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Abstract
The demands of improving energy efficiency for high performance scientific applications arise
crucially nowadays. Software-controlled hardware solutions directed by Dynamic Voltage and
Frequency Scaling (DVFS) have shown their effectiveness extensively. Although DVFS is ben-
eficial to green computing, introducing DVFS itself can incur non-negligible overhead, if there
exist a large number of frequency switches issued by DVFS. In this paper, we propose a strategy
to achieve the optimal energy savings for distributed matrix multiplication via algorithmically
trading more computation and communication at a time adaptively with user-specified memory
costs for less DVFS switches, which saves 7.5% more energy on average than a classic strategy.
Moreover, we leverage a high performance communication scheme for fully exploiting network
bandwidth via pipeline broadcast. Overall, the integrated approach achieves substantial energy
savings (up to 51.4%) and performance gain (28.6% on average) compared to ScaLAPACK
pdgemm() on a cluster with an Ethernet switch, and outperforms ScaLAPACK and DPLASMA
pdgemm() respectively by 33.3% and 32.7% on average on a cluster with an Infiniband switch.

Keywords: energy, DVFS, adaptive, memory-aware, performance, binomial tree broadcast, pipeline

broadcast, ScaLAPACK, DPLASMA.

1 Introduction

With the trend of increasing number of interconnected processors providing the unprecedented
capability for large-scale computation, despite exploiting parallelism for boosting performance
of applications running on high performance computing systems, the demands of improving their
energy efficiency arise crucially, which motivates holistic approaches from hardware to software.
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Software-controlled hardware solutions [14] [10] [21] [20] of improving energy efficiency for high
performance applications have been recognized as effective potential approaches, which leverage
different forms of slack in terms of non-overlapped latency [23] to save energy.

For applications running on distributed-memory architectures, Dynamic Voltage and Fre-
quency Scaling (DVFS) [24] has been leveraged extensively to save energy for components such
as CPU, GPU, and memory, where the performance of the components is modified by altering
its supply voltage and operating frequency. Reduction on supply voltage generally results in
decrease of operating frequency as a consequence, and vice versa. Given the assumption that dy-
namic power consumption P of a CMOS-based processor is proportional to product of working
frequency f and square of supply voltage V , i.e., P ∝ fV 2 [19] [12], and also existing work that
indicates energy costs on CPU dominate the total system energy consumption [11], DVFS is
deemed an effective software-based dynamic technique to reduce energy consumption on a high
performance computing system. For instance, DVFS can be leveraged to reduce CPU frequency
if the current operation is not CPU-bound. In other words, execution time of the operation will
barely increase if CPU frequency is scaled down. CPU frequency is kept at the highest scale if
performance of the operation is harmed by decreasing CPU frequency. Energy savings can thus
be achieved due to lower CPU frequency as wells as supply voltage with negligible performance
loss. As a fundamental component of most numerical linear algebra algorithms [8] employed
in high performance scientific computing, state-of-the-art algorithms of matrix multiplication
on a distributed-memory computing system perform alternating matrix broadcast and matrix
multiplication on local computing nodes with a local view [7]. Given that the communication
in distributed matrix multiplication is not bound by CPU frequency while the computation is,
one classic way to achieve energy efficiency for distributed matrix multiplication is to set CPU
frequency to low for broadcast while set it back to high for multiplication [6] [17]. In general,
considerable energy savings can be achieved from the low-power communication phase.

Although employing DVFS is beneficial to saving energy via software-controlled power-
aware execution, introducing DVFS itself can cost non-negligible energy and time overhead
from two aspects. Firstly, using DVFS in our approach is via dynamically modifying CPU
frequency configuration files that are essentially in-memory temporary system files, for setting
up appropriate frequencies at OS level. It incurs considerable memory access overhead if there
exist a large number of such virtual file read and write operations for switching CPU frequency.
Secondly, CPU frequency (a.k.a., gear [10]) transition latency required for taking effect (on
average 100μs for AMD Athlon processors and 38μs for AMD Opteron 2380 processors employed
in this work) results in additional energy costs, since a processor has to stay in use of the
old frequency while switching to the newly-set frequency is not complete. We need to either
minimize the time spent on memory accesses for switching frequency, i.e., the latency required
for changing the gears successfully, or reduce the number of frequency switches to save energy. It
is challenging to reduce the first type of time costs, since it depends on hardware-related factors
such as memory accessing rate and gear transition latency. Alternatively, a software-controlled
energy efficient DVFS scheduling strategy to reduce frequency switches is thus desirable.

Numerous efforts have been conducted on devising energy efficient DVFS-directed solutions,
but few of them concern possible non-negligible overhead incurred from employing DVFS. In this
paper, we propose an adaptive DVFS scheduling strategy with a high performance communi-
cation scheme via pipeline broadcast to achieve the optimal energy and performance efficiency
for distributed matrix multiplication, named HP-DAEMON. Firstly, we propose a memory-
aware mechanism to reduce DVFS overhead, which adaptively limits the number of frequency
switches by grouping communication and computation respectively, at the cost of memory
overhead within a certain user-specified threshold. Further, we take advantage of a pipeline
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broadcast scheme with tuned chunk size to boost performance of communication, with which
network bandwidth is exploited thoroughly compared to binomial tree broadcast.

The rest of this paper is organized as follows. Section 2 discusses related work and section 3
introduces distributed matrix multiplication. We present an adaptive DVFS scheduling strategy
in section 4 and a high performance pipeline broadcast communication scheme in section 5. We
provide details of implementation and evaluation in section 6. Section 7 concludes the paper.

2 Related Work

Numerous energy saving DVFS scheduling strategies exist without considering possible non-
negligible overhead on employ DVFS, including some high performance communication schemes.
DVFS Scheduling for CPU-bound Operations: Alonso et al. [4] leveraged DVFS to
enable an energy efficient execution of LU factorization, where idle threads were set into blocked
and CPU frequency of the corresponding core was lowered down to save energy with minor
performance loss (up to 2.5%). Energy savings achieved were not much (up to 5%) since the
approach was only applied to a shared-memory system where the slack can only result from idle
CPU usage locally. Kimura et al. [17] employed DVFS into two distributed-memory parallel
applications to allow tasks with slack to execute at an appropriate CPU frequency that does
not increase the overall execution time. Energy savings up to 25% were reported with minor
performance loss (as low as 1%). In their work, reducing DVFS overhead was not studied.
DVFS Scheduling for MPI Programs: Kappiah et al. [14] presented a dynamic system
that reduces CPU frequency on nodes with less computation and more slack to use. With little
performance loss, their approach was able to save energy for power-scalable clusters, where the
computation load was imbalanced. Springer et al. [21] presented a combination of performance
modeling, performance prediction, and program execution to find a near-optimal schedule of
number of nodes and CPU frequency to satisfy energy costs and execution time requirements.
Li et al. [18] proposed a strategy to improve energy efficiency for hybrid parallel applications
where both shared and distributed-memory programming models (OpenMP and MPI) were
employed. The key difference between our approach and these solutions is that we take the
overhead on applying DVFS into account and minimize its costs to save energy.
Improving MPI Communication Performance: Chan et al. [5] redesigned MPI communi-
cation algorithms to achieve that one node can communicate with multiple nodes simultaneously
with lower costs rather than one-to-one at a time. Faraj et al. [9] presented a customized sys-
tem that generates efficient MPI collective communication routines via automatically-generated
topology specific routines and performance tuning to achieve high performance consistently.
Karwande et al. [16] presented an MPI prototype supporting compiled communication to im-
prove performance of MPI communication routines, which allowed the user to manage network
resources to aggressively optimize communication. Hunold et al. [13] proposed a mechanism
that automatically selected a suitable set of blocking factors and block sizes for pdgemm() to
maximize performance. Our approach differs from these techniques, since it improves MPI
communication performance via highly-tuned pipeline broadcast that maximizes the slack uti-
lization, without modifying MPI communication routines and the pdgemm() routine interface.

3 Background: Distributed Matrix Multiplication

Matrix multiplication is one fundamental operation of most numerical linear algebra algorithms
for solving a system of linear equations, such as Cholesky, LU, and QR factorizations [8], where
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Figure 1: A Distributed Matrix Multiplication Algorithm with a Global View.

runtime percentage of matrix multiplication can be up to 92% [22]. Moreover, nowadays matrix
multiplication has been widely used in many areas other than scientific computing, including
computer graphics, quantum mechanics, game theory, and economics. In scientific computing,
various software libraries of numerical linear algebra for distributed multi-core high performance
scientific computing (ScaLAPACK [3] and DPLASMA [2]) have routines of various functionality
where matrix multiplication is involved. In this paper, we aim to achieve the optimal energy and
performance efficiency for distributed matrix multiplication in general. Our approach works at
library level and thus serves as a cornerstone of saving energy and time for other numerical
linear algebra operations where matrix multiplication is intensively employed.

3.1 Algorithmic Details

The matrix multiplication routines from ScaLAPACK/DPLASMA are essentially derived from
DIMMA (Distribution-Independent Matrix Multiplication Algorithm), an advanced version of
SUMMA (Scalable Universal Matrix Multiplication Algorithm) [7]. The core algorithm consists
of three steps: (a) Partition the global matrix into the process grid using load balancing tech-
niques, (b) broadcast local sub-matrices in a row-/column-wise way as a logical ring, and (c) per-
form local sub-matrix multiplication. Applying an optimized communication scheme, DIMMA
outperforms SUMMA by eliminating slack from overlapping computation and communication
effectively. Next we illustrate DIMMA using Directed Acyclic Graph (DAG) representation.

3.2 DAG Representation

In general, a task-parallel application such as distributed matrix multiplication can be parti-
tioned into a cluster of computing nodes for parallel execution. The method of partitioning
greatly affects the outcomes of energy and performance efficiency. During task partitioning,
data dependencies between tasks must be respected for correctness. When the application is
partitioned, data dependencies between distributed tasks can be represented using DAGs, which
characterize parallel executions of tasks effectively. A formal definition of DAGs is given below:

Definition 1. Data dependencies between tasks from partitioning a task-parallel application
are modeled by a Directed Acyclic Graph (DAG) G = (V,E), where each node v ∈ V denotes
a task, and each directed edge e ∈ E denotes a dynamic data dependency between the tasks.
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(a) DAGbasic (b) DAGdaemon

Figure 2: Matrix Multiplication DAGs with Two DVFS Scheduling Strategies.

Next we show how a task-parallel application is partitioned to achieve parallelism and rep-
resented in DAG, taking distributed matrix multiplication for example. Consider multiplying
of a m × k matrix A and a k × n matrix B, to produce a m × n matrix C. For calculating
a matrix element (i, j) in C, denoted as C(i, j), we apply a cache efficient blocking method,
where columns of A multiply rows of B to reduce cache misses, as shown in Figure 1. Recall
that distributed matrix multiplication requires alternating matrix broadcast and matrix mul-
tiplication, as two DAGs shown in Figure 2. Each DAG represents an execution of calculating
C(i, j) with a DVFS scheduling strategy, where Figure 2 (a) gives the DVFS scheduling strat-
egy employed in [6] [17], and the adaptive DVFS scheduling strategy proposed in this paper is
shown in Figure 2 (b). Given matrices A and B, each matrix row needs to be broadcasted to
other rows located in different nodes and likewise each matrix column needs to be broadcasted
to other nodes, such that sub-matrices of the resulting matrix C are calculated locally and ac-
cumulated to C globally. As the strategy shown in Figure 2 (a), each broadcast step is followed
by a multiplication step alternatingly until all sub-matrices of A and B involved in calculat-
ing C(i, j) are broadcasted and computed, where Bcast(C(i, j)) denotes step-wise broadcasting
sub-matrices of A and B that are involved in calculating C(i, j), and MatMul(C(i, j)) denotes
step-wise multiplying and accumulating these sub-matrices of A and B that are broadcasted.

4 Adaptive Memory-aware DVFS Scheduling Strategy

Next we present an adaptive memory-aware DVFS scheduling strategy (referred to as DAE-
MON henceforth) that limits the overhead on employing DVFS, at the cost of user-specified
memory overhead threshold, which determines the extent of DVFS overhead. The heuristic
of DAEMON is straightforward: Combine multiple broadcasts/multiplications as a group to
reduce the number of frequency switches by DVFS, i.e., trade more computation and commu-
nication at a time with the memory cost trade-off for less DVFS switches, as shown in Figure 2
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Table 1: Notation in Adaptive Memory-aware DVFS Scheduling Strategy.

N Global matrix size in blocked distributed matrix multiplication

BS Block size in blocked distributed matrix multiplication

HDV FS The highest CPU frequency set by DVFS

LDV FS The lowest CPU frequency set by DVFS

Nproc Square root of the total number of processes in a process grid

Ngrp Number of broadcasts/multiplications executed at a time as a group in a process grid

Smem The total system memory size for one node

Tmem A user-specified memory cost threshold for grouping, in terms of a percentage of Smem

eunit
DV FS Energy consumption from one frequency switch

ebasicDV FS Energy consumption from the basic strategy employed in [6] [17]

edaemon
DV FS Energy consumption from DAEMON proposed in this paper

(b). Instead of performing a multiplication immediately after a broadcast, we keep broadcasting
several times as a group, followed by corresponding multiplications as a group as well. Note
that the number of broadcasts in a broadcast group must equal the number of multiplications
in a multiplication group to guarantee the correctness. The number of DVFS switches is thus
decreased since we only need to perform one DVFS switch for a group rather than individual
broadcast/multiplication. Table 1 lists the notation used in Figure 2 and the later text.

As shown in Figure 2 (a), the basic DVFS scheduling strategy sets CPU frequency to low
during broadcast while sets it back to high during matrix multiplication for energy efficiency [6]
[17]. A primary defect of this strategy is that it requires two DVFS switches in one iteration,
totally 2×Nproc DVFS switches for one process. For performance purposes in high performance
computing, block-partitioned algorithms are widely adopted to maximize data reuse opportu-
nities by reducing cache misses. In a blocked distributed matrix multiplication such as the
pdgemm() routine provided by ScaLAPACK, if the basic strategy is applied, the total number of

DVFS switches is 2×Nproc × N/Nproc

BS ×N2
proc, since there are

N/Nproc

BS pairs of local communi-
cation and computation for each process and totally N2

proc processes in the process grid, where
N/Nproc is the local matrix size. Given a huge number of DVFS switches, the accumulated
time and energy overhead on employing DVFS can be considerable. Next we introduce details
of DAEMON to minimize the DVFS overhead and thus achieve the optimal energy savings.

4.1 Memory-aware Grouping Mechanism

Intuitively, the heuristic of DAEMON for grouping broadcasts/multiplications requires for each
process, keeping several sub-matrices of A and B received from broadcasts of other processes in
memory for later multiplications at a time. DAEMON restricts the memory costs from holding
matrices in memory for future computation to a certain threshold, which can be modeled as:

8×
(

N

Nproc

)2

× 2×Ngrp ×Nproc ≤ Smem × Tmem

subject to 1 ≤ Ngrp ≤ Nproc

(1)

where 8 is the number of bytes used by a double-precision floating-point number and N
Nproc

is the local matrix size. For each process, we need to keep totally 2 ×Ngrp sub-matrices of A
and B in the memory of one node for Ngrp broadcasts and Ngrp multiplications performed at a
time, and there are Nproc processes for one node. Following the constraints of Equation 1, we
can calculate the optimal Ngrp from a memory cost threshold value Tmem for specific hardware.
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Algorithm 1 Adaptive Memory-aware DVFS Scheduling Strategy

SetDVFS(N , Nproc)
1: Smem ← GetSysMem()
2: Tmem ← GetMemTshd()
3: unit ← N/Nproc

4: Ngrp ← Smem × Tmem

/
(8× unit2 × 2)

5: nb ← Nproc/Ngrp

6: foreach i < nb do
7: if (IsBcast() && freq != LDV FS) then
8: SetFreq(LDV FS )
9: end if

10: if (IsMatMul() && freq != HDV FS) then
11: SetFreq(HDV FS )
12: end if
13: end for

4.2 DAEMON Algorithm

We next show how DAEMON reduces DVFS overhead via grouping. In accordance with Equa-
tion 1, given a memory cost threshold Tmem and a specific hardware configuration, the optimal
Ngrp that determines the extent of grouping can be calculated. At group level, CPU frequency is
then set to low for Ngrp times grouped broadcasts and set back to high for Ngrp times grouped
multiplications at a time, instead of being switched for individual broadcast/multiplication.
Consequently, the number of CPU frequency switches are greatly decreased by DAEMON.

Algorithm 1 presents detailed steps of calculating Ngrp and then employ DVFS at group
level. It first calculates Ngrp using the user-specified threshold Tmem, and then set frequency
accordingly for grouped broadcasts/multiplications, where the number of DVFS switches is min-
imized. Variable freq denotes current operating CPU frequency, and functions GetSysMem(),
GetMemTshd(), SetFreq(), IsBcast(), and IsMatMul() were implemented to get the total system mem-
ory size, get memory cost threshold specified by the user, set specific frequencies using DVFS,
and determine if the current operation is either a broadcast or a multiplication, respectively.

4.3 Energy Efficiency Analysis

DAEMON minimizes DVFS overhead by reducing the number of frequency switches, at the
cost of memory overhead within a user-specified threshold Tmem. The optimal value of Ngrp for
minimizing DVFS overhead can be calculated from the threshold, which determines the extent
of grouped broadcasts/multiplications for less frequency switches. Per Equation 1, for blocked
distributed matrix multiplication, energy costs on employing DVFS in the basic strategy and
in our DAEMON strategy shown in Figure 2 are modeled respectively, in terms of the product
of unit energy costs on one DVFS switch and the number of such switches as follows:

ebasicDV FS = eunitDV FS × 2×Nproc × N/Nproc

BS
×N2

proc (2)

edaemon
DV FS = eunitDV FS × 2× Nproc

Ngrp
× N/Nproc

BS
×N2

proc (3)
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According to Equations 2 and 3, we derive energy deflation (i.e., ratio) and energy savings
(i.e., difference) from employing DAEMON against the basic strategy as below:

Edef =
ebasicDV FS

edaemon
DV FS

= Ngrp (4)

Esav = ebasicDV FS − edaemon
DV FS

= eunitDV FS × 2× N

BS
×N2

proc ×
(
1− 1

Ngrp

)
(5)

From Equations 4 and 5, we can see that both Edef and Esav greatly depend on the value of
Ngrp. The greater Ngrp is, the more energy efficient DAEMON is. Following the constraints of
Equation 1, we know in the best case that Ngrp = Nproc, Edef = Nproc, while in the worst case
that Ngrp = 1, Edef = 1 as well, since DAEMON regresses to the basic strategy in this case.
Further, we know that the energy saved from DAEMON can be huge given a large value of N

BS .
In general, DAEMON is more energy efficient in contrast to the basic strategy, if Ngrp > 1.

5 High Performance Communication Scheme

In addition to applying DAEMON to minimize DVFS overhead in distributed matrix multipli-
cation for energy efficiency, we also aim to achieve performance efficiency and thus additional
energy savings can be achieved from less execution time. Generally, performance gain of dis-
tributed matrix multiplication can be fulfilled in terms of high performance computation and
communication. Given that the optimal computation implementation of local matrix multiplica-
tion routine provided by ATLAS [1] is employed, we propose a high performance communication
scheme for fully exploiting network bandwidth. Specifically, since the global matrix is evenly
distributed into the process grid for load balancing, we need to broadcast each matrix row/col-
umn to all other rows/columns located in different nodes individually for later performing local
matrix multiplication in parallel. A high performance broadcast algorithm is thus desirable.

5.1 Binomial Tree and Pipeline Broadcast

There exist a large body of distributed broadcast algorithms for high performance communi-
cation, where binomial tree and pipeline broadcast generally outperform other algorithms for
different system configurations. In the original pdgemm() routine from ScaLAPACK on top of
different MPI implementations, different communication schemes like ring-based, binomial tree
and pipeline broadcast are adopted depending on message size and other factors [3]. Table 2
lists the notation used in this section. Figure 3 (a) depicts how the binomial tree broadcast
algorithm works using a simple example with a 3-round iteration on a 8-process cluster. We
can see that in each round, a process sends messages in accordance with the following pattern:

• In Round 0, process P0 (sender) sends a message to the next available process P1 (receiver);

• In Round j (j > 0), process Pi (i ≤ j, i = 0, 1, 2, . . . ) that is a sender/receiver in the
precedent round sends a message to the next available process, until the last one receives.

In other words, in Round j, the number of senders/receivers is 2j and thus the algorithm
takes logP rounds for the P th process to receive a message. The communication time complexity
can be modeled as:

TB = Tb × logP , where Tb = Ts +
Smsg

BD
(6)
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Table 2: Notation in Binomial Tree and Pipeline Broadcast.

P The total number of processes in the communication

Smsg Message size in one broadcast

BD Network bandwidth in the communication

TB The total time consumed by all binomial tree broadcasts

TP The total time consumed by all pipeline broadcasts

Tb Time consumed by one binomial tree broadcast

Tp Time consumed by one pipeline broadcast

Ts Network latency of starting up a communication link

Td Time consumed by transmitting messages

n Number of chunks from dividing a message

(a) Binomial Tree Broadcast (b) Pipeline Broadcast

Figure 3: Binomial Tree and Pipeline Broadcast Algorithm Illustration.

By substituting Tb, we obtain the final time complexity formula of binomial tree broadcast:

TB =

(
Ts +

Smsg

BD

)
× logP (7)

Pipeline broadcast works in a time-sliced fashion so that different processes simultaneously
broadcast different message chunks as stages in pipelining, as shown in Figure 3 (b). Assume a
message in the pipeline broadcast is divided into n chunks. when the pipeline is not saturated,
i.e., in the worst case, it takes n+ P − 1 steps for the P th process to receive a whole message
of n chunks. We can model the time complexity of pipeline broadcast as:

TP = Tp × (n+ P − 1), where Tp = Ts +
Smsg/n

BD
(8)

Similarly, substituting Tp into TP in Equation 8 yields:

TP =

(
Ts +

Smsg/n

BD

)
× (n+ P − 1) (9)

From Equations 7 and 9, despite the steps needed to receive a message, we can see that
both TB and TP are essentially the sum of Ts and Td. In a cluster connected by an Ether-
net/Infiniband switch, Ts is of the order of magnitude of μs, so Ts is negligible when Smsg is
comparatively large. Therefore, Equations 7 and 9 can be further simplified as follows:

TB ≈ Smsg

BD
× logP and TP ≈ Smsg

BD
×
(
1 +

P − 1

n

)
(10)
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It is clear that both TB and TP scale up as P increases, with fixed message size and fixed num-
ber of message chunks. However the pipeline broadcast outperforms the binomial tree broadcast
with given P and message size by increasing n, since the ratio of binomial tree broadcast to
pipeline broadcast approximates to logP when n is large enough and P−1

n becomes thus negligi-
ble. We experimentally observed the communication schemes in ScaLAPACK and DPLASMA
pdgemm() routines are not optimal in two clusters. Energy and time saving opportunities can be
exploited by leveraging slack arising from the communication. Thus a high performance pipeline
broadcast scheme with tuned chunk size according to system characteristics is desirable.

6 Implementation and Evaluation

We have implemented our high performance adaptive memory-aware DVFS scheduling strategy
with highly tuned pipeline broadcast (referred to as HP-DAEMON in the later text) to achieve
the optimal energy and performance efficiency for distributed matrix multiplication. Our imple-
mentation was accomplished by rewriting pdgemm() from ScaLAPACK [3] and DPLASMA [2],
two widely used high performance and scalable numerical linear algebra libraries for distributed-
memory multi-core systems nowadays. In our implementation, instead of using binomial tree
broadcast for communication, we tune chunk size of pipeline broadcast to fully exploit possible
slack during communication [22]. We apply the core tiling topology similarly as proposed in
[15] to exploit more parallelism in communication. For achieving the maximal performance of
computation, we employ the dgemm() routine provided by ATLAS [1], a linear algebra software
library that automatically tunes performance according to configurations of the hardware. The
rewritten pdgemm() has the same interface and is able to produce the same results as the origi-
nal ScaLAPACK/DPLASMA pdgemm() routines, with total normalized differences between the
range of 10−17 and 10−15 in our experiments. For comparison purposes, we also implemented
the basic DVFS scheduling strategy (referred to as Basic DVFS later) employed in [6] [17].

Specifically, HP-DAEMON was implemented from two aspects as an integrated energy and
performance efficient approach. Given a memory cost threshold specified by the user as a
trade-off for saving energy, HP-DAEMON adaptively calculates Ngrp, following the constraints
of Equation 1. Then Ngrp is applied to determine the extent of grouping, which reduces the
number of DVFS switches at the cost of user-specified memory overhead. For performance
efficiency, during computation, HP-DAEMON employs the optimal implementation of local
matrix multiplication; during communication, HP-DAEMON leverages a non-blocking version
[22] of the pipeline broadcast with tuned chunk size to maximize network bandwidth utilization.

6.1 Experimental Setup

We applied HP-DAEMON to five distributed matrix multiplications with different global ma-
trix sizes to assess energy savings and performance gain achieved by our integrated approach.
Experiments were performed on a small-scale cluster (HPCL) with an Ethernet switch consist-
ing of 8 computing nodes with two Quad-core 2.5 GHz AMD Opteron 2380 processors (totalling
64 cores) and 8 GB RAM running 64-bit Linux kernel 2.6.32, and a large-scale cluster (Tardis)
with an Infiniband switch consisting of 16 computing nodes with two 16-core 2.1 GHz AMD
Opteron 6272 processors (totalling 512 cores) and 64 GB RAM running the same Linux kernel.
All energy-related experiments were conducted only on HPCL while all performance-related ex-
periments were performed on both clusters, since only HPCL was equipped with power sensors
and meters for energy measurement. In our experiments, energy consumption was measured
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using PowerPack [11], a comprehensive software and hardware framework for energy profiling
and analysis of high performance systems and applications. The range of CPU frequencies on
HPCL was {0.8, 1.3, 1.8, 2.5} GHz. PowerPack was deployed and running on a meter node to
collect energy costs on all involved components such as CPU, memory, disk, motherboard, etc.
of all 8 computing nodes within HPCL. The collected energy information was recorded into a
log file in the local disk and accessed after executing these distributed matrix multiplications.

6.2 Overhead on Employing DVFS

The introduction of DVFS may incur non-negligible energy and time costs on in-memory file
read/write operations and gear transitions, if fine-grained DVFS scheduling is employed as in
the case of Basic DVFS. In order to obtain accurate DVFS overhead, we measured energy
and time costs on CPU frequency switches separately from the running application on the
HPCL cluster, as shown in Figure 5. We can see that both energy and time costs increase
monotonically as the number of DVFS switches increases. On average it takes about 70μs for
one DVFS switch to complete and take effect, and about every 10 DVFS switches incur extra
one Joule energy consumption. The additional energy costs from DVFS can be considerably
large if CPU frequency switches occur frequently. A smart way of reducing the number of DVFS
switches like HP-DAEMON can thus save energy and time of running the application.

6.3 Memory Cost Trade-off from HP-DAEMON

Once specifying a memory overhead threshold using command line parameters, in the form of
the original command of executing the application followed by an optional parameter “-t” with
a percentage, “-t 0.2” for instance, the user is afterwards not involved for an energy saving
execution, e.g., dynamically modifying the threshold. HP-DAEMON adaptively calculates the
optimal value for grouping according to the custom threshold. Essentially the total memory
overhead consists of the memory costs from the execution of the original application, and
the additional memory costs from HP-DAEMON. Using the calculated grouping value, HP-
DAEMON performs grouped computation/communication accordingly to minimize the number
of DVFS switches. Table 3 lists Ngrp values for five different matrices, corresponding theoretical
values of extra memory costs from HP-DAEMON (i.e., the left hand side of Equation 1), and
observed memory costs overall. For simplicity, in our implementation all calculated grouping
values are rounded to multiples of 2. As Table 3 shows, the empirical observed total memory
costs generally increase more than the theoretical extra memory costs from HP-DAEMON as
Ngrp doubles. This is because atop the original application, besides extra memory footprint
for grouped broadcasts/multiplications, HP-DAEMON incurs more memory costs on stacks of
grouped function calls involved in grouping that cannot be freed and re-allocated immediately.

6.4 Performance Gain via Tuned Pipeline Broadcast

From Equations 10, we have two inferences: (a) Performance of pipeline broadcast is strongly
tied to chunk size, and (b) performance of pipeline broadcast can be better than binomial tree
broadcast, since the ratio of binomial tree broadcast to pipeline broadcast is logP when P−1

n
is negligible. Next we evaluate performance gain from the use of pipeline broadcast via tuning
chunk size, in contrast to binomial tree broadcast, where global matrix sizes of distributed
matrix multiplication on HPCL and Tardis are 10240 and 20480, individually.

In accordance with Equations 10, we can see in Figure 4, performance gain is achieved with
the increase of chunk size (thus the decrease of the number of chunks) of pipeline broadcast, and
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Table 3: Memory Overhead Thresholds for
Different Matrices and Ngrp.

Global
Ngrp

Theoretical Observed

Matrix
Additional Total

Size
Memory Memory
Overhead Overhead

7680
2 3.2% 6.4%
4 6.4% 8.8%
8 12.8% 14.4%

10240
2 4.8% 10.4%
4 9.6% 16.0%
8 19.2% 25.6%

12800
2 8.0% 16.0%
4 16.0% 24.0%
8 32.0% 40.0%

15360
2 11.2% 23.2%
4 22.4% 35.2%
8 44.8% 57.6%

17920
2 16.0% 28.0%
4 32.0% 43.2%
8 64.0% 78.4%

Figure 4: Performance Efficiency btw. Bino-
mial Tree Broadcast and Pipeline Broadcast.

Figure 5: DVFS Energy/Time Overhead.
Figure 6: Energy Savings and Performance Gain
on the HPCL Cluster (64-core, Ethernet).

pipeline broadcast performance converges reasonably well on both clusters as chunk size grows.
The convergence point arises earlier on HPCL (0.5k) than Tardis (6k) due to the difference
of network bandwidth between two clusters. This is because in order to reach the maximal
network utilization, required chunk size of messages broadcasted on the cluster with slower
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network bandwidth is smaller compared to the cluster with faster network bandwidth. Further,
we see that similarly on both clusters, pipeline broadcast outperforms binomial tree broadcast
after the individual convergence point of pipelining, which complies with Equations 10 as well.
Noteworthily, the performance between two types of broadcast differs greater on the cluster with
slower network bandwidth (HPCL) than the cluster with faster network bandwidth (Tardis).

6.5 Overall Energy and Performance Efficiency of HP-DAEMON

Experimental results indicate that the optimal energy savings and performance gain can be
achieved by applying HP-DAEMON in distributed matrix multiplication. We performed two
types of experiments to evaluate the effectiveness of HP-DAEMON individually: (a) On the
energy measurement enabled HPCL cluster, we evaluated energy and performance efficiency of
HP-DAEMON by comparing ScaLAPACK pdgemm() to our implementation of pdgemm() with
and without HP-DAEMON (we did not present the data of DPLASMA pdgemm() on HPCL,
because DPLASMA pdgemm() did not manifest better performance than ScaLAPACK pdgemm()
on Ethernet-switched HPCL); (b) on the Tardis cluster with faster network bandwidth but no
tools for energy measurement, we evaluated performance efficiency of our pdgemm() implemen-
tation with tuned pipeline broadcast, by comparing against ScaLAPACK, DPLASMA, and our
pdgemm() with binomial tree broadcast. The default block size 32 in ScaLAPACK/DPLASMA
pdgemm() and the maximal value of Ngrp (8 in our case) were adopted in our experiments.

Figure 6 shows energy costs and execution time of five different matrix multiplications on
the HPCL cluster with two DVFS scheduling strategies, where in our implementation pipeline
broadcast with tuned chunk size was employed for achieving the maximal performance of com-
munication. We observe that the time overhead on employing DVFS is non-negligible: 8.1%
for ScaLAPACK pdgemm() and 12.4% for our pdgemm() on average. As discussed before, perfor-
mance loss is attributed to time costs on virtual file read and write operations that are necessary
in CPU frequency switching by DVFS. Thus extra energy consumption is incurred during the
extra time on frequency switching. Although performance degrades using Basic DVFS, overall
energy savings are achieved due to the scheduled low-power communication when CPU is idle.
Compared to the original versions without DVFS, the energy savings from Basic DVFS en-
abled version of ScaLAPACK pdgemm() and our pdgemm() are considerable 18.1% and 15.1% on
average, individually. Compared to Basic DVFS, employing HP-DAEMON effectively achieves
more energy savings and reduces performance loss since the number of DVFS switches is min-
imized in accordance with the user-specified memory cost threshold. As shown in Figure 6,
compared to our pdgemm() without DVFS, more energy savings are fulfilled (22.6% on average
and up to 28.8%, 7.5% additional average energy savings compared to Basic DVFS ) while per-
formance loss is lowered to 6.4% on average (6.0% performance loss is eliminated compared to
Basic DVFS ). The heuristic of reducing frequency switches by grouping is thus evaluated to be
beneficial to energy and performance efficiency for distributed matrix multiplication.

As the other integrated part of HP-DAEMON, employing pipeline broadcast with tuned
chunk size further brings performance gain and thus energy savings. Comparing ScaLAPACK
pdgemm() and our pdgemm() both without using DVFS, 32.9% on average and up to 35.6%
performance gain is observed. Overall, compared to ScaLAPACK pdgemm(), our pdgemm() with
HP-DAEMON achieves 47.8% on average and up to 51.4% energy savings, and 28.6% on average
and up to 31.5% performance gain, due to the integrated energy and performance efficiency from
HP-DAEMON. Next we further evaluate overall performance gain achieved by our pdgemm()
with HP-DAEMON on another cluster with more cores and faster network bandwidth.

Figure 7 shows performance comparison of five other distributed matrix multiplications in
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Figure 7: Performance Gain on the Tardis Cluster (512-core, Infiniband).

different implementations on the Tardis cluster. First we see that DPLASMA and ScaLAPACK
pdgemm() perform similarly on average. Further the performance difference between binomial
tree broadcast and pipeline broadcast narrows down to negligible extent due to the faster
communication rate on Tardis. Overall on average, our pdgemm() with pipeline broadcast with
tuned chunk size significantly outperforms ScaLAPACK pdgemm() by 33.3% and DPLASMA
pdgemm() by 32.7%, respectively. It is thus evaluated that our pdgemm() with HP-DAEMON can
also be superior in performance efficiency on large-scale clusters with fast network bandwidth.

7 Conclusions

Increasing requirements of exploiting parallelism in high performance applications pose great
challenges on improving energy efficiency for these applications. Among potential software-
controlled hardware solutions, DVFS has been leveraged to provide substantial energy savings.
This paper proposes an adaptive memory-aware DVFS scheduling strategy that reduces the
number of CPU frequency switches to minimize the overhead on employing DVFS. A user-
specified memory overhead threshold is used for grouping broadcasts/multiplications in dis-
tributed matrix multiplication to achieve the optimal energy savings. Further, a pipeline broad-
cast scheme with tuned chunk size for high performance communication is leveraged to fully
exploit network bandwidth. The experimental results on two clusters indicate the effectiveness
of the proposed integrated approach in both energy and performance efficiency, compared to
ScaLAPACK and DPLASMA matrix multiplication with a basic DVFS scheduling strategy.
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