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ABSTRACT

Driven by the trends of increasing core-count and bandwidth-wall
problem, the size of last level caches (LLCs) has greatly increased.
Since SRAM consumes high leakage power, researchers have ex-
plored use of non-volatile memories (NVMs) for designing caches
as they provide high density and consume low leakage power. How-
ever, since NVMs have low write-endurance and the existing cache
management policies are write variation-unaware, effective wear-
leveling techniques are required for achieving reasonable cache
lifetimes using NVMs. We present WriteSmoothing, a technique
for mitigating intra-set write variation in NVM caches. WriteS-
moothing logically divides the cache-sets into multiple modules.
For each module, WriteSmoothing collectively records number of
writes in each way for any of the sets. It then periodically makes
most frequently written ways in a module unavailable to shift the
write-pressure to other ways in the sets of the module. Extensive
simulation results have shown that on average, for single and dual-
core system configurations, WriteSmoothing improves cache life-
time by 2.17× and 2.75×, respectively. Also, its implementation
overhead is small and it works well for a wide range of algorithm
and system parameters.

Categories and Subject Descriptors

B.3.2 [Hardware]: MEMORY STRUCTURES—Cachememories;
B.8.m [Hardware]: PERFORMANCE AND RELIABILITY—
Miscellaneous

Keywords

Non-volatile memory; device lifetime; cache memory; intra-set
write variation; wear-leveling; write endurance

1. INTRODUCTION
To meet the demands of increasing number of on-chip cores and

circumvent the problem of memory bandwidth-wall, modern pro-
cessors are using very large last level caches. For example, In-
tel’s Itanium 9560 processor uses 32MB last level cache (LLCs)
[1]. Conventionally, processor caches have been designed using
SRAM since it provides low access latency and has high write
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endurance. However, SRAM has large leakage power consump-
tion and hence, large LLCs designed with SRAM consume huge
amount of power and chip area [13]. For example, the leakage
power of the LLCs contributes to 63% and 56% of the total leakage
power in Xeon Tulsa and Core 2 Penryn processors respectively,
which corresponds to 30% and 20% of the total power in these pro-
cessors [11].

To address this issue, researchers have explored use of non-volatile
memories, such as resistive RAM (ReRAM), spin transfer torque
RAM (STT-RAM) and phase change memory (PCM) for designing
on-chip caches [6,9,18]. NVMs provide high density and scalabil-
ity, consume very low leakage power and intrinsically avoid the
need of refresh operations for maintaining data-integrity (unlike
embedded DRAM devices) [12]. A crucial limitation of NVMs,
however, is that their write endurance is orders of magnitude smaller
than that of SRAM and DRAM. This low endurance value may
lead to very small device lifetimes. For example, while the write
endurance of SRAM and DRAM is in excess of 1015, the write en-
durance of ReRAM, STT-RAM and PCM are only 1011, 4× 1012

and 108, respectively [8, 10, 16, 18].
Further, the conventional cache management policies have been

designed for optimizing performance and energy-efficiency, and
they do not take the write endurance into account. In an attempt
to leverage temporal locality, they may significantly increase the
number of writes on a few cache blocks. This may cause those
blocks to fail much earlier than the anticipated lifetime assuming
uniform write distribution. As an example, conventional selective-
way based cache reconfiguration approaches (e.g. [14]) only con-
trol the number of turned-off ways and do not control which ways
will be selected for being turned-off. Thus, they are likely to keep
the same ways turned-on (or turned-off) during the entire execution
of the program which may exacerbate the problem of limited write-
endurance. Similarly, with LRU (least-recently used) replacement
policy, the most recently used data are expected to be repeatedly
accessed and hence, the number of writes to the physical blocks
which store these data is expected to increase much more than
those in the remaining ways. To illustrate this, we take the exam-
ple of povray benchmark from SPEC06 suite and execute it with a
ReRAM L2 cache (the simulation parameters are shown in Section
5). We observe that due to write-variation, the cache lifetime is
observed to be only 2.3 days, although assuming an ideal uniform
write-distribution to all L2 cache blocks, the lifetime would be 38.7
years. This clearly shows the need of a wear-leveling technique.

In this paper, we present WriteSmoothing, a technique for im-
proving cache lifetime bymitigating intra-set write variation. WriteS-
moothing logically divides the cache-sets into multiple modules,
for example, in a cache with 4096 sets and 32 modules, each mod-
ule contains 128 sets. WriteSmoothing works on the following key
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idea: if the intra-set write variation in a module is larger than a
threshold, then the most heavily written cache ways can be tem-
porarily made “unavailable” which will shift the write-pressure on
the remaining ways. Different cache ways are made unavailable in
rotation and this leads to wear-leveling which improves the cache
lifetime (Section 3). WriteSmoothing does not require static pro-
filing or modification of program binary and its overhead is very
small (Section 4).

We perform exhaustive simulations using an x86-64 simulator
and benchmarks from SPEC CPU2006 suite and HPC (high per-
formance computing) field (Section 5). Results have shown that
WriteSmoothing is effective in reducing the intra-set write vari-
ation which leads to increase in cache lifetime (Section 6). For
single and dual-core systems, the average improvement in cache
lifetime are 2.17× and 2.75×, respectively. Also, WriteSmooth-
ing has very small effect on performance and energy efficiency.
Additional experiments show that WriteSmoothing works well for
different system and algorithm parameters.

2. BACKGROUND AND RELATED WORK
Improvement in lifetime of NVM caches can be obtained by re-

ducing the number of writes and uniformly distributing them over
different blocks (wear-leveling). The reduction in number of writes
is achieved by using additional levels of caches [2] or write coa-
lescing buffers [17] and avoiding redundant writes [9, 20]. These
approaches are orthogonal and complementary to our technique,
and hence, can be synergistically integrated with it.

Since caches show both inter-set and intra-set write variation
[13], wear-leveling can be performed at the level of inter-set [5,
18] or intra-set [18]. In this paper, we propose an intra-set wear-
leveling technique. Intra-set write variation increases with increas-
ing associativity and it can be larger than inter-set write variation
for some workloads hence, addressing it is extremely important
( [18], also see Section 6). Further, WriteSmoothing can be in-
tegrated with the techniques for mitigating inter-set write variation
and error correction/detection to improve the cache lifetime even
further.

Wang et al. [18] propose an intra-set wear-leveling technique,
which works by periodically flushing the block seeing a write-hit
to change the cache block location of the hot data-item. A limita-
tion of this technique is that it does not detect the write-variation
present in the application and thus, it may blindly flush the cache.
This is especially harmful for applications which have small write-
variation but high write intensity. Moreover, while attempting to
uniformly spread the writes to the cache, it may increase the writes
on the main memory leading to contention, energy loss and en-
durance issues in main memory.

3. SYSTEM ARCHITECTURE
Background and Notations: We logically divide the cache-

sets into multiple (e.g. 32) “modules”, where each module contains
several sets. We collect the number of cache writes for each way
at the granularity of a single module. For example, if the cache has
32 modules, 4096 sets and 8 ways, then a group of 128 sets form
one module and a total of 32×8 counters are used. The 8 counters
for module 0 record the number of writes in each way for any of
the sets numbering 0 to 127 and so on. We term the way of each
module as a “sub-way”.

Let S,A,B and T denote the number of cache sets, associativity,
block-size and tag-size, respectively. In this paper, we assume, B
= 64B and T = 40bits. Also, let wi,j denote the number of writes
on any block at set i and way-index j. Further, letWavg denote the

average number of writes on all the blocks. Then, the coefficient of
intra-set write variation (IntraV) for the entire cache is defined as
follows [18],

IntraV =
100

S ·Wavg

S
∑

i=1

√

√

√

√

√

A
∑

j=1

(

wi,j −
A
∑

r=1

wi,r/A

)2

A− 1
(1)

Note that compared to [18], we express IntraV as percentage and
hence, multiply the value by 100. Similarly, we can define the In-
traV for each module (called ModuleIntraV). Let M denote the
number of cache-modules and em,j denote the writes on sub-way
j of a module m. Let Em,avg denote the average writes on all the
sub-ways of module m. Then, we have

ModuleIntraV [m] =
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3.1 Key Idea
WriteSmoothing works on the idea that if the ModuleIntraV[m]

for a module m is greater than a threshold λ, then the data in the
most-frequently written (MFW) way can be transferred to that in
the least-frequently written way and the MFW way can be tem-
porarily made unavailable, which helps in shifting the future write-
pressure to the remaining blocks. The MFW way is expected to
store hot data, and thus, future writes are expected to be redirected
especially to the least-frequently written way. If desired, the un-
available way can be turned-off to save leakage energy, however,
we do not implement this in our experiments since NVMs con-
sume negligible amount of leakage power. AlthoughWriteSmooth-
ing works to directly reduce intra-set write-variation, by virtue of
working at the granularity of cache module, it accounts for inter-set
write-variation also.

In a module, WriteSmoothing makes the same physical cache-
way unavailable for all the sets, although in different sets of a mod-
ule, the actual position of the most frequently written way may be
different. To address this issue, we can minimize the number of
cache sets in a module (i.e., M = S), such that each cache set has
a set of counters to track each way. However, this incurs a large
profiling overhead. Hence, the choice of M provides a balance be-
tween profiling overhead and accuracy. We study the sensitivity of
wear-leveling to the choice of M in Section 6.2. The general con-
clusion based on our study is that for a reasonably large value of
M (e.g. 32 or 64), its effect on wear-leveling is small.

3.2 Algorithm Description
Algorithm 1 shows the pseudo-code for WriteSmoothing, which

runs after K cycles (e.g. K = 5 million) and can be a kernel mod-
ule. The algorithm works as follows. For each module, ModuleIn-
traV is computed. Wear-leveling for any module is only performed
if the ModuleIntraV is greater than λ. This helps in minimizing
the algorithm overhead for workloads with small write-variation.
The algorithm searches for the sub-way with the highest and the
lowest nWrite values and transfers the data from Wmax sub-way
to Wmin sub-way. The TransferDataBetweenSubWays function
copies valid data from the Wmax sub-way to the Wmin sub-way.
If this data-item is clean, it is only copied if the destination data-
item is invalid, otherwise it is flushed. If this data-item is dirty, it is
copied regardless of the state of destination data-item. The reason
for this is that the data-item atWmax location is expected to be hot
and hence, keeping it in cache is likely to be beneficial. The Make-
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Algorithm 1: Algorithm for WriteSmoothing

1 Let IsAvailable[0 : M − 1][0 : A− 1] show whether a
particular sub-way is available

2 Let nWrite[0 : M − 1][0 : A− 1] denote the writes on each
sub-way

3 LetModuleIntraV [0 : M − 1] denote the IntraV for each
module (calculated from nWrite values)

4 for each module m do
5 Let NumUnavailable[m] show the total number of

unavailable ways in module m
6 if ModuleIntraV [0 : M − 1] > λ then
7 LetWmax be the sub-way with the highest number of

writes where IsAvailable[m][Wmax] is TRUE
8 LetWmin be the sub-way with the least number of

writes
9 TransferDataBetweenSubWays(m,Wmax,Wmin)

10 MakeUnavailable(m, Wmax)
11 /* If the number of unavailable ways

in m has become larger than Z,
make the least written way
available */

12 ifNumUnavailable[m] > Z then
13 Let Wlow be the sub-way with the least number of

writes among all sub-ways w, such that
Wlow 6= Wmin and IsAvailable[m][Wmax] is
FALSE

14 MakeAvailable(m, Wlow)
15 end
16 else
17 ifNumUnavailable[m] > 0 then
18 Let Wlow be the sub-way with the least number of

writes among all sub-ways w, such that
IsAvailable[m][Wmax] is FALSE

19 MakeAvailable(m, Wlow)
20 end
21 end
22 end

Unavailable function write-backs the dirty data and flushes clean
valid data of a sub-way and marks it as unavailable for the next
interval. The MakeAvailable function simply marks a sub-way as
available for the next interval.

If the number of unavailable ways in a module increases greater
than Z, a single least-frequently written way is made available to
keep the performance loss small. Note that at any point of time,
the number of unavailable ways in different modules can be differ-
ent. This is an important feature of our technique which helps in
accounting for inter-set write variation and also keeping the perfor-
mance loss small.

In processors with higher number of cores, not all the cores may
run applications at the same time. Also, with private LLC or parti-
tioned shared LLC, the cache space of each application is optimized
for performance by exploiting temporal locality. In these scenarios,
the write-variation is expected to be high and hence, we expect that
with increasing number of cores, the benefits of WriteSmoothing
will increase further.

4. IMPLEMENTATIONANDOVERHEADAS-

SESSMENT
Storage Overhead: We assume 40-bit counters for recording

nWrite values. Also, the data transfer between sub-ways is per-
formed using a temporary buffer, as used in previous works [19]
which has 128 registers, each 64B wide. These registers can also
be used as intermediate storage for computing ModuleIntraV, since
this happens in series (and not in parallel) with data-transfer. Thus,
the percentage overhead of WriteSmoothing implementation com-

pared to the L2 cache can be computed as

Overhead =
(M ×A× 40) + (128× 64× 8)

S × A× (B + T )
× 100 (3)

As an example, for a 4MB, 16-way cache with 32 modules, this
Overhead is only 0.24% of the L2 cache. Assuming some addi-
tional logic for computation and data-transfer, we conservatively
take 0.5% as the upper bound of the overhead of WriteSmoothing,
which is very small.

Latency andEnergy Overhead: We assume that for each mod-
ule, computing ModuleIntraV takes 40 cycles. For each module
which undergoes wear-leveling, 60 cycles are consumed for select-
ing Wmax. In Section 6.2 we also conduct experiments assuming
4× higher overhead of computation and data-transfer and observe
that the performance and energy loss of WriteSmoothing still re-
mains small. Transfer of data takes LW + 4 cycles, where LW is
the write latency of L2 NVM cache (shown in Table 1) and 2 cycle
each is consumed in writing 64B data to and from the buffer over
a 32B-wide bus. The extra writes due to algorithm execution are
accounted in the number of L2 writes, used for computing energy,
lifetime etc. Note that since the algorithm runs after a few million
cycles, its overhead is easily amortized over the interval-length.
Moreover, a small increase in latency of LLC is easily hidden by
the instruction-level parallelism (ILP). Thus, WriteSmoothing has
minimal effect on performance, as confirmed by our experiments
(see Section 6.1).

5. EXPERIMENTAL METHODOLOGY
Simulation Infrastructure: We use interval-core model in

Sniper x86-64 multicore simulator [3]. The frequency of proces-
sor is 2GHz. L1 I/D caches are 32KB 4-way LRU caches and are
private to each core. L2 cache is shared among cores and its pa-
rameters are shown in Table 1, which are obtained using NVsim
tool [7]. In this paper, we assume a ReRAM L2 cache, and based
on it, WriteSmoothing can be easily applied to caches designed
with other NVMs. Due to their properties, NVMs are more suit-
able to be used as last level caches and not first level caches. For
this reason, in this paper, we assume that NVM is used for design-
ing the L2 cache and apply WriteSmoothing algorithm in the L2
cache. The latency of main memory is 220 cycles. The peak mem-
ory bandwidth for single and dual-core systems are 10 and 15GB/s,
respectively and contention is also modeled.

Table 1: Parameters for ReRAM L2 Cache

2MB 4MB 8MB 16MB
Hit latency (ns) 4.33 4.13 4.74 6.21
Miss latency (ns) 1.47 1.44 1.55 1.81
Write latency (ns) 21.72 21.55 21.87 23.09
Hit Energy (nJ) 0.524 0.547 0.646 0.679
Miss Energy (nJ) 0.204 0.188 0.194 0.200
Write Energy (nJ) 0.834 0.851 0.925 0.967
Leakage Power (W) 0.204 0.325 0.785 1.118

Workloads: All 29 SPEC CPU2006 benchmarks with ref in-
puts and 5 benchmarks from HPC field (shown as italics in Table
2) are taken as single-core workloads. Using these, 17 dual-core
multiprogrammed workloads are randomly created such that each
benchmark is used exactly once. These workloads are shown in
Table 2.

Evaluation Metrics: We show the results on 1.) Relative
lifetime 2.) IntraV 3.) Weighted speedup (called relative perfor-
mance) [14] 4.) Percentage energy loss and 5.) Absolute increase
in MPKI (miss per kilo-instructions). The lifetime is defined as the
inverse of the maximum number of writes on any block. We model
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Figure 1: WriteSmoothing Results for Single-core System

Table 2: Workloads Used in the Paper

Single-core workloads and their acronyms
As(astar), Bw(bwaves), Bz(bzip2), Cd(cactusADM), Ca(calculix)
Dl(dealII), Ga(gamess), Gc(gcc), Gm(gemsFDTD), Gk(gobmk)
Gr(gromacs), H2(h264ref), Hm(hmmer), Lb(lbm), Ls(leslie3d)
Lq(libquantum), Mc(mcf), Mi(milc), Nd(namd), Om(omnetpp)
Pe(perlbench), Po(povray), Sj(sjeng), So(soplex), Sp(sphinx)

To(tonto), Wr(wrf), Xa(xalancbmk), Ze(zeusmp), Am(amg2013)
Co(CoMD), Lu(LULESH), Mk(MCCK), Ne(Nekbone)
Dual-core workloads (Using acronyms shown above)
AsDl, GcGa, BzXa, LsLb, GkNe, OmGr, NdCd, CaTo

SpSo, LqPo, SjWr, GmMk, PeZe, HmH2, BwMi, McLu, CoAm

the energy of L2 cache, which is computed using parameters from
Table 1 and includes the contribution of extra writes due to algo-
rithm execution (see Section 4). The energy consumed by the coun-
ters is orders of magnitude smaller than that consumed by the L2
cache and hence, is ignored. For dual-core system, we have also
computed the fair speedup [15] and have found the fair speedup
to be almost the same as weighted speedup. Thus, WriteSmooth-
ing does not cause unfairness. For brevity, we omit these results.
Speedup values are averaged using geometric mean and the remain-
ing metrics are averaged using arithmetic mean [15]. Simulations
are performed till each core runs 500M instructions. In dual-core
system, the program which finishes earlier is allowed to run, but
its IPC is only recorded for the first 500M instructions. Remain-
ing metrics are computed for the entire simulation (following well-
established simulation methodology [4, 14, 15]).

6. EXPERIMENTAL RESULTS

6.1 Main Results
Figure 1 and 2 show the results for single and dual-core, respec-

tively, which are obtained using the following parameter values: Z

= 3, K = 5M cycles, λ =15%, 16-way set-associativity, 4MB L2
withM = 32 for single-core system and 8MB L2 with M = 64 for
dual-core system. Our baseline is a cache which uses LRU replace-
ment policy but does not use any wear-leveling technique.

We now analyze the results. Firstly, for some workloads, base-
line IntraV can be as high as 400%, for example Ga (gamess), Po
(povray), Am(amg2013). Also, we observe that on average, for sin-
gle and dual-core system, 87.8% and 89.3% of the write accesses
happen to just the MRU way of the 16-way cache (figure omitted
for brevity). This highlights the need of using an intra-set wear-
leveling technique for achieving reasonable cache lifetime. On av-
erage, for the single and the dual-core systems, improvement in
lifetime are 2.17× and 2.75×, respectively. For some workloads,
the improvement in lifetime is more than 10×, for example, Po, Am
and LqPo (libquantum-povray). For a few other workloads, such as
Ga, Sj (sjeng), GcGa (gcc-gamess), CoAm (CoMD-amg2013), the
improvement in lifetime is more than 7×. This shows the effective-
ness of WriteSmoothing.

WriteSmoothing reduces the IntraV from 136.6% to 45.7% for
single-core system, and from 136.4% to 49.2% for dual-core sys-
tem. As seen from the figure on relative lifetime and IntraV, the
improvement in lifetime achieved depends on the intra-set variation
present in the original application. By virtue of computing Mod-
uleIntraV, WriteSmoothing performs shifting and incurs its over-
head only when the intra-set write variation in original application
is high. Thus, for applications such as Lb (lbm), Lq, Sp (sphinx),
Mi (milc), LsLb (leslie3d-lbm) etc., WriteSmoothing does not in-
cur performance or energy overhead. This feature is especially ben-
eficial for workloads such as Lb, which have very high write inten-
sity but low intra-set write variation. For the single and the dual-
core systems, relative performance values are 0.99× and 0.99×, re-
spectively. The reason WriteSmoothing maintains the performance
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Figure 2: WriteSmoothing Results for Dual-core System

close to 1× is that it makes cache ways unavailable only when the
intra-set write-variation is high, which happens when the applica-
tion does not fully utilize the cache and a few ways remain un-
used. In such a case, making some ways unavailable does not sig-
nificantly harm the performance. Only Om (omnetpp) and BzXa
(bzip2-xalan) show relative performance less than 0.95×, since
these workloads are very sensitive to L2 cache performance.

For the single and the dual-core systems, on average, increase in
MPKI are 0.05 and 0.06, respectively and loss in energy are 0.93%
and 0.92%, respectively. These values are very small and thus,
WriteSmoothing does not increase the DRAM traffic appreciably,
which is a significant improvement over previous data-invalidation
based techniques (e.g. [5,18]), which lead to increased DRAM traf-
fic. Our wear-leveling approach also provides the benefit of write
density minimization [13] which can help in lowering the chip-
temperature and cooling cost. Moreover, NVMs offer high den-
sity and low leakage power compared to SRAM and WriteSmooth-
ing addresses the crucial limitation of NVMs, namely their limited
write endurance. For these reasons, a small increase in miss-rate
and energy may be acceptable. Further, as we show in Section 6.2,
by changing the algorithm parameters (viz. M , λ, K and Z), a
designer can strike a balance between acceptable algorithm imple-
mentation overhead and desired improvement in lifetime.

6.2 Parameter Sensitivity Results
We now evaluate the sensitivity of WriteSmoothing for different

parameters. The results are summarized in Table 3. Except the
parameter mentioned, the values of all parameters are same as used
in the default case. For comparison purposes, the value with default
case is also shown.

Change in Number of Modules (M ): On increasing M , the
granularity of wear-leveling is also increased leading to higher im-

provement in lifetime. However, this also leads to a small increase
in the algorithm implementation overhead. Opposite is seen on re-
ducing the number of modules.

Change in Threshold λ: Reducing λ increases the aggressive-
ness of wear-leveling, which increases the improvement in the life-
time at the cost of a small increase in energy loss, and vice-versa.

Change in Interval Size (K): Smaller value of interval size
leads to more frequent wear-leveling which improves the cache
lifetime, although it leads to a small increase in energy loss due
to more frequent data-transfer. At 10M cycle interval size, the op-
portunity of wear-leveling is missed, although due to reduced data-
transfer, the energy loss is also reduced.

Change in Maximum Unavailable Ways (Z): Change in Z
does not monotonically affect the improvement in lifetime, since
different applications have different associativity requirements and
cache usage intensity. Change in Z has very small effect on the
energy loss and increasing Z increases the energy loss since the
effective cache associativity is reduced. Considering these factors,
for a 16-way cache, a value of Z = 3 or Z = 4 is suitable.

Higher algorithm overhead: We evaluate WriteSmoothing as-
suming a latency overhead which is 4× that of shown in Section
4 (i.e. 160 cycles for computing ModuleIntraV and 240 cycles for
selecting Wmax). As shown in Table 3, the relative performance
still remains 0.99× and energy loss is small (close to 1%). This
confirms that, due to the reasons mentioned in Section 4, overhead
of WriteSmoothing is quite small.

Change in Associativity (A): For a fixed capacity, a cache with
lower associativity has higher miss-rate and smaller number of re-
placement candidates, which reduces the non-uniform distribution
of writes, leading to smaller value of IntraV. This is evident from
the values of IntraV for baseline cache and can also be understood
by considering the extreme cases, viz. a direct-mapped cache and
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Table 3: Parameter Sensitivity Results (Rel. = Relative, LT. = Lifetime,
WrSm = WriteSmoothing, Perf. = Performance, Energy loss values are in

percentage.). Default values are shown in Section 6.1.

Rel. IntraV IntraV Rel. Energy ∆
LT. Base WrSm Perf. Loss MPKI

Single-core System

Default 2.17 136.6 45.7 0.99 0.93 0.05
M =8 1.80 136.6 50.2 0.99 0.83 0.04
M =16 1.94 136.6 47.7 0.99 0.85 0.04
M =64 2.49 136.6 43.6 0.99 1.03 0.06
M =128 2.61 136.6 41.3 0.99 1.15 0.06
λ =10% 2.26 136.6 42.8 0.99 1.26 0.08
λ =20% 2.00 136.6 48.7 0.99 0.72 0.04
K =3M 2.18 136.6 44.3 0.99 1.06 0.05
K =10M 2.03 136.6 51.0 0.99 0.74 0.05
Z =2 2.07 136.6 48.2 0.99 0.83 0.04
Z =4 2.21 136.6 44.6 0.99 1.00 0.05

⇑ Overhead 2.13 136.6 45.3 0.99 1.07 0.05
8-way 1.72 107.1 34.4 0.99 1.14 0.07
32-way 2.37 167.7 60.7 0.99 0.73 0.05
2MB L2 1.82 103.7 37.6 1.00 0.46 0.02
8MB L2 2.58 175.4 53.8 0.98 2.00 0.10

Two-core System

Default 2.75 136.4 49.2 0.99 0.92 0.06
M =16 2.20 136.4 53.1 0.99 0.82 0.05
M =32 2.25 136.4 51.1 0.99 0.87 0.05
M =128 3.25 136.4 47.3 0.99 1.02 0.06
M =256 3.85 136.4 45.1 0.98 1.19 0.07
λ =10% 3.25 136.4 45.3 0.98 1.22 0.08
λ =20% 2.37 136.4 52.6 0.99 0.76 0.04
K =3M 2.75 136.4 49.2 0.99 1.00 0.06
K =10M 2.63 136.4 51.9 0.99 0.79 0.05
Z =2 2.61 136.4 51.0 0.99 0.85 0.05
Z =4 2.68 136.4 49.0 0.99 0.98 0.06

⇑ Overhead 2.75 136.4 49.1 0.99 1.09 0.06
8-way 2.11 106.6 38.9 0.98 2.14 0.08
32-way 3.80 170.0 61.6 0.99 0.98 0.05
4MB L2 2.22 100.9 42.2 0.99 1.16 0.05
16MB L2 2.99 171.0 58.1 0.98 1.80 0.08

a fully-associative cache. WriteSmoothing works well for all as-
sociativity values and improves lifetime in proportion to the write-
variation present in the baseline. For dual-core system with 32-way
cache, the lifetime improvement is 3.8×.

Change in Cache Capacity: Since applications have fixed
working set size, an increase in cache size improves the hit-rate
and thus, only a few blocks are repeatedly accessed and cache evic-
tions are reduced. This leads to higher write-variation, as evident
from IntraV values. Depending on IntraV, WriteSmoothing pro-
vides large improvement in lifetime, with only small loss in perfor-
mance and energy.

For all the above parameters, relative performance is greater than
0.97× and increase in MPKI is less than 0.11, which confirm that
WriteSmoothing works well for a wide range of system and algo-
rithm parameters.

7. CONCLUSION
Addressing the limitations posed by low write-endurance of NVMs

is essential for making them a universal memory solution. In this

paper, we presented WriteSmoothing, a technique for improving
lifetime of non-volatile caches by minimizing intra-set write vari-
ation. Exhaustive evaluation over different benchmarks, algorithm
and system parameters have shown that WriteSmoothing is effec-
tive in improving cache lifetime and incurs very small loss in per-
formance and energy. Our future work will focus on integrating

WriteSmoothing with write-minimization techniques to improve
the cache lifetime even further.
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