous work fo-
cuses on the algorithms themselves and never uses a holistic
view of the entire resilience ecosystem. Our work is the first
exploration that considers ABFT using a collaborative view
from both software and hardware.

Software and Hardware Cooperation for System
Resilience: Software and hardware cooperation has been
investigated to solve resilience challenges. Ho et al. [18] de-
scribes a language-level mechanism that asks programmers
to explicitly point out vulnerability of code regions, while
hardware provides adaptive dual-modular redundancy. The
SWAT system [22, 32] relies on software to detect errors
by watching anomalous software behavior and likely pro-
gram invariants. They use hardware checkpoint to recovery.
Erez et al. [16] use software-based fault detection (instruc-
tion replication and kernel re-execution) and use hardware
checkpointing. Kruijf et al. [11] introduce an ISA exten-
sion for compilers and programmers to mark code regions
for software recovery, based on which hardware can relax
reliability constraints.

Our work differs from the above approaches. First, we
do not rely on specific program constructs to mark vulnera-
ble code regions. Instead, we exploit resilience implications
embedded at the algorithm level to identify code vulnerabil-
ity. Second, we expose important architectural features to
OS, and tightly couple OS, runtime, ABFT and hardware
to detect and identify errors. Our method results in the
simplification of algorithm and hardware designs.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

10000

e T —*

1000 e -
— AT T T T T T — A
2 100 pom—— —f
£ 10
[
S 1 —+— P_CK+No_ECC
ie)
2 — > - P_CK+P_SD
g 01 — 4~ P_SD+No_ECC
&S o001

0.001

100 200 400 800 1600 3200

Number of FT-CG processes

100

=) —+— P_CK+No_ECC

= 10 — % - P_CK+P_SD

S N —-a— P_SD+No_ECC
=

9]

>

S 01

L

= -

&o.01 e
0.001

100 200 400 800 1600 3200
Number of FT-CG processes

Figure 9: Strong scaling tests to compare energy benefit and ABFT recovery cost with fault modeling

Flexible ECC: Yoon and Erez [40] enables DRAM names-

pace sharing between error correction information and data
to provide strong chipkill and double-chipkill ECC. Yoon
et. al [42] use a pure hardware based approach that adjusts
ECC based on memory access granularity prediction; Yoon
et. al [41] leverage OS to track memory access granularity
to adjust ECC.

Previous works cannot be combined with ABFT because
of a semantic gap for error detection and location between
ECC and algorithm-based protection. In addition, they tar-
get on avoiding data overfetching from main memory, and
may interleave data with different vulnerability in the same
page with a unified ECC protection. For a data structure
protected by ABFT, it may be distributed into different
page frames based on its access pattern and hence has var-
ious ECC protection for the same data structure. Previous
works also make extensive modifications to hardware. These
changes make building systems costly.

7. CONCLUSIONS

Resiliency continues to be one of the major design goals
for high-end computing systems. ABFT, as a software-
based resilience solution, provides protection for some crit-
ical application data structures, and effectively reduce or
even eliminate costly checkpoint/restart. In this paper, we
rethink ABFT with a software-hardware collaborative ap-
proach. Given data protection from ABFT, we selectively
relax ECC protection for those ABFT protected data struc-
tures on main memory to improve performance and system
energy efficiency. We introduce an explicitly-managed ECC
mechanism to allow tailoring error detection and recovery
based on ABFT needs. We classify error handling scenarios
in light of ABFT and ECC integration, and establish fault
models to investigate the impact of the coordination for sys-
tem resilience. The main implication of this work is that
exposing architecture information to the user and enabling
holistic reliability management provides tangible benefits.

Acknowledgments: The paper has been authored by
Oak Ridge National Laboratory, which is managed by UT-
Battelle, LLC under Contract #DE-AC05-000R22725 to
the U.S. Government. Accordingly, the U.S. Government
retains a non-exclusive, royalty-free license to publish or re-
produce the published form of this contribution, or allow
others to do so, for U.S. Government purposes. This re-
search is partly supported by US National Science Foun-
dation under grants #CNS-1304969, #CCF-1305622, and
#0CI-1305624.

8. REFERENCES

[1] Calculating Memory System Power for DDR3,
Technical Report TN-41-01. Technical report, Micron
Technology, 2007.

[2] OpenSPARC T2 System-On-Chip (SOC)
Microarchitecture Specification. Technical report, Sun
Microsystems Inc., 2008.

[3] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich,
and R. S. Schreiber. Future Scaling of
Processor-Memory Interfaces. In International
Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2009.

[4] AMD. BIOS and Kernel Developer’s Guide for AMD
NPT Family OFh Processors, 2007.

[5] A. H. Baker, R. D. Falgout, T. Gamblin, T. V. Kolev,
M. Schulz, and U. M. Yang. Scaling Algebraic
Multigrid Solvers: On the Road to Exascale. In
International Conf. on Competence in HPC, 2011.

[6] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell
broadband engine architecture and its first
implementation: a performance view. IBM Journal of
Research and Development, 2007.

[7] Z. Chen. Algorithm-Based Recovery for Iterative
Methods without Checkpointing. In International
Symposium on High-Performance Parallel and
Distributed Computing (HPDC), 2011.

[8] Z. Chen. Online-ABFT: An Online Algorithm Based
Fault Tolerance Scheme for Soft Error Detection in
Iterative Methods. In ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming, 2013.

[9] T. Davies and Z. Chen. Correcting Soft Errors Online
in LU Factorization. Symposium on High-Performance
Parallel and Distributed Computing, 2013.

[10] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen.
High Performance Linpack Benchmark: A Fault
Tolerant Implementation without Checkpointing. In
International Conference on Supercomputing, 2011.

[11] M. de Kruijif, S. Nomura, and K. Sankaralingam.
Relax: An Architectural Framework for Software
Recovery of Hardware Faults. In International
Symposium on Computer Architecture (ISCA), 2010.

[12] T. Dell. A White Paper On The Benefits Of
Chipkill-Correct ECC for PC Server Main Memory.
Technical report, IBM Microelectronics Division, 1997.

[13] C. Ding, C. Karlsson, H. Liu, T. Davies, and Z. Chen.
Matrix Multiplication on GPUs with On-Line Fault
Tolerance. In International Symposium on Parallel
and Distributed Processing with Applications, 2011.

[14] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

[18]

[21]

22]

[23]

[25]

[26]

[27]

J. Dongarra. Algorithm-based Fault Tolerance for
Dense Matrix Factorizations. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2012.

P. Du, P. Luszczek, S. Tomovand, and J. Dongarra.
High Performance Dense Linear System Solver with
Soft Error Resilience. In IEEE Cluster, 2011.

M. Erez, N. Jayasena, T. J. Knight, and W. J. Dally.
Fault Tolerance Techniques for the Merrimac
Streaming Supercomputer. In International
Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2005.

K. Ferreira, J. Stearley, J. H. L. III, R. Oldfield,

K. Pedretti, R. Brightwell, R. Riesen, P. G. Bridges,
and D. Arnold. Evaluating the Viability of Process
Replication Reliability for Exascale Systems. In
International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011.
C.-H. Ho, M. de Kruijjif, K. Sankaralingam,

B. Rountree, M. Schulz, and B. R. de Supinski.
Mechanisms and Evaluation of Cross-Layer
Fault-Tolerance for Supercomputing. In International
Conference on Parallel Processing (ICPP), 2012.

M. Y. Hsiao. A Class of Optimal Minimum
0Odd-Weight-Column SECDED Codes. IBM Journal of
Research and Development, 1970.

A. A. Hwang, 1. Stefanovici, and B. Schroeder. Cosmic
Rays Do not Strike Twice: Understanding the Nature
of DRAM Errors and the Implications for System
Design. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.
D. Li, J. S. Vetter, and W. Yu. Classifying Soft Error
Vulnerabilities in Extreme-Scale Scientific
Applications Using a Binary Instrumentation Tool. In
International Conference for High Performance
Computing, Networking, Storage and Analysis, 2012.
M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve,
V. S. Adve, and Y. Zhou. Understanding the
Propagation of Hard Errors to Software and
Implications for Resilient System Design. In
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2008.

S. Li, K. Chen, M.-Y. Hsieh, N. Muralimanohar, C. D.
Kersey, J. B. Brockman, A. F. Rodrigues, and N. P.
Jouppi. System Implications of Memory Reliability in
Exascale Computing. In International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC), 2011.

S. Li, D. H. Yoon, K. Chen, J. Zhao, J. H. Ahn, J. B.
Brockman, Y. Xie, and N. P. Jouppi. MAGE:
Adaptive Granularity and ECC for Resilient and
Power Efficient Memory Systems. In International
Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2012.

X. Li, M. C. Huang, K. Shen, and L. Chu. A Realistic
Evaluation of Memory Hardware Errors and Software
System Susceptibility. In USENIX ATC, 2010.

H. Liu, T. Davies, C. Ding, C. Karlsson, and Z. Chen.
Algorithm-Based Recovery for Newton’s Method
without Checkpointing. In Workshop on Dependable
Par., Distributed and Network-Centric Systems, 2011.
T. G. Mattson, M. Riepen, T. Lehnig, P. Brett,

28]

29]

30]

(31]

(32]

33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

(41]

42]

W. Haas, P. Kennedy, J. Howard, S. Vangal,

N. Borkar, G. Ruhl, and S. Dighe. The 48-core SCC
Processor: the Programmer’s View. In International
Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2010.
Mcsim: A manycore simulation infrastructure.
http://scale.snu.ac.kr/mcsim.

F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting
ECC-Memory for Detecting Memory Leaks and
Memory Corruption During Production Runs. In
International Symposium on High-Performance
Computer Architecture (HPCA), 2005.

V. Reddi, A. Settle, D. Connors, and R. Cohn. Pin: A
Binary Instrumentation Tool for Computer
Architecture Research and Education. In Proceedings
of the 2004 workshop on Computer architecture
education, 2004.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob.
DRAMSim2: A Cycle Accurate Memory System
Simulator. Computer Architecture Letters,
10(1):16-19, 2011.

S. K. Sahoo, M.-L. Li, P. Ramachandran, S. V.Adve,
V. S. Adve, and Y. Zhou. Using Likely Program
Invariants to Detect Hardware Errors. In International
Conf. on Dependable Systems and Networks, 2008.
B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM
errors in the wild: A Large-Scale Field Study. In
SIGMETRICS, 2009.

C. Slayman. Impact of Error Correction Code and
Dynamic Memory Reconfiguration on
High-Reliability /Low-Cost Server Memory. In
Integrated Reliability Workshop, 2006.

V. Sridharan and D. Liberty. A Study of DRAM
Failures in the Field. In International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC), 2012.

A. N. Udipi, N. Muralimanohar, R. Balsubramonian,
A. Davis, and N. P. Jouppi. LOT-ECC: Localized and
Tiered Reliability Mechanisms for Commodity
Memory Systems. In International Symposium on
Computer Architecture (ISCA), 2012.

N. J. Wright, W. Pfeiffer, and A. Snavely.
Characterizing Parallel Scaling of Scientific
Applications using IPM. In International Conference
on HPC, 20009.

P. Wu, L. Chen, L. Tan, and Z. Chen. Online Soft
Error Correction in Cholesky Decomposition. UC,
Riverside, Technical Report UCR-CS-13-002, 2013.
P. Wu, C. Ding, L. Chen, F. Gao, T. Davies,

C. Karlsson, and Z. Chen. Fault Tolerant
Matrix-Matrix Multiplication: Correcting Soft Errors
On-line. In Workshop on Scalable Algorithms for
Large-Scale Systems, 2011.

D. H. Yoon and M. Erez. Virtualized and Flexible
ECC for Main Memory. In ASPLOS, 2010.

D. H. Yoon, M. K. Jeong, and M. Erez. Adaptive
Granularity Memory Systems: A Tradeoff between
Storage Effciency and Throughput. In International
Symposium on Computer Architecture (ISCA), 2011.
D. H. Yoon, M. K. Jeong, M. Sullivan, and M. Erez.
The Dynamic Granularity Memory System. In
International Symp. on Computer Architecture, 2012.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 02:07:17 UTC from IEEE Xplore. Restrictions apply.

