
Improving Energy Efficiency of Embedded DRAM Caches
for High-end Computing Systems

Sparsh Mittal
Oak Ridge National

Laboratory
mittals@ornl.gov

Jeffrey S. Vetter
Oak Ridge National

Laboratory and
Georgia Institute of

Technology

vetter@computer.org

Dong Li
Oak Ridge National

Laboratory
lid1@ornl.gov

ABSTRACT

The number of cores in a single chip in the nodes of high-
end computing systems is on rise, due, in part, to a number
of constraints, such as power consumption. With this, the
size of the last level cache (LLC) has also increased signifi-
cantly. Since LLCs built with SRAM consume high leakage
power, power consumption of LLCs is becoming a significant
fraction of processor power consumption. To address this
issue, researchers have used embedded DRAM (eDRAM)
LLCs which consume low leakage power. However, eDRAM
caches consume a significant amount of energy in the form
of refresh energy. In this paper, we propose ESTEEM, an
energy saving technique for embedded DRAM caches. ES-
TEEM uses dynamic cache reconfiguration to turn off a por-
tion of the cache to save both leakage and refresh energy. It
logically divides the cache sets into multiple modules and
turns off possibly different number of ways in each mod-
ule. Microarchitectural simulations confirm that ESTEEM
is effective in improving performance and energy efficiency
and provides better results compared to a recently-proposed
eDRAM cache energy saving technique, namely Refrint. For
single and dual-core simulations, the average energy saving
in memory subsystem (LLC+main memory) with ESTEEM
is 25.8% and 32.6% respectively, and the average weighted
speedup is 1.09× and 1.22× respectively. Additional exper-
iments confirm that ESTEEM works well for a wide-range
of system and algorithm parameters.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords

Embedded DRAM (eDRAM) cache, low-power, cache recon-
figuration, refresh energy saving, leakage energy saving.

Copyright (c) 2014 Association for Computing Machinery. ACM acknowledges that

this contribution was authored or co-authored by an employee, contractor or affiliate

of the United States government. As such, the United States Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

HPDC’14, June 23–27, 2014, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-2749-7/14/06 ...$15.00.

http://dx.doi.org/10.1145/2600212.2600216.

1. INTRODUCTION
Managing power consumption of high-end computing sys-

tems is extremely important to continue to scale their per-
formance and avoid intolerable operating costs and failure
rates [6,13]. The Tianhe-2 supercomputer with largest per-
formance in the top500 list [3] consumes 17 mega-watt power,
which is enough to sustain a city of more than 50,000 people.
Since the future exascale systems have a 20MW power bud-
get, an exascale machine built with the technology used in
modern supercomputers would consume giga-watts of power.
Further, for every watt of power dissipated in the computing
systems, an additional 0.5 to 1W of power is consumed by
the cooling system also [33]. Given such tight power bud-
gets, energy efficiency of current high-end computing sys-
tems must be significantly improved to achieve future ex-
ascale computing. For these reasons, energy efficiency has
now become a first-order constraint in the design of high-end
computing systems.

As single-core processor performance becomes power lim-
ited, processor designers are using large number of on-chip
cores to improve performance. To feed data to these cores
and offset the limitations posed by off-chip memory band-
width, modern processors use large-size last level caches
(LLCs) [28]. For example, Intel’s Enterprise Xeon processor
uses 30 MB LLC [18]. Conventionally, SRAM has been used
to design on-chip caches due to its low access-latency. How-
ever, SRAM also consumes large leakage power and hence,
large last level caches (LLCs) designed with SRAM consume
significant fraction of processor power. As an example, leak-
age power of last level cache accounts for 20% and 30% of the
total power in Intel Core 2 Penryn and Intel Xeon Tulsa pro-
cessors [26]. Further, it has been shown that if large caches
are designed with SRAM, they may occupy 90% of the chip-
area in upcoming fourth CMOS generation [40] because of
the relatively low density of SRAM.

To overcome the limitations of SRAM (i.e., high leakage
power and low density), researchers have recently explored
alternative device technologies such as non-volatile memory
(NVM) and embedded DRAM (eDRAM) for designing on-
chip caches. While NVMs, such as STT-RAM (spin transfer
torque RAM) and ReRAM (resistive RAM), have the ad-
vantage of near-zero leakage energy and high-density, their
limited write endurance and high write-latency [36] present
a critical bottleneck in enabling their use for on-chip caches.
EDRAM has the advantage of low-leakage (nearly 1/8th
leakage power consumption compared to SRAM [4]), com-
patibility with CMOS process, and high write endurance.

99

These features make them suitable for use as on-chip caches.
For this reason, eDRAM has been used to design the LLCs
in IBM’s Power 7 processor [21] and Blue Gene/L supercom-
puter chip [19]. Also, Intel’s Haswell processor uses 128MB
eDRAM L4 cache [25].

A critical limitation of eDRAM cells, however, is that
they lose charge over time and, hence, require refresh op-
erations to maintain data integrity. Thus, to avoid failures,
an eDRAM cell must be refreshed before its retention pe-
riod, which is the duration of time for which the cell can re-
tain its state. More precisely, compared to the conventional
DRAM, eDRAM uses faster logic transistors with high leak-
age current and hence, the retention period of eDRAM is in
the range of tens of microseconds (e.g. 40µs [8]), which is
nearly a thousand times shorter than that of conventional
DRAM, which is in range of 64ms [45]. It has been demon-
strated that refresh energy accounts to nearly 70% of the
total energy in eDRAM LLCs, while the leakage energy ac-
counts for most of the remaining fraction [4]. With ongoing
CMOS scaling, this retention period is expected to reduce
further due to increasing leakage and smaller storage capac-
itance [11], which will increase the overhead of refresh even
further. Thus, reducing the refresh energy consumption of
eDRAM is extremely important to enable their wide-spread
use and also avoid complex cooling solutions (e.g. liquid
cooling).

1.1 Contributions
In this paper, we present ESTEEM, an energy saving

technique for embedded DRAM caches. ESTEEM uses pe-
riodic cache reconfiguration to turn-off a portion of LLC and
avoids refreshing it. This leads to saving in both leakage and
refresh energy (Section 3). Further, in the active portion of
cache, only valid blocks are refreshed. For cache reconfigura-
tion, ESTEEM logically divides the cache-sets into different
modules. For example, with 4096 sets and 16 modules, each
module has 256 sets. Then, in each module, only the re-
quired number of ways are kept active, such that the perfor-
mance is not affected while largest possible saving in energy
is achieved (Section 4). ESTEEM does not require offline
profiling or manual tuning of its parameters. Also, its en-
ergy saving algorithm runs in software and uses lightweight
hardware support. The overhead of ESTEEM is less than
0.1% of the L2 cache size (Section 5).

We perform single and dual-core microarchitectural simu-
lations using an x86-64 simulator and workloads from SPEC06
suite and HPC (high-performance computing) field (Sec-
tion 6). Also, we compare ESTEEM with a recently pro-
posed technique for saving refresh energy in eDRAM caches,
named Refrint polyphase-valid (RPV) ([4], Section 6.2).
The experiments have shown that ESTEEM provides bet-
ter performance and energy efficiency than RPV. For 50µs
retention period and a baseline eDRAM LLC (which period-
ically refreshes all cache lines), the energy saving achieved
using ESTEEM and RPV, for single-core system is 25.82%
and 15.93%, respectively. For dual-core system, these values
are 32.63% and 14.39%, respectively. ESTEEM also pro-
vides higher performance than both baseline and RPV. Ex-
periments with 40µs retention period show that with lower
retention period, the advantage of ESTEEM increases even
further. Additional experiments show that ESTEEM works
well for a wide range of system and algorithm parameters.

The major contributions of this paper are:

• We propose a dynamic cache reconfiguration technique
for saving both leakage and refresh energy in eDRAM
caches. Our technique addresses the major challenge
that prevents eDRAM to be used as a viable and scal-
able solution for future high-end computing systems.

• We evaluate our technique with a spectrum of scien-
tific computing applications and over a wide-range of
system/algorithm parameters. After detailed compar-
ison with a state-of-the-art energy saving mechanism
for eDRAM cache, we demonstrate the effectiveness of
our technique.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the background and related work on eDRAM
and power management techniques for caches. Section 3 de-
scribes the working of ESTEEM. Section 4 presents the en-
ergy saving algorithm of ESTEEM and Section 5 presents
its implementation details. Section 6 presents simulation
platform, workloads, energy model and evaluation metrics.
Section 7 presents the simulation results. Finally, Section 8
presents the conclusion.

2. BACKGROUND AND RELATED WORK
The eDRAM cells are generally of two types, namely the

gain cell eDRAM and the 1T1C eDRAM [11]. Both of these
cells store data in the form of capacitor. For example, a gain
cell utilizes the gate capacitance of its storage transistor and
a 1T1C cell utilizes a dedicated capacitor to store its data.
In this paper, we assume a gain cell eDRAM as the basis of
our study.

Recently, several techniques have been proposed to miti-
gate the refresh energy in eDRAM devices. Some researchers
propose use of error-detection/correction based approaches
[39,45] which allow increasing the refresh period by tolerat-
ing some failures. Some researchers propose techniques to
detect dead-blocks and avoid refreshing them to save refresh
energy [4, 11]. The Smart-Refresh technique [15] avoids re-
freshing the DRAM rows which are recently read or written.
Reohr [38] discusses several approaches for optimizing re-
fresh operations in eDRAM caches, for example, no-refresh,
periodic refresh and line-level refresh based on time stamps.
In this paper, we use cache-reconfiguration approach to save
energy in eDRAM caches.

In literature, several cache reconfiguration techniques have
been proposed to save leakage energy in SRAM caches [28].
On the basis of granularity of cache reconfiguration, these
techniques can be divided into several categories, such as
selective-sets [34], selective-ways [5], hybrid (selective-sets
and ways) [30], cache-coloring [29], cache block-level [22–24]
etc. ESTEEM uses selective-ways based cache reconfigura-
tion approach, which has low implementation and reconfigu-
ration overhead. Also, unlike selective-sets or cache coloring
approach, selective-ways approach does not require a change
in set-decoding on cache reconfiguration.

Some cache reconfiguration techniques (e.g. [5, 20]) stat-
ically reconfigure the cache and do not allow dynamic re-
configuration. In contrast, ESTEEM uses dynamic cache
reconfiguration to easily adapt to intra-application varia-
tion in cache demand and provide large energy savings. For
SRAM caches, FlexiWay [31] proposes cache reconfigura-
tion at fine-granularity. However, FlexiWay uses complex
and higher-overhead scheme for predicting LLC and mem-
ory energy, which is likely to be inaccurate due to dynamic

100

behavior of workloads. By comparison, ESTEEM does not
require prediction of energy. ESTEEM proposes a novel
insight of simultaneously attacking leakage and refresh en-
ergy in eDRAM, whereas refresh operations do not happen
in SRAM in case of FlexiWay. Also, compared to SRAM,
presence of refresh in eDRAM totally changes the relative
contribution of dynamic, leakage and refresh energies, thus
changing the energy optimization scenario.

To leverage the different features of different memory cells,
some researchers have proposed hybrid memory cells. Valero
et al. [43] propose a macro-cell that combines SRAM and
eDRAM at cell level. They implement an A-way set-associative
cache with these macro-cells which consists of one SRAM
cell, A−1 eDRAM cells and a transistor that acts as a bridge
for transferring data between static and dynamic cells. Their
approach is suitable for L1 caches but does not work well for
lower-level caches. This is because due to filtering of access-
stream by L1 cache, the access patterns at lower-level caches
are not very predictable.

3. METHODOLOGY
Notations: Let N denote the number of cores. Let S,

A, M denote the number of cache sets, cache associativity
and number of cache modules, respectively. Let B and G
denote the cache-line(block) size and tag size, respectively,
which, in this paper, are taken as 512bits (64 byte) and 40
bits, respectively. In this paper, we use the terms ‘cache
line’ and ‘cache block’, interchangeably.

3.1 Main Idea
Our technique works on the key idea that there exists

large intra-application and inter-application variation in the
cache requirement of different applications. Thus, by allo-
cating just the right amount of cache to each application,
the rest of the cache can be transitioned to low-power state,
with minimum performance loss. This leads to reduction in
the active-fraction of the cache. This saves both leakage and
refresh energy as the inactive area of the cache need not be
refreshed and also does not consume leakage energy. Fur-
ther, in the active portion of the cache, only the valid blocks
are refreshed, which further reduces the refresh energy.

To dynamically reconfigure the cache, we use the follow-
ing approach. It has been shown that the associativity re-
quirement of applications varies across different sets of the
cache [31,41]. Conventional way-based reconfiguration tech-
niques (e.g. [5]), turn-off exactly the same number of ways
across all the sets. This, however, may lead to loss of flexi-
bility which may lead to performance and/or energy penalty.
To address this, we turn-off possibly different number of ways
in each cache module. This is illustrated in Figure 1. This
approach allows fine-grain cache reconfiguration, which also
enables achieving a fine-balance between performance loss
and energy saving.

To identify the blocks which store dead data (i.e. which
are unlikely to be reused) in a low-overhead manner, we use
the following observation. The LRU (least recently used)
replacement policy works by ordering the cache lines based
on their recency (or “age”) and evicting the LRU-block on
a cache miss. The intuition behind working of LRU is that
the older (i.e. least recent or lower in LRU-stack) cache lines
are less likely to be reused. Thus, the number of hits are
expected to decrease with decreasing recency positions [7].
Hence, the cache ways with less recent positions are suitable

L2 Cache

Turned-on ways Turned-off ways

6

Effective

Associativity

7

8

6

7

6

6

5

Module 0

Module 1

Module 7

Figure 1: An illustration of ESTEEM approach for
an 8-way L2 cache with 8 modules

candidates are turning-off, since turning these ways off leads
to minimal impact on performance.

An exception to the above observation happens for the
applications which do not show LRU behavior, i.e. for which
the hits to the LRU-positions do not decrease monotonically
with decreasing recency positions. Examples of such “non-
LRU” applications from SPEC2006 suite include omnetpp,
xalancbmk etc. [42]. To avoid incurring energy loss for such
applications, ESTEEM detects whether in an interval, hits
in a cache module show non-LRU pattern. This is detected
by noting the hits to different LRU positions and seeing
when the number of hits do not decrease monotonically with
decreasing LRU-recency position. For such modules, the
number of active-ways is not reduced below A− 1. In other
words, for non-LRU applications, the aggressiveness of cache
reconfiguration is reduced.

To decide the exact number of ways to turn-off, we use
the following idea: if the total number of hits in all ways
of a module are H , then we keep X (≤ A) ways turned-on,
such that the total hits in X ways are equal to or greater
than αH , where α < 1 is a parameter. In other words, we
keep a number of ways turned-on to cover at least α fraction
of cache hits. We show an example to explain this. Assume
that for an 8-way cache, the number of hits in different LRU-
positions is {10816,4645,2140,501,217,113,63,11}, where the
first value shows the hits in MRU (most-recently used) posi-
tion while the last value shows the hits in the LRU position.
Here, we have H = 18506. If α = 0.97, then we get X = 4
since at least 4 ways need to be turned-on to achieve equal
to or greater than αH hits. However, if α = 0.95, then X
= 3 and hence, only 3 ways need to be turned-on.

We also use a parameter Amin, which shows the minimum
number of ways which are always turned-on. The typical
values of Amin used in this paper are 2, 3 and 4. We do not
take Amin = 1, since keeping only a single-way turned-on
makes the LLC a direct-mapped cache, which leads to large
performance loss due to increased off-chip accesses.

3.2 Cache Profiling
For making dynamic cache reconfiguration decisions, ES-

TEEM collects data using dynamic profiling approach. For
this purpose, it uses auxiliary tag directory (ATD) [37]. The
ATD has the same associativity and replacement policy as
the main tag directory (MTD) and uses set-sampling ap-

101

Algorithm 1 ESTEEM Energy Saving Algorithm

1: INPUT: nL2Hit[0:M -1][0:A-1] showing the number of hits to different LRU-positions for different modules in last interval;
Amin showing the minimum number of ways to be always turned-on; α showing the hit threshold.

2: OUTPUT: nActiveWay[0:M -1] showing algorithm decision about number of ways to keep turned-on in different modules
3: Let Accumulated L2Hit[0:M -1][0:A-1] be a variable
4: for m=0 to M -1 do ⊲ First see, if the module is non-LRU
5: Let nLRUAnomaly ←0
6: for i=0 to A-2 do
7: if nL2Hit[m][i]<nL2Hit[m][i+1] then
8: nLRUAnomaly ← nLRUAnomaly+1
9: end if
10: end for
11: if nLRUAnomaly ≥ A/4 then
12: isModuleNonLRU ← TRUE
13: end if

⊲ Now decide the number of ways to turn-off
14: for i=0 to A-1 do
15: Accumulated L2Hit[m][i] ←

∑i

j=0
nL2Hit[m][j]

16: end for
17: totHitsThisModule ← Accumulated L2Hit[m][A-1]
18: for i=0 to A-1 do
19: if Accumulated L2Hit[m][i] ≥ (α× totHitsThisModule) then
20: nActiveWay[m] ← MAX(Amin, i+1)
21: if isModuleNonLRU then
22: nActiveWay[m] ← MAX(A-1, i+1)
23: end if
24: Break from for loop
25: end if
26: end for
27: end for

return nActiveWay[0:M -1]

proach [35] to keep its overhead small. The ratio of the
number of sets in the L2 cache and that in ATD is shown as
Rs and its typical values are 32, 64, 128 etc. As an example,
for Rs =64, ATD monitors only 1/64 of the sets. We use
an ATD, which is embedded in the MTD of the L2 cache.
The sets which are monitored are called the leader sets and
the remaining sets are called the follower sets. The leader
sets do not undergo cache reconfiguration. Profiling infor-
mation is only collected from the leader sets. The follower
sets undergo cache reconfiguration based on the decision of
the algorithm. Since the cache-sets are divided into multiple
modules, statistics obtained from a leader set count towards
the module in which this leader set falls.

4. ENERGY SAVING ALGORITHM
Algorithm 1 shows the energy saving algorithm in ES-

TEEM, which can be a kernel module. The algorithm runs
after every few million cycles (e.g. 10M cycles). The al-
gorithm can be understood as follows. The algorithm first
checks whether a module is non-LRU, which is checked by
comparing the number of hits at different LRU positions.
For each LRU position, the algorithm computes the accu-
mulated hits till that LRU position. The number of ways
to keep active can thus be decided by the LRU position,
at which total hits are α fraction (e.g. 95%) of the total
hits. For a non-LRU module, at most 1 way is turned-off for
the reasons explained the previous section. This process is
repeated for each of the module.

The overhead of the algorithm is very small. Periodically,
a kernel routine is triggered which executes algorithm. The
output of the algorithm is the decision about the number of
ways to be turned-off in each module, which can be easily
implemented using per-way disable bits. Thus, the changes
required in the cache and the hardware overhead are very
small. The algorithm reads few counters and runs infre-
quently, so its power overhead is amortized over the length
of the phase. The power saving provided by the algorithm
easily allow adding small additional hardware within the
power-budget. Many processors already use counters for OS
or measuring performance [22], which can be leveraged by
the algorithm. Modern processors already use write-back
buffers, specific instructions, and MSHRs (miss-status hold-
ing registers), which handle writing-back of flushed data.

5. IMPLEMENTATION AND OVERHEAD

ASSESSMENT
We assume that power-gating of eDRAM is achieved by

a suitable circuit-level technique, as proposed by several au-
thors [10, 12, 16, 32]. For each module, we use A − Amin

control bits which control turning-off or turning-on of the
ways in that module.

Cache reconfigurations are handled as follows. When the
number of ways is reduced, the clean cache lines in those
ways are discarded and the dirty lines are written-back.
When the number of ways is increased, the extra ways are
simply turned-on and they are subsequently used for storing
data. With ESTEEM technique, cache reconfigurations hap-

102

pen only at the end of a large interval and not throughout
the execution of the application. Thus, cache line-switching
does not lie on the critical access path of the cache. Also, un-
like selective-sets approach used in previous works [34], the
selective-ways approach used in ESTEEM does not require
changing the set-decoding of the cache and hence, ESTEEM
does not increase the cache access time. Further, ESTEEM
provides fine-grained cache reconfiguration with caches of
typical associativity and thus, does not require use of caches
of large associativity which have significantly large access
time and energy. Also note that ESTEEM does not require
tables for offline profiling (as in [44]) or using per-block coun-
ters to monitor cache access intensity (as in [22]). Also, it
does not require prediction of cache or memory energy (as
in [31]) or hits/misses for different cache configurations (as
in [30]).

ESTEEM uses counters for recording the number of hits
to different LRU positions and execution of algorithm. For
nL2Hit and Accumulated L2Hit, total storage required is
2 × M × A counters (assuming Amin = 0 for simplicity)
and for nActiveWay, the storage required is M counters.
Assuming that each counter takes 40 bits, the total storage
overhead of ESTEEM, as a percentage of L2 storage, can be
expressed as

Overhead =
(2A+ 1)M × 40

SA(B +G)
× 100 (1)

For a 4MB cache with 16 modules and 16-way set-associativity,
the overhead of ESTEEM is found to be 0.06% of the L2
cache size, which is extremely small. For this reason, we
ignore the overhead of counters.

6. EXPERIMENTAL METHODOLOGY

6.1 Simulation Platform and Workload
We perform microarchitectural simulation using Sniper

x86-64 simulator [9]. The processor has 2GHz frequency.
All caches use a line size of 64B. Both L1D and L1I are
32KB, 4-way, LRU caches and have a latency of 2 cycles.
The L2 cache is a 16-way, LRU cache with 12 cycle latency.
Its size for single and dual-core system is 4MB and 8MB, re-
spectively. L1 caches are private to each core and L2 cache
is shared among cores. The latency of main memory is 220
cycles and memory queue contention is also modeled. The
main memory bandwidth for single and dual-core system is
10 GB/s and 15GB/s, respectively.

All eDRAM L2 caches have a 4-bank structure. We as-
sume that each bank of L2 cache has dedicated logic to pro-
cess refresh requests and using pipelining, a line can be re-
freshed in a single cycle [4]. For eDRAM cells, Barth et al. [8]
report a retention period of 40µs at 105◦C. In this paper,
we assume working temperature of 60◦C and since retention
periods are exponentially dependent on temperature [4], we
present most of the results with a retention period of 50µ.
In Section 7.3, we also present results for a retention period
of 40µs.

We use all 29 SPEC2006 benchmarks [17] with ref inputs
and 5 benchmarks from HPC field (shown as italics in Ta-
ble 1) [1, 2]. Using these benchmarks, we randomly make
17 dual-core multiprogrammed workloads, such that each
benchmark is used only once. These workloads are shown in
Table 1.

Table 1: Workloads Used in the Paper

Single-core workloads and their acronyms
As(astar), Bw(bwaves), Bz(bzip2), Cd(cactusADM)

Ca(calculix), Dl(dealII), Ga(gamess), Gc(gcc)
Gm(gemsFDTD), Gk(gobmk), Gr(gromacs), H2(h264ref)

Hm(hmmer), Lb(lbm), Ls(leslie3d), Lq(libquantum)
Mc(mcf), Mi(milc), Nd(namd), Om(omnetpp)

Pe(perlbench), Po(povray), Sj(sjeng), So(soplex)
Sp(sphinx), To(tonto), Wr(wrf), Xa(xalancbmk)
Ze(zeusmp), Am(amg2013), Co(comd), Lu(lulesh)

Ne(nekbone), Xb(xsbench)
Dual-core workloads and their acronyms
GmDl(gemsFDTD-dealII), AsXb(astar-xsbench)
GcGa(gcc-gamess), BzXa(bzip2-xalancbmk)
LsLb(leslie3d-lbm), GkNe(gobmk-nekbone)

OmGr(omnetpp-gromacs), NdCd(namd-cactusADM)
CaTo(calculix-tonto), SpBw(sphinx-bwaves)
LqPo(libquantum-povray), SjWr(sjeng-wrf)

PeZe(perlbench-zeusmp), HmH2(hmmer-h264ref)
SoMi(soplex-milc), McLu(mcf-lulesh)

CoAm(comd-amg2013)

6.2 Comparison With Other Technique
We compare ESTEEM with Refrint polyphase-valid (RPV)

policy [4]. RPV works on the idea that on a read or a
write, an eDRAM cache block is automatically refreshed and
hence, it need not be refreshed for the duration of one reten-
tion period. RPV divides the retention period into a num-
ber of phases. Each cache block maintains the information
about the phase in which it was last updated. Afterwards,
to reduce the number of refresh operations, RPV refreshes
the block at the beginning of this phase in the next retention
period, instead of refreshing at beginning of refresh period
itself. Also, RPV only refreshes the valid blocks. We use
RPV with four phases, since this has been shown to provide
significant energy savings [4].

Agrawal et al. [4] also propose Refrint polyphase-dirty
(RPD) policy which eagerly invalidates valid blocks to avoid
refreshing them and refreshes only dirty blocks. For appli-
cations where the fraction of dirty data is small, RPD policy
would aggressively invalidate almost the whole cache which
will greatly increase the access to main memory and hence,
we do not evaluate this. Further, RPV policy has been
shown to perform better than another policy proposed by
Agrawal et al., namely the periodic-valid refresh policy [4]
and hence, we do not evaluate periodic-valid refresh policy.

6.3 Energy Model
We account for the energy consumption of L2 cache (EL2),

main memory (EMM) and energy cost of algorithm (EAlgo),
since the techniques evaluated here affect the other compo-
nents only minimally. We use the following notations. LEL2,
DEL2 and REL2 show the leakage, dynamic and refresh en-
ergy consumed in L2 cache, respectively. Edyn

xyz and P leak
xyz

show the dynamic energy per access and leakage energy per
second, respectively, in a component xyz (e.g. L2 or MM).
For ESTEEM, NL shows the number of cache blocks which
are turned on or off (i.e. undergo state transition); Eχ shows
the energy consumed in a single such block transition. FA,
HL2 and ML2 show the active fraction of cache, number
of L2 hits and L2 misses in an interval, respectively. NR

shows the number of cache lines which are refreshed within

103

all refresh-events in an interval. T denotes the time length of
an interval (or any time period of measurement) in seconds.
AMM shows the number of main memory accesses.

We assume that the L2 leakage energy scales with the
active fraction of cache [22,31]. Also, we assume that an L2
miss consumes twice the dynamic energy as that of an L2
hit [29–31]. Thus, we have

E = EL2 + EMM + EAlgo (2)

EL2 = LEL2 +DEL2 +REL2 (3)

LEL2 = P
leak
L2 × FA × T (4)

DEL2 = E
dyn
L2
× (2ML2 +HL2) (5)

REL2 = NR × E
dyn
L2

(6)

EMM = P
leak
MM × T + E

dyn
MM × AMM (7)

EAlgo = Eχ ×NL (8)

We ignore the energy overhead of RPV algorithm, thus,
for experiments with baseline eDRAM cache and RPV, we
have EAlgo = 0 and FA = 1. Note that FA for ESTEEM
duly takes into account the active area due to leader and
follower sets (see Section 3.2).

We use CACTI [27] to obtain the values of E
Dyn
L2

and

PLeak
L2 at 32nm for eDRAM cache. These values are shown

in Table 2. Following [4], we assume that for eDRAM cache,
the time and energy consumed in refreshing a line is equal
to the time and energy to access the line, respectively.

Table 2: Energy values for 16-way eDRAM cache

E
dyn
L2

(nJ/access) P leak
L2 (Watts)

2 MB 0.186 0.096
4 MB 0.212 0.116
8 MB 0.282 0.280
16 MB 0.370 0.456
32 MB 0.467 1.056

E
dyn
MM and P leak

MM are taken as 70 nJ and 0.18 Watt, respec-
tively [23,29,46] and Eχ is taken as 2 pJ [29,30].

6.4 Evaluation Metrics
Our baseline is as an eDRAM cache which periodically

refreshes all the cache lines at the given retention period
and does not use any refresh-minimization technique. We
show the results on the following metrics.

1. Percentage energy saving (as defined above)

2. Weighted speedup (WS) [24,29,31], referred to as rel-
ative performance. It is defined as

WS =

N−1∑

n=0

IPCn(technique)

IPCn(base)

N
(9)

Here technique refers to either ESTEEM or RPV.

3. Absolute reduction in number of cache lines refreshed
per kilo instructions (RPKI).

For ESTEEM technique, we also show the results on the
following metrics:

1. Absolute increase in MPKI (miss-per kilo instructions)
[30] due to use of ESTEEM

2. Active ratio (the fraction of active lines averaged over
entire execution [22,29])

The decrease in RPKI helps us to evaluate the efficacy of
a technique in reducing refresh operations. Active ratio en-
ables us to evaluate the aggressiveness of cache turn-off of
ESTEEM and the increase in MPKI helps in evaluating the
increase in off-chip traffic. Note that since RPV does not
turn-off the cache or cause early invalidation, its ActiveRa-
tio is always 100% and the increase in MPKI is always zero.

The benchmarks were fast-forwarded for 10B instructions.
Then, each workload is simulated for 400M instructions. For
dual-core system, the benchmark which finished its 400M
instructions early was allowed to run, however, its IPC (for
computing speedup) was only recorded for the first 400M
instructions, following well-established simulation method-
ology [14,29]. For dual-core system, we have also computed
the value of fair speedup [29,31] and found its average value
to be close to the weighted speedup. Thus, our technique
does not cause unfairness. For the sake of brevity, we omit
these results. Across the workloads, speedup (weighted and
fair) values are averaged using geometric mean and the re-
maining metrics are averaged using arithmetic mean, since
they can be zero or negative.

7. RESULTS AND ANALYSIS
We now present the results. In Sections 7.1, 7.2 and 7.3,

we use the following parameters. The size of L2 cache for
single and dual-core systems are 4 and 8 MB, respectively.
For ESTEEM, we use the following parameters: α = 0.97,
Amin = 3, Rs =64, an interval length of 10M cycles and 8
modules for single-core system and 16 modules for dual-core
system.

7.1 Example of working of ESTEEM
To get insights into working of ESTEEM, we first show

the cache reconfiguration taking place with ESTEEM for
a selected workload (namely h264ref) in Figure 2. Notice

Number of Intervals

0 5 10 15 20 Mo
dul

es

0 1 2 3 4
5 6

7

Ac
tiv

e
W
ay

s

0
2
4
6
8
10
12
14
16

Figure 2: Example of working of ESTEEM for
h264ref benchmark. Note that, in any interval, the
number of active ways in different modules may be
different.

that depending on the cache requirement, the cache active

104

-10
 0

 10
 20
 30
 40
 50
 60
 70

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Am Co Lu Ne Xb Avg

% Energy saved (Higher is better) ESTEEM RPV

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Am Co Lu Ne Xb Avg

 Relative Performance (Higher is better) ESTEEM RPV

 0

 200

 400

 600

 800

 1000

 1200

 1400

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Am Co Lu Ne Xb Avg

Decrease in RPKI (Higher is better) ESTEEM RPV

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Am Co Lu Ne Xb Avg

Increase in MPKI (Lower is better) ESTEEM

 0

 20

 40

 60

 80

 100

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Am Co Lu Ne Xb Avg

 Active Ratio ESTEEM

Figure 3: Single-core results for different techniques at 50 µs refresh period.

ratio changes with time (i.e. over different intervals). More
importantly, the number of active ways in different modules
can possibly be different. This clearly shows the advantage
of ESTEEM in exercising fine-grained cache reconfiguration.

7.2 Results with 50µs Retention Period
Figures 3 and 4 show the results for single and dual-core

systems, respectively. We now discuss and analyze the re-
sults.

For single and dual-core systems, the average saving in
memory sub-system energy on using ESTEEM (resp. RPV)
are 25.82% (resp. 15.93%) and 32.63% (resp. 14.3%), re-
spectively. Also, the average relative performance on using
ESTEEM (resp. RPV) are 1.09× (resp. 1.06×) and 1.22×
(resp. 1.09×), respectively. With ESTEEM, for single and
dual-core systems, the largest amount of energy saving is
seen for gamess (68.7%) and GkNe (77.2%), respectively.
The largest improvement in performance is seem for Gk
(1.29×) and GkNe (1.48×). The performance is improved
despite cache-turnoff due to reduction in refresh operations
which offsets the penalty of increased cache misses.

The actual performance/power improvement achieved with
ESTEEM depends on interaction of several factors. Turn-
ing off large fraction of cache saves large amount of leak-
age energy and avoids the need of large number of refresh
operations. Reduction in refresh operations leads to per-
formance improvement (i.e. reduction in execution time),
which further reduces the refresh operations and the refresh
and leakage energy consumed in the cache. However, the ex-
tra misses and writebacks introduced due to reduced cache
size increase the energy consumed in main memory.

RPV saves energy when only a small portion of the cache
stores valid data, since in such cases, a large number of
refresh operations can be avoided. For some applications,
nearly the whole cache stores valid data and hence, the scope
for avoiding refresh operations is minimal. Moreover, it has
been shown that [22] cache lines typically have a flurry of fre-
quent use when first brought into the cache, and then see a
period of “dead time” before they are evicted. Thus, for any
cache line, after the last access and before its eviction, RPV
does not avoid or minimize refresh operations to the cache
line. For these reasons, the effectiveness of RPV in mini-
mizing refresh operations is limited. In contrast, ESTEEM
intelligently reduces the active fraction of cache, which in-
trinsically minimizes the number of cache lines which need
to be refreshed.

In general, for dual-core system, the intensity of cache ac-
cess is higher than that in single-core system. For this rea-
son, the fraction of invalid cache blocks is reduced. Hence,
RPV saves smaller percentage of energy in the dual-core sys-
tem. This is also evident from the smaller value of decrease
in RPKI in the case of dual-core system for RPKI. For single-
core system, the reduction in RPKI on using ESTEEM and
RPV are 467 and 161, respectively, and for dual-core system,
these values are 511 and 134, respectively. Large reduction
in RPKI also reflects in improved performance, since the
performance overhead of refresh operations is avoided. Also
note that compared to RPV, ESTEEM achieves nearly 4×
reduction in RPKI.

Since ESTEEM turns-off a fraction of cache, it also has
the advantage of saving leakage energy. With single and
dual-core systems, the average active-ratio achieved on us-

105

-10
 0

 10
 20
 30
 40
 50
 60
 70
 80

GmDl AsXb GcGa BzXa LsLb GkNe OmGr NdCd CaTo SpBw LqPo SjWr PeZe HmH2 SoMi McLu CoAm Avg

% Energy saved (Higher is better) ESTEEM RPV

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

GmDl AsXb GcGa BzXa LsLb GkNe OmGr NdCd CaTo SpBw LqPo SjWr PeZe HmH2 SoMi McLu CoAm Avg

 Relative Performance (Higher is better) ESTEEM RPV

-200

 0

 200

 400

 600

 800

 1000

 1200

GmDl AsXb GcGa BzXa LsLb GkNe OmGr NdCd CaTo SpBw LqPo SjWr PeZe HmH2 SoMi McLu CoAm Avg

Decrease in RPKI (Higher is better) ESTEEM RPV

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

GmDl AsXb GcGa BzXa LsLb GkNe OmGr NdCd CaTo SpBw LqPo SjWr PeZe HmH2 SoMi McLu CoAm Avg

Increase in MPKI (Lower is better) ESTEEM

 0

 20

 40

 60

 80

 100

GmDl AsXb GcGa BzXa LsLb GkNe OmGr NdCd CaTo SpBw LqPo SjWr PeZe HmH2 SoMi McLu CoAm Avg

 Active Ratio ESTEEM

Figure 4: Dual-core results for different techniques at 50µs refresh period.

ing ESTEEM are 44.1% and 50.2%, respectively. For some
applications, such as libquantum and milc, the data reuse
is very small (i.e. miss-rate is nearly 100%) and thus, the
working set size of the application is much smaller compared
to the cache size. In such cases, ESTEEM aggressively re-
duces the cache active fraction and the number of refresh
operations and provides large saving in energy.

On using ESTEEM, the average increase in MPKI for sin-
gle and dual-core system are 0.31 and 0.37, respectively.
Thus, the increase in off-chip traffic on using ESTEEM is
very small. This is because, by virtue of using dynamic
cache reconfiguration, ESTEEM closely adjusts the size of
cache in response to intra- and inter-application variation in
cache requirement of different applications. Also, it always
keeps 3 ways active and keeps as many ways active as re-
quired for achieving at least 97% cache hits (assuming the
parameters shown above are chosen).

For some single-core workloads, a small loss in perfor-
mance/energy is seen on using ESTEEM. This is due to ei-
ther the non-LRU behavior (e.g. omnetpp and xalancbmk)
or large application working-set size (e.g. mcf and soplex).
Also, in general, the reconfiguration overhead resulting from
increased off-chip traffic slightly offsets the energy saving
achieved in cache. These overheads can be minimized by
increasing the value of α, Amin and interval length. We
study the effect of these parameters in Section 7.4. The re-
configuration overhead can also be minimized by restricting
the maximum number of change in associativity in each in-
terval or detecting and avoiding frequent reconfigurations.
This extension of the energy saving algorithm is planned as
a future work.

7.3 Results with 40µs Retention Period
Since an increase in temperature and process variations re-

duce the retention period, we now test ESTEEM and RPV
with reduced 40 µs retention period. The results are shown
in Figures 5 and 6. In this section, we only comment on the
effect of the retention period, compared to the case with 50
µs retention period, since the results can be easily under-
stood based on the above explanation.

With reduced retention period, a large fraction of energy
is consumed in the form of refresh energy for the baseline
cache. Also, the energy consumption of L2 is increased and
hence, it becomes a larger fraction of memory subsystem
energy. Furthermore, with reduced retention period, the
same number of blocks need to be refreshed within smaller
amount of time. These refresh operations also make the
cache unavailable, leading to performance loss. Hence, at
lower retention period, the scope of and benefits from re-
ducing refresh operations are further increased. This is also
reflected in the reduction in RPKI value for both ESTEEM
and RPV. For the same reason, both ESTEEM and RPV
show larger improvement in performance and energy effi-
ciency. With ESTEEM, the largest improvement in energy
saving is seen in gamess (73.6%) and GkNe (83.2%). Also,
the largest improvement in performance is seen in gobmk
(1.40×) and GcGa (1.72×).

It is clear that a reduction of merely 10µs in retention
period can increase refresh energy significantly. Thus, for
smaller retention periods, the need of a technique for re-
ducing refresh operations is increased even further. This
highlights the importance of our technique.

106

-10
 0

 10
 20
 30
 40
 50
 60
 70
 80

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Am Co Lu Ne Xb Avg

% Energy saved (Higher is better) ESTEEM RPV

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 1.45

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Am Co Lu Ne Xb Avg

 Relative Performance (Higher is better)
ESTEEM RPV

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Am Co Lu Ne Xb Avg

Decrease in RPKI (Higher is better) ESTEEM RPV

 0

 0.2

 0.4

 0.6

 0.8

 1

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Am Co Lu Ne Xb Avg

Increase in MPKI (Lower is better) ESTEEM

 0

 20

 40

 60

 80

 100

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Am Co Lu Ne Xb Avg

 Active Ratio ESTEEM

Figure 5: Single-core results for different techniques at 40µs refresh period.

-10
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

GmDl AsXb GcGa BzXa LsLb GkNe OmGr NdCd CaTo SpBw LqPo SjWr PeZe HmH2 SoMi McLu CoAm Avg

% Energy saved (Higher is better) ESTEEM RPV

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

GmDl AsXb GcGa BzXa LsLb GkNe OmGr NdCd CaTo SpBw LqPo SjWr PeZe HmH2 SoMi McLu CoAm Avg

 Relative Performance (Higher is better) ESTEEM RPV

-500

 0

 500

 1000

 1500

 2000

GmDl AsXb GcGa BzXa LsLb GkNe OmGr NdCd CaTo SpBw LqPo SjWr PeZe HmH2 SoMi McLu CoAm Avg

Decrease in RPKI (Higher is better) ESTEEM RPV

 0

 0.2

 0.4

 0.6

 0.8

 1

GmDl AsXb GcGa BzXa LsLb GkNe OmGr NdCd CaTo SpBw LqPo SjWr PeZe HmH2 SoMi McLu CoAm Avg

Increase in MPKI (Lower is better) ESTEEM

 0

 20

 40

 60

 80

 100

GmDl AsXb GcGa BzXa LsLb GkNe OmGr NdCd CaTo SpBw LqPo SjWr PeZe HmH2 SoMi McLu CoAm Avg

 Active Ratio ESTEEM

Figure 6: Dual-core results for different techniques at 40µs refresh period.

107

Table 3: Parameter sensitivity results for ESTEEM
(Rel. Perf. = relative performance, Dec. = de-
crease, Inc. = increase). Default parameters are
shown in the beginning of Section 7.

% Energy Rel. RPKI MPKI Active
Saving Perf. Dec. Inc. Ratio
Single-core System

Default 25.82 1.09 467.4 0.31 44.10
Amin=2 25.46 1.08 482.4 0.36 41.60
Amin=4 25.76 1.09 449.1 0.26 47.00
α=0.95 24.95 1.08 473.9 0.37 42.70
α=0.99 26.56 1.09 458.2 0.24 46.10

2 modules 24.52 1.08 458.5 0.34 44.93
4 modules 25.96 1.09 457.7 0.27 45.20
16 modules 24.87 1.09 478.2 0.37 42.40
32 modules 19.41 1.06 491.0 0.62 38.97
5M interval 24.07 1.09 491.4 0.43 40.40
15M interval 25.82 1.09 456.5 0.27 46.00

Rs =32 25.79 1.09 458.9 0.28 45.80
Rs =128 24.30 1.08 477.7 0.38 42.20
8-way L2 23.68 1.08 397.9 0.20 55.94
32-way L2 24.39 1.08 499.3 0.49 38.27
2MB L2 10.18 1.02 204.4 0.38 48.00
8MB L2 49.42 1.29 1257.3 0.37 41.70

Two-core System
Default 32.63 1.22 511.9 0.37 50.20
Amin=2 32.04 1.22 525.0 0.47 48.50
Amin=4 32.44 1.22 495.1 0.31 52.40
α=0.95 32.01 1.23 524.5 0.43 48.10
α=0.99 32.90 1.22 490.9 0.29 53.50

4 modules 31.22 1.19 482.9 0.35 51.40
8 modules 32.15 1.21 497.1 0.35 51.30
32 modules 32.13 1.23 526.1 0.42 47.90
64 modules 28.75 1.21 546.2 0.59 43.69
5M interval 32.41 1.23 543.4 0.49 46.60
15M interval 32.16 1.21 493.5 0.33 52.30

Rs =32 32.69 1.22 500.5 0.35 51.90
Rs =128 32.13 1.23 526.2 0.43 47.90
8-way L2 30.00 1.19 424.7 0.25 60.73
32-way L2 31.91 1.23 541.8 0.56 45.70
4MB L2 8.04 1.06 181.9 0.45 55.70
16MB L2 66.25 2.11 2438.0 0.68 43.70

7.4 Parameter Sensitivity Results
We now focus exclusively on ESTEEM and study its sensi-

tivity for different parameters. The retention period is fixed
to 50µs. Each time, we only change one parameter from
the default parameters used above. The results are summa-
rized in Table 3. For comparison purposes, the results with
default parameters are also shown.

Change in Amin: On changing Amin (the minimum
number of ways which are always kept on) from 3 to 2, the
algorithm turns off a larger fraction of cache and hence, the
active ratio is reduced and MPKI is increased further. This
also reduces the refresh operations further. However, due
to increased off-chip accesses, a small reduction in overall
saving is achieved. The results on increasing Amin to 4 can
be similarly understood.

Change in α: On changing α from 0.97 to 0.95, the
aggressiveness of cache reconfiguration is increased, as re-
flected in results on active ratio, MPKI increase and RPKI
decrease. However, it also increases the main memory en-

ergy and hence, the overall energy saving is slightly reduced.
The opposite is seen on changing α to 0.99.

Change in number of modules (M): We experiment
with both smaller and higher number of modules. On reduc-
ing the number of modules, both granularity and aggressive-
ness of reconfiguration is reduced, as reflected from values
of MPKI and active ratio. This also reduces the decrease
in RPKI and off-chip accesses. The net energy saving and
performance depends on the interaction of these parameters.
Conversely, on increasing the number of modules, cache can
be reconfigured in more fine-grain manner. Thus, the active
ratio and RPKI are reduced further, although the off-chip
accesses are increased. Using very large number of modules
leads to reduced energy savings due to increased overhead
of cache reconfiguration.

Change in interval size: On changing the interval size
from 10M cycles to 5M cycles, reconfiguration algorithm is
more frequently executed. Thus, the active ratio is reduced
further, with corresponding reduction in RPKI. However,
due to frequent reconfiguration, the overhead of reconfig-
uration is also increased, as evident from the value of in-
crease in MPKI, which also increases the main memory en-
ergy. Hence, the overall energy saving is slightly reduced.
The opposite phenomenon is seen on increasing the interval
size to 15M cycles and the overall energy saving achieved
depends on the interaction of the above mentioned factors.

Change in sampling ratio (Rs): On changing the sam-
pling ratio from 64 to 32, the energy and performance im-
provement are enhanced. Also, even with the sampling ratio
of 128, ESTEEM achieves large improvement in performance
and energy efficiency. Thus, a designer can choose a suit-
able value of sampling ratio to achieve a balance between
profiling overhead and the energy saving achieved.

Change in associativity (A): We experiment with both
8-way and 32-way set-associative cache. For 8-way cache,
using Amin = 3 leads to keeping at least 3 out of 8 ways
always on. This leads to higher active ratio and smaller in-
crease in MPKI. However, due to this, the aggressiveness of
ESTEEM in reducing the refresh operations is also reduced,
which leads to smaller energy saving. Conversely, for 32-way
cache, using Amin = 3 leads to keeping only at most 3-ways
always on and thus, the active ratio is reduced, although the
increase in MPKI is also enhanced. Due to larger fraction of
turned-off cache and larger reduction in refresh operations,
the energy saving is increased.

Change in cache size: We experiment with both double
and half size cache, compared to the cache size used in Sec-
tion 7.2. On increasing the cache size, the scope for saving
both leakage and refresh energy is increased. This is be-
cause the applications have fixed working set size and with
larger cache size, a large fraction of energy is wasted due to
unnecessary refresh operations. Also, for larger cache size,
the contribution of L2 cache in memory subsystem energy
is also larger. Further, with larger cache size, more cache
blocks need to be refreshed in the same amount of time,
which significantly degrades the performance. This clearly
shows that use of a technique for minimizing refresh en-
ergy is inevitable for large-sized last-level caches. From the
results, we conclude that ESTEEM provides large energy
saving and performance improvement with large cache size,
in fact, with double cache size, for dual-core system, 66.25%
energy is saved. The opposite trend is seen on reducing the
cache size.

108

The results shown in this section confirm that ESTEEM
is effective in saving energy in eDRAM caches and also im-
proves performance. Also, by adjusting α, Amin and the
interval size, a designer can achieve fine balance between
the performance gain and energy saving.

8. CONCLUSION
Embedded DRAM caches present as a promising alterna-

tive to SRAM due to their low leakage value, however, ad-
dressing their refresh overhead is crucial to enabling their
use in designing on-chip caches. In this paper, we pre-
sented ESTEEM, a technique for saving both leakage and
refresh energy in eDRAM caches. The experimental results
have shown that ESTEEM provides significant energy sav-
ings, while improving performance. Also, it outperforms a
recently-proposed technique for mitigating refresh overhead
in eDRAM caches.

Acknowledgements

Support for this work was provided by U.S. Department of
Energy, Office of Science, Advanced Scientific Computing
Research. The work was performed at the Oak Ridge Na-
tional Laboratory, which is managed by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 to the U.S. Gov-
ernment. Accordingly, the U.S. Government retains a non-
exclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do
so, for U.S. Government purposes.

9. REFERENCES
[1] http://oxbow.ornl.gov/apps.html.

[2] https://github.com/jtramm/XSBench.

[3] Top 500 Supercomputers. www.top500.org, 2013.

[4] A. Agrawal, P. Jain, A. Ansari, and J. Torrellas.
Refrint: Intelligent refresh to minimize power in
on-chip multiprocessor cache hierarchies. HPCA, 2013.

[5] D. H. Albonesi. Selective cache ways: on-demand
cache resource allocation. In MICRO, pages 248–259,
1999.

[6] C. S. Bae, L. Xia, P. Dinda, and J. Lange. Dynamic
adaptive virtual core mapping to improve power,
energy, and performance in multi-socket multicores.
HPDC, pages 247–258, 2012.

[7] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli,
C. Prete, and P. Stenström. Leveraging data
promotion for low power D-NUCA caches. In
EUROMICRO Conference on Digital System Design
(DSD), pages 307–316, 2008.

[8] J. Barth et al. A 500 MHz random cycle, 1.5 ns
latency, SOI embedded DRAM macro featuring a
three-transistor micro sense amplifier. IEEE Journal
of Solid-State Circuits, 43(1):86–95, 2008.

[9] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper:
Exploring the level of abstraction for scalable and
accurate parallel multi-core simulations. In SC, 2011.

[10] M.-T. Chang, P.-T. Huang, and W. Hwang. A 65nm
low power 2T1D embedded DRAM with leakage
current reduction. In IEEE International SOC
Conference, pages 207–210, 2007.

[11] M.-T. Chang, P. Rosenfeld, S.-L. Lu, and B. Jacob.
Technology Comparison for Large Last-Level Caches

(L3Cs): Low-Leakage SRAM, Low Write-Energy
STT-RAM, and Refresh-Optimized eDRAM. HPCA,
2013.

[12] K. C. Chun, P. Jain, and C. H. Kim. Logic-compatible
embedded DRAM design for memory intensive low
power systems. In IEEE International Symposium on
Circuits and Systems (ISCAS), pages 277–280, 2010.

[13] J. Dongarra et al. The International Exascale Software
Project roadmap. IJHPCA, 25(1):3–60, 2011.

[14] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass
and insertion algorithms for exclusive last-level caches.
ACM SIGARCH Computer Architecture News,
39(3):81–92, 2011.

[15] M. Ghosh and H.-H. S. Lee. Smart refresh: An
enhanced memory controller design for reducing
energy in conventional and 3D Die-Stacked DRAMs.
In 40th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 134–145, 2007.

[16] K. Hardee et al. A 0.6 V 205MHz 19.5 ns tRC 16Mb
embedded DRAM. In IEEE International Solid-State
Circuits Conference Digest of Technical Papers
(ISSCC), pages 200–522, 2004.

[17] J. L. Henning. SPEC CPU2006 benchmark
descriptions. ACM SIGARCH Computer Architecture
News, 34(4):1–17, 2006.

[18] Intel. http://ark.intel.com/products/53575/.

[19] S. Iyer, J. Barth Jr, P. Parries, J. Norum, J. Rice,
L. Logan, and D. Hoyniak. Embedded DRAM:
Technology platform for the Blue Gene/L chip. IBM
Journal of Research and Development,
49(2.3):333–350, 2005.

[20] X. Jiang et al. ACCESS: Smart scheduling for
asymmetric cache CMPs. In 17th International
Symposium on High Performance Computer
Architecture (HPCA), pages 527–538, 2011.

[21] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd.
Power7: IBM’s next-generation server processor. IEEE
Micro, 30(2):7–15, 2010.

[22] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
exploiting generational behavior to reduce cache
leakage power. In ISCA, pages 240–251, 2001.

[23] S. K. Khaitan and J. D. McCalley. A hardware-based
approach for saving cache energy in multicore
simulation of power systems. In IEEE Power and
Energy Society General Meeting (PES), pages 1–5,
2013.

[24] S. K. Khaitan and J. D. McCalley. Optimizing cache
energy efficiency in multicore power system
simulations. Energy Systems, pages 1–15, 2013.

[25] N. Kurd et al. Haswell: A family of IA 22nm
processors. In IEEE ISSCC, pages 112–113, 2014.

[26] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi. CACTI-P: Architecture-level modeling for
SRAM-based structures with advanced leakage
reduction techniques. In International Conference on
Computer-Aided Design (ICCAD), pages 694–701,
2011.

[27] CACTI 5.3. http://quid.hpl.hp.com:9081/cacti/, 2013.

[28] S. Mittal. A survey of architectural techniques for
improving cache power efficiency. Sustainable
Computing: Informatics and Systems, 2013.

109

[29] S. Mittal, Y. Cao, and Z. Zhang. MASTER: A
Multicore Cache Energy Saving Technique using
Dynamic Cache Reconfiguration. IEEE Transactions
on VLSI, 2013.

[30] S. Mittal and Z. Zhang. EnCache: Improving Cache
Energy Efficiency Using A Software-Controlled
Profiling Cache. In IEEE International Conference On
Electro/Information Technology, USA, May 2012.

[31] S. Mittal, Z. Zhang, and J. Vetter. FlexiWay: A Cache
Energy Saving Technique Using Fine-grained Cache
Reconfiguration. In IEEE International Conference on
Computer Design (ICCD), pages 100–107, 2013.

[32] F. Morishita et al. A 312-MHz 16-Mb random-cycle
embedded DRAM macro with a power-down data
retention mode for mobile applications. IEEE Journal
of Solid-State Circuits, 40(1):204–212, 2005.

[33] C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmal,
and R. Friedrich. Smart cooling of data centers.
Pacific RIM/ASME International Electronics
Packaging Technical Conference and Exhibition
(IPACK03), 2003.

[34] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and
T. Vijaykumar. Gated-Vdd: a circuit technique to
reduce leakage in deep-submicron cache memories. In
international symposium on Low power electronics and
design (ISLPED), pages 90 – 95, 2000.

[35] T. Puzak. Cache Memory Design. PhD thesis,
University of Massachusetts, 1985.

[36] M. K. Qureshi, S. Gurumurthi, and B. Rajendran.
Phase change memory: From devices to systems.
Synthesis Lectures on Computer Architecture,
6(4):1–134, 2011.

[37] M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In
MICRO, pages 423–432, 2006.

[38] W. R. Reohr. Memories: Exploiting them and
developing them. In IEEE International SOC
Conference, pages 303–310, 2006.

[39] P. Reviriego, A. Sánchez-Macian, and J. A. Maestro.
Low Power embedded DRAM caches using BCH code
partitioning. In IEEE International On-Line Testing
Symposium (IOLTS), pages 79–83, 2012.

[40] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang,
and Y. Solihin. Scaling the bandwidth wall: challenges
in and avenues for CMP scaling. In ACM SIGARCH
Computer Architecture News, volume 37, pages
371–382, 2009.

[41] D. Rolán, B. B. Fraguela, and R. Doallo. Adaptive
line placement with the set balancing cache. In
MICRO, pages 529–540, 2009.

[42] A. Samih, A. Krishna, and Y. Solihin. Understanding
the limits of capacity sharing in CMP Private Caches.
In HPCA, 2009.

[43] A. Valero et al. An hybrid eDRAM/SRAM macrocell
to implement first-level data caches. In MICRO, pages
213–221, 2009.

[44] W. Wang, P. Mishra, and S. Ranka. Dynamic cache
reconfiguration and partitioning for energy
optimization in real-time multi-core systems. In DAC,
pages 948–953, 2011.

[45] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu,
D. Somasekhar, and S.-l. Lu. Reducing cache power
with low-cost, multi-bit error-correcting codes. ACM
SIGARCH Computer Architecture News, 38(3):83–93,
2010.

[46] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Decoupled
DIMM: building high-bandwidth memory system
using low-speed DRAM devices. In ISCA, pages
255–266, 2009.

110

