
Interactive Program Debugging and Optimization
for Directive-Based, Efficient GPU Computing

Seyong Lee†, Dong Li†, and Jeffrey S. Vetter† �

†Oak Ridge National Laboratory, �Georgia Institute of Technology

{lees2, lid1}@ornl.gov, {vetter}@computer.org

Abstract—Directive-based GPU programming models are
gaining momentum, since they transparently relieve program-
mers from dealing with complexity of low-level GPU pro-
gramming, which often reflects the underlying architecture.
However, too much abstraction in directive models puts a
significant burden on programmers for debugging applications
and tuning performance. In this paper, we propose a directive-
based, interactive program debugging and optimization system.
This system enables intuitive and synergistic interaction among
programmers, compilers, and runtimes for more productive
and efficient GPU computing. We have designed and im-
plemented a series of prototype tools within our new open
source compiler framework, called Open Accelerator Research
Compiler (OpenARC); OpenARC supports the full feature
set of OpenACC V1.0. Our evaluation on twelve OpenACC
benchmarks demonstrates that our prototype debugging and
optimization system can detect a variety of translation errors.
Additionally, the optimization provided by our prototype min-
imizes memory transfers, when compared to a fully manual
memory management scheme.

Keywords-interactive debugging; performance optimization;
directive programming; GPU; OpenACC; OpenARC

I. INTRODUCTION

GPU computing is now a mainstream computing scheme

in high performance computing (e.g., Titan [1], TSUB-

AME2 [2], Tiahne-1A [3], and Keeneland [4]). GPU-like

architectures have been highlighted as possible building

blocks for future Exascale systems [5]. A key factor driving

the popularity of GPUs is their capability to deliver cost-

effective and energy-effective performance. However, these

strengths come at the cost of programmability: programming

GPUs requires expertise and can be complicated and error-

prone.

Recently, several directive-based GPU programming mod-

els have been proposed to improve the productivity of GPU

computing [6], [7], [8], [9], [10], [11], [12]. To understand

these emerging GPU programming models in terms of

programmability and performance, our previous work [13]

thoroughly investigated them from multiple perspectives,

and identified their limitations. Among those limitations,

debuggability is one of the most immediate and pressing

issues for directive-based GPU programming models. On

one hand, these programming models hide multiple stages of

complex optimizations and translations from programmers to

improve productivity. On the other hand, the opaque nature

of these programming models impose great challenges for

users to debug and verify the program. For example, these

models raise the abstraction of GPU memory hierarchy and

provide unified memory management across architectures;

this new level of abstraction complicates debugging for

memory-related problems. In addition, these models employ

a thread/task parallelism model different from the low-level

programming models (e.g., CUDA [14]), which complicates

debugging for concurrency. Although the GPU community

has a number of tools [15], [16], [17], [18], [19] to de-

bug, profile, and analyze GPU codes, they are limited to

applications written in the low-level programming models.

When applied to directive-based programming models, they

lack the proper capabilities to attribute specific output GPU

translated code, performance, and errors with their respective

directive-annotated input programs. Hence, they do not give

straightforward views for programmers to diagnose logic

errors and performance problems at the directive level.

Another significant challenge for directive-based program-

ming models is performance optimization, and, in particular,

optimizing CPU-GPU data movement. In most of today’s

accelerator based systems, the address spaces for GPU and

CPU are separate: to communicate data between the two, ap-

plications suffer a relatively high penalty from data transfer

cost. This cost is especially high in discrete GPUs because

of communication cost across the PCI-e bus. Although

architectures that fuse GPUs and CPUs into a single chip are

gaining in popularity [20], and many examples exist in the

consumer market, they still require precise data orchestration

and coordination between the CPU and the GPU for efficient

performance. Directive-based programming models expose

CPU-GPU memory management explicitly to programmers,

forcing them to dictate the CPU-GPU data movement and

coordination. Hence, minimizing data movement with cor-

rectness guarantees is left to the programmers, which can be

difficult to realize, given the opaqueness of the translation

from the high-level model to the low-level model. Although

recent efforts [21], [9], [22], [23], [24] proposed automatic

CPU-GPU data transfer schemes, they are limited to avoid-

ing redundant transfers, and some of them cannot work with

directive-based programming models.

2014 IEEE 28th International Parallel & Distributed Processing Symposium

1530-2075 2014

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IPDPS.2014.57

481

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 01:55:48 UTC from IEEE Xplore. Restrictions apply.

A. Contributions

To address the above problems, we propose and imple-

ment an interactive program debugging and optimization

system for productive and efficient GPU computing us-

ing directive programming models. Our work is the first

effort toward improving traceability and debuggability for

directive-based GPU programming. Our major contributions

are summarized as follows:

• We propose a directive-based, interactive GPU program

debugging technique, which provides an intuitive and

synergistic environment to provide better interaction

among programmers, compilers, and runtimes than ex-

isting debugging tools [15], [18], [19].

• Our technique is able to verify correctness in the

GPU-kernel translation and the CPU-GPU memory-

transfer-code generation, solving the aforementioned

debuggability problem.

• We present a combined compile-time/runtime method

that interacts with the programmer to identify redundant

CPU-GPU memory transfers, such that the programmer

can optimize memory transfers iteratively, through the

directives, and based on the suggestions offered by the

proposed system. This intuitive user-interaction mini-

mizes redundant data transfers, which is not available

in the previous software coherence mechanisms [21],

[22], [23] due to correctness constraints.

The rest of this paper is organized as follows. §II ex-

plains the background on the directive-based GPU pro-

gramming and reviews related work. §III presents the pro-

posed directive-based, interactive program debugging and

optimization techniques. Evaluation and conclusions are

presented in §IV and §V, respectively.

II. BACKGROUND AND RELATED WORK

A. Directive-Based GPU Programming

Directive-based GPU programming models consist of

three components: the compiler directives, library routines,

and environment variables. With the directive-based pro-

gramming models, GPU programs are written by augment-

ing sequential programs with a set of directives that describe

important program properties, such as parallelism types to

execute loops, and data scope and sharing rules to manage

data and synchronize with CPU. At compile time, the

directive compilers translate the annotated programs into

low-level GPU programs by performing all the complex

transformations, such as GPU-kernel-code generation and

CPU-GPU memory-transfer-code generation.

Our work is based on OpenACC directives. Ope-

nACC [11] is the first directive-based GPU programming

standard portable across devices and compiler vendors. In

an OpenACC program, a compute region specifies a code

region to be executed on GPU, and the directives manage

parallelism and guide how loops in the compute region

pragma acc d a t a c r e a t e (q , w , . . .) . . .
{ . . . / / Some compute r e g i o n s

f o r (i t =1 ; i t <= NITER ; i t ++)
f o r (c g i t =1 ; c g i t <= cg i tmax ; c g i t ++) {

. . . / / Some compute r e g i o n s
pragma acc k e r n e l s l oop gang worker
f o r (j =1 ; j<= l a s t c o l − f i r s t c o l +1 ; j ++)
{ q [j] = w[j] ; }
. . . / / Some compute r e g i o n s

} . . . / / Some compute r e g i o n s
}
Listing 1: Code excerpt from NAS Parallel Benchmark CG ported
to OpenACC. The code is manually optimized for memory man-
agement

should be executed; a data region sets a data boundary for

GPU memory allocation, and the directives manage data and

control memory transfers between CPU and GPU.

The major benefit of using directive-based GPU program-

ming models is that they obviate the need for dealing with

complexity of low-level GPU programming languages, such

as CUDA [14] and OpenCL [25], and they also hide most of

complex optimization details specific to the underlying GPU

architectures. These high-level abstractions allow program-

mers to focus on their algorithms, hence improving their

productivity and portability. In addition, programmers can

easily provide performance-critical information to the com-

pilers, enabling various compile-time/runtime optimizations

to better utilize the underlying system resources.

However, the high-level abstraction bestowed by directive

models puts a significant burden on programmers in terms of

debugging and performance optimization, as we shall show

in the next section.

B. Motivation for Improving GPU Program Debugging

The high-level programming and automatic transforma-

tion in directive models bring several challenges for de-

bugging GPU programs, especially when combined with

implicit compiler optimizations. For example, automatic

privatization and reduction variable recognition are two

important compiler techniques used to parallelize loops [26].

Due to their importance, the existing GPU-directive compil-

ers support these features to some extent. However, if the

directive compilers miss privatization/reduction transforma-

tion opportunities, and the programmers do not explicitly

specify data sharing rules for each compute region, the

resulting GPU program can suffer from a race condition due

to an incorrect data dependency. Identifying this concurrency

problem is very difficult, and demands deep knowledge of

both GPU programs and underlying compilers.

Moreover, evaluations with existing GPU-directive com-

pilers [13] reveal that some compiler implementations do

not always follow directives inserted by users, or even

worse, those implementations can generate incorrect output

482

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 01:55:48 UTC from IEEE Xplore. Restrictions apply.

codes, when the directives provided by programmers conflict

with internal compiler analyses. These unexpected behaviors

add additional challenges to the already complex debugging

problems.

To improve debuggability for the directive-based GPU

programming models, we must have a systematic approach

that exposes more information to programmers for debug-

ging purposes while maintaining high-level abstractions.

First, we need more intuitive tools to delineate the incorrect

code regions. Second, we need traceability mechanisms

to attribute errors and performance issues back to input

directive programs.

To address the above issues, we develop a directive-based,

GPU kernel debugging mechanism that detects erroneous

GPU kernels through step-by-step comparison between

translated GPU kernels and corresponding input compute

regions, described in §III-A.

C. Motivation for Improving GPU Memory Management

Currently, GPU programming models assume separate

address spaces for CPU and GPU. To share data between

CPU and GPU, many programs use explicit data transfers

between CPU and GPU memories. GPU directives provide

a rich set of data clauses to control memory transfers.

These clauses rely on programmers to orchestrate memory

management, which is another source for debugging and

performance issues.

Listing 1 shows an excerpt from NAS Parallel Benchmark

CG that we ported to OpenACC. The code is fully tuned for

GPU memory allocation and CPU-GPU memory transfers.

Within the code, the data directive is used to specify that

GPU memory should be allocated for variable q and w for

the duration of the following code region. In addition, each

compute region is annotated with the kernels directive to tell

the compiler that the compute region should be transformed

into GPU kernels to be executed on GPU. In this example,

there is no CPU-GPU data transfer for variables q and w,

because these variables do not appear in any explicit/implicit

memory-transfer clauses (e.g., copy and update host). We

do not need to transfer data between CPU and GPU for

these variables, because they are accessed only by GPU

(i.e., private GPU-only data). To identify private GPU-only

data to avoid redundant data transfers, the whole program

should be examined to check whether there is any CPU

code accessing the data. Considering possible aliasing issues,

this process is very complex and error-prone. Moreover, if

a variable is shared between CPU and GPU, locating the

proper points to trigger CPU-GPU memory transfers is also

non-trivial. For example, if a compute region resides in a

loop, as shown in Listing 1, conservative data transfers may

lead to redundant transfers, while inappropriately deferred

transfers can cause incorrect outputs.

To guarantee program correctness, a naive memory man-

agement scheme is to copy all the data accessed in a compute

��

���

����

�����

������

�������

����	

�	�

��

�

���
�

���
�	

�

���

	�

��

�������

��
��

�
�
��

��
���

	
����

���

��
��

��
�	

��

�

��

�
�

�������	
��������
�
��������
� �������	
��������������
��
���������	
�

Figure 1: The execution time and transferred data size with
OpenACC default memory management scheme. The values are
normalized to those for fully optimized OpenACC code.

region from CPU to GPU right before the corresponding

GPU kernel call and copy back from GPU to CPU right after

the kernel call. This scheme is the default OpenACC mem-

ory management scheme for variables that have no explicitly

specified data transfer. As shown in Figure 1, however, the

naive scheme can cause excessive (redundant) data transfers,

which become a major performance bottleneck.

To address the above CPU-GPU memory transfer issue,

several solutions have been proposed, including compiler-

only solutions [9], runtime-only solutions [21], and hybrid

compile-time/runtime solutions [24], [22], [23]. The state-

of-the-art technique [23] uses a compiler-assisted, runtime

coherence scheme that initiates necessary memory transfers

at runtime, based on the CPU-GPU coherence status. This

method can eliminate the following types of redundant

transfers: (i) transfers of non-stale data, (ii) eager transfers of

data, and (iii) transfers of private GPU-only data. The same

software coherence solution can be applied to directive-

based GPU programming models with minor modification.

However, some redundant/incorrect transfers still exist be-

cause of the limitation in this solution. First, the runtime

scheme in the solution does not handle redundant or incor-

rect transfers caused by user-inserted data clauses; hence,

it cannot be leveraged for debugging purposes. Second, the

coherence scheme in the solution updates all the first-written

variables. This method can cause unnecessary data transfers,

because some values may be dead: they may be no longer

used, or may be overwritten before read. However, detecting

dead variables is known to be a very complex and difficult

task for both compilers and runtimes. For example, in

Listing 1, the variable q is write-only in a compute region.

However, we cannot make a conclusion that q is dead at

the entrance to the compute region, because q is partially

written. To automatically check the deadness of the variable

q, we need a powerful compile-time array-section-analysis

technique to handle all possible aliasing issues for coherence

analysis, or demand runtime inspection for all data accesses,

none of which is feasible.

483

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 01:55:48 UTC from IEEE Xplore. Restrictions apply.

To address the above problems, we propose a directive-

based, interactive memory-transfer verification and opti-

mization technique, described in §III-B.

Table I compares our work with the existing ones. In

general, our work complements the existing ones by pro-

viding high-level debugging and optimization capability for

directive-based GPU programs.

III. DIRECTIVE-BASED, INTERACTIVE PROGRAM

DEBUGGING AND OPTIMIZATION

This section presents the interactive program debugging

and optimization scheme. The proposed scheme consists

of two parts: GPU-kernel verification (§III-A) to locate

problematic kernels, and memory transfer verification and
optimization (§III-B) to detect incorrect/missing/redundant

memory transfers.

A. GPU Kernel Verification

Even though debugging in the directive-based GPU pro-

gramming is very difficult, directive models provide at least

one good reference for debugging: the original sequential
program. If we can compare execution outputs of the input

sequential CPU program to those of the translated GPU

program in a lockstep manner, we can pinpoint the code

regions requiring debugging. For various reasons (e.g., high

overhead and too complex to trace all threads executing GPU

kernels at finer granularity), a lockstep debugging strategy

is impractical. Hence, we propose to compare these results

at the granularity of a GPU kernel.

With the directive-based GPU models, the manual kernel

verification is non-trivial. First, GPU memory is hidden by

directive models, and thus programmers can not directly ac-

cess GPU data. To compare the outputs of GPU kernels with

those of corresponding code regions in the input sequential

program, we must tweak the code to leverage CPU memory

to make the comparison. Second, each kernel verification

may require customized memory transfer patterns, which

complicates debugging. Third, naive comparisons do not

work due to inconsistent floating-point precision between

CPU and GPU. In particular, CPU and GPU may use

different numbers of bits to store floating-point numbers, and

non-deterministic computation order enforced by parallel

GPU thread executions can result in different outputs for

the same computation.

We address the above kernel debugging problems

through a user-assisted, automatic kernel verification mech-

anism. With the proposed mechanism, a user can spec-

ify which specific kernels to verify by adding direc-

tives or using environment variables (e.g., “verificationOp-
tions=complement=0,kernels=main kernel0” informs the

compiler to verify a specific kernel, main kernel0.). At

the heart of the proposed mechanism, we introduce two

techniques, called automatic memory-transfer demotion and

user-configurable result comparison.

1 { . . . / / Some compute r e g i o n s
2 f o r (i t =1 ; i t <= NITER ; i t ++)
3 f o r (c g i t =1 ; c g i t <= cg i tmax ; c g i t ++) {
4 . . . / / Some compute r e g i o n s
5 # pragma acc k e r n e l s loop async (1) \
6 gang worker copy (q) co py i n (w)
7 f o r (j =1 ; j<= l a s t c o l − f i r s t c o l +1 ; j ++)
8 { q [j] = w[j] ; }
9 / / S e q u e n t i a l CPU v e r s i o n w i l l be added .

10 # pragma acc w a i t (1)
11 / / R e s u l t compar i son codes w i l l be added .
12 . . . / / Some compute r e g i o n s
13 } . . . / / Some compute r e g i o n s
14 }

Listing 2: Modified version of Listing 1 after applying memory-
transfer demotion, but before result-comparison transformation.

The memory-transfer demotion refines memory transfer

patterns such that all data accessed by the target GPU

kernel are copied from CPU to GPU right before the kernel

invocation, and all data modified by the kernel are copied

back to a temporary space on the CPU after the kernel

finished. This is implemented by (i) moving (demoting)

any related data clauses in enclosing data regions to the

target compute region (changing original data management

policy), and (ii) adjusting transfer types for each data as

necessary (e.g., putting the data in a copyin clause if

the data are read-only; otherwise, in a copy clause).The

memory-transfer demotion rules out program errors caused

by missing memory transfers, and avoids unnecessary result

comparison. With this method, the memory transfers as

well as the kernel execution are converted to asynchronous

ones to allow maximal overlapping with sequential CPU

execution. Although this method has impacts on communi-

cation behaviors between CPU and GPU, it does not change

the behavior of the target kernel. The main goal of the

kernel verification is to verify that the translated GPU kernel

behaves correctly with respect to the input sequential CPU

code, so enforcing a strict execution order between CPU and

GPU is not necessary. Moreover, all directives and runtime

calls unrelated to the target kernel are removed, such that

the unrelated compute regions are sequentially executed on

CPU. This method allows the target kernel to always use

data generated by the original sequential program, hence it

avoids error propagation from the previous code regions.

Listing 2 shows the codes after memory-transfer demotion

is applied to Listing 1. In particular, data clauses in the

enclosing data directive are moved to the target compute

region, and additional directives are added for asynchronous

kernel execution.

After memory-transfer demotion, the compiler makes an-

other pass (i.e., result-comparison transformation) to com-

pare the outputs of CPU and GPU. The compiler generates

new versions of the code and some harness code to make

484

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 01:55:48 UTC from IEEE Xplore. Restrictions apply.

Table I: Comparison of debugging (DG) and optimization (OP) tools

DG and OP tools High-level DG and OP for
directive-based programming

Data transfer
optimization

User interac-
tion

Configurability
of DG and OP

fine-grained and
detailed profiling

GPU PerfStudio [15] and
Visual Profiler [17]

No No Limited Limited Yes

TotalView [18] and
DDT [19]

Limited No Limited No Yes

[22], [23], [24] No Yes No Limited No
This paper Yes Yes Rich Rich No

the comparison (line 9 and 11 in Listing 2). If the output

difference is bigger than the allowed error margin, then

an error will be reported to the user. To handle various

computation precision mismatch between CPU and GPU,

the transformation allows users to configure the error margin

according to the program characteristics and the underlying

architectures. The user can also decide when to make the

result comparison with user-defined conditions. For example,

“minValueToCheck=1e-32” enforces that result is compared

only if its value is bigger than a specified threshold (1e-32).

By comparing execution results of the reference sequential

program and the translated GPU program at runtime at a

kernel granularity, we can easily identify problematic kernels

caused by various reasons, such as incorrect user annotations

or incorrect compiler translation. However, the proposed

kernel verification mechanism cannot detect errors caused

by incorrect memory transfers. Hence, we further propose

a memory transfer verification scheme, explained in the

following section.

B. Memory Transfer Verification and Optimization

The memory-transfer verification and optimization

scheme uses runtime coherence checking as an offline

profiling tool to detect incorrect, missing, or redundant

memory transfers. To accurately capture variable access

information, each variable of interest (e.g., the variable

shared between CPU and GPU and accessed within a

compute region) is associated with one of three coherence

statuses (“notstale”, “maystale”, “stale”) on both CPU and

GPU. In the current implementation, we track coherence

status at the granularity of entire array or memory

region allocated by a malloc call. Tracking memory

accesses at this granularity is a common practice in GPU

programming [27], [23]. Although CPU-GPU memory

coherence at finer granularities can further reduce the

overall size of memory transfers, too frequent status

updates at finer granularity suffer from high data transfer

latency between CPU and GPU. Therefore, using data

coherence at a coarse granularity and efficiently utilizing

GPU memories is a preferred approach to minimize both

frequency and data size of CPU-GPU memory transfers.

The coarse-grained coherence is also preferable for tracking

purpose, since a fine grained tracking can take significant

execution time, resulting in bad user experiences for

debugging. In addition, because of aliasing issues, tracking

at finer granularities is very vulnerable to losing tracking

accuracy.

The coherence state is maintained by the runtime. In

particular, all variables of interest start out as not-stale on

CPU and GPU until the first write. If a variable is modified

on either a CPU or GPU device, the state on the other

device is set to stale. The state of a stale variable is reset to

not-stale if the up-to-date value is copied back to the stale

variable through memory transfers, or if the stale variable is

overwritten locally. The runtime coherence state is used to

detect missing memory transfers. In particular, if the state

of a variable to be accessed by the local device is stale, this

means that the other remote device has modified the variable,

requiring a memory transfer from the remote device to the

local device before the local access (i.e., missing transfer).

The coherence state is also used to detect incorrect and

redundant transfers. In particular, if the state of a variable for

a memory transfer at the source is stale, then the memory

transfer is incorrect, because the outdated value is copied

(i.e., incorrect transfer); if the state of a variable for a

memory transfer at the target is not-stale, then the memory

transfer is redundant, because the target already has the up-

to-date value (i.e., redundant transfer).

The above runtime checking mechanisms cannot detect

certain redundant transfers. Particularly, when a memory

transfer occurs, if the target is dead (refer to §II-C), then the

memory transfer is redundant, because the copied value will

not be used any more. As explained in §II-C, detecting dead

variables accurately at either compile-time or runtime alone

is known to be very challenging. Therefore, we propose an

alternative, hybrid approach that combines the best efforts

of the compiler and the runtime. This approach asks the

compiler to specify those presumably dead variables (may-
dead) and verified dead variables (must-dead) based on a

static analysis. Then, the runtime checks which memory

transfers actually involve may-dead/must-dead variables and

reports them to programmers. It is up to the programmers

to decide which memory transfers are redundant and safe

to delete. The programmers’ decisions are saved back into

the input directive program for production run. These steps

are repeated until no redundant or incorrect transfer is

found. This hybrid approach makes a best effort to guarantee

program correctness by conservatively detecting dead vari-

485

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 01:55:48 UTC from IEEE Xplore. Restrictions apply.

ables, while providing sufficient hints for users to optimize

performance.

Algorithm 1 May-Dead/May-Live Variable Analysis

OUTLive(EXIT)⇐ ∅
OUTDead(EXIT)⇐ ∅
OUTLive(n)⇐

⋃
s,s∈succ(n) INLive(s)

OUTDead(n)⇐
⋂

s,s∈succ(n) INDead(s)
INLive(n) ⇐ OUTLive(n) − KILL(n) − DEF (n) +
USE(n)
INDead(n) ⇐ OUTDead(n) −KILL(n) +DEF (n) −
USE(n)

Algorithm 1 shows the data flow analysis to identify may-

dead and must-dead variables. The algorithm also introduces

may-live variables (i.e., variables that are accessed later

but read before written) to facilitate analysis. The analysis

begins by initializing may-dead and may-live sets at the

program exit (OUTDead(EXIT) and OUTLive(EXIT)).
From the exits to the program entry, the analysis checks

written variables (DEF(n)) and read variables (USE(n)) in

each statement (n). The KILL(n) set refers to variables that

have gone stale during execution of the statement n. If a

variable is written-first in all of the following execution

paths, it is added to may-dead set; if the variable is read

in some of the following execution paths, it is added to

may-live set. If a variable is neither may-dead nor may-live,

the variable will not be accessed any more in the following

execution paths (i.e., adding to must-dead). We perform the

above analysis twice, one for CPU variables and the other

for GPU variables. Then, the may-dead and the must-dead

variables in CPU and GPU are passed to the runtime. The

runtime sets the state of must-dead variables to “not-stale”

and sets the state of may-dead variables to “may-stale”. At

runtime, memory transfers occurred to those variables with

the not-stale state are reported as redundant, while memory

transfers occurred to those variables with the may-stale state

are reported as may-redundant.
To enforce the above runtime memory-transfer-checking

mechanism, the compiler should insert various runtime-

check calls, detailed as follows:

• Each read/write access should be preceded by runtime

checks, particularly check read() and check write().
They detect any missing or may-missing memory trans-

fers; the may-missing refers to the case where a target

variable is stale, but it is written before read. This case

requires a memory transfer only if written data do not

fully overlap with data that are read later.

• Each write access, which changes the variable state at

the remote device to stale, should be also followed

by reset status(), if the corresponding variable at the

remote device is may-dead or must-dead at the current

statement; reset status() changes the variable state at

the remote device to may-stale or not-stale to detect

redundant transfer.

• reset status() call should be added for many other

scenarios. These scenarios change variable states, in-

cluding a memory deallocation call and a GPU kernel

call containing reduction. The memory deallocation

sets the variable state to stale; the GPU kernel call

containing reduction sets the state of the reduction

variable on GPU to stale, if the reduction is performed

in a way that only CPU has the final reduction result.

• Each memory transfer should be followed by

set status() to check any incorrect/redundant/may-

redundant transfers.

To implement the above runtime checks, we could naively

insert the checks for each read/write access. However, this

implementation is inefficient and results in large runtime

overhead. We introduce a number of techniques to reduce the

overhead. These techniques are based on a simple fact that

static and successive accesses to a variable on CPU (GPU)

without any interfering GPU (CPU) kernel calls will not

change its coherence state on CPU (GPU). These techniques

are detailed as follows:

• Coherence checking (read check() and write check())
for GPU data is only necessary at the kernel boundary,

because no CPU execution can change variable states

on GPU during the kernel execution.

• The read check() call for CPU data needs to be inserted

only for the first-read accesses along some path from

program entry or from each GPU kernel call; a similar

rule is applied to write check().
• The reset status() call to change the status of may-dead

or must-dead GPU variables needs to be inserted only

to the last-CPU-write accesses along some path from

program entry or from each GPU kernel call. For may-

dead or must-dead CPU variables, the reset status() call

needs to be inserted only at the kernel boundary (right

after a GPU kernel call).

The above optimizations require the compiler to locate

first-read, first-write, and last-write accesses. To find first-

read/write accesses, we use an algorithm similar to the

one in [23]. To find last-write accesses, we use a similar

algorithm (Algorithm 2), but performing backward, all-path

data flow analysis along some path from program exits or

from the next kernel calls.

Algorithm 2 Last-Write Analysis

OUTWrite(EXIT)⇐ ∅
OUTWrite(n)⇐

⋂
s,s∈succ(n) INWrite(s)

INWrite(n)⇐ OUTWrite(n) +DEF (n)−KILL(n)
LASTWrite(n)⇐ INWrite(n)−OUTWrite(n)

In addition to the above optimizations, if the first-CPU-

read/write accesses reside in a loop and the loop does not

486

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 01:55:48 UTC from IEEE Xplore. Restrictions apply.

contain any GPU kernel calls, the corresponding runtime

checks can be moved before the loop. This method reduces

additional profiling overhead. Furthermore, unlike the pre-

vious runtime coherence scheme [23], which optimizes the

placement of coherence checks only for the CPU side, our

scheme optimizes the placement for both CPU and GPU.

Optimizing GPU-coherence-check placement allows us to

detect additional redundant transfers, which was not possible

in the previous schemes. We use Listing 3 as an example

to further explain this opportunity. In Listing 3, GPU-write

checks are inserted before each kernel call (line 3 and 6).

However, set status() in line 8 can not detect redundant

memory transfer in line 8 because check write() in line 6

changes the CPU state of b to stale at each iteration. If the

write checks in line 3 and 6 are moved before the enclosing

loop (line 1), set status() in line 8 can detect redundant

memory transfer in line 8. We generalize the above example

and conclude that write check() call for a GPU kernel can be

moved before the enclosing loop if the two conditions hold:

(i) the enclosing loop does not contains CPU codes accessing

the target variable, and (ii) no memory transfer call for the

variable exists before the write check() call within the loop.

Figure 2 generally depicts our system, where user-

compiler-runtime interactions are iterated as necessary. Like

most of user-interactive debugging tools (e.g., gdb), our tool

may result in bad user experience when applying to a GPU

program with potentially long runtime. However, the user

can always use smaller input problem with our tool to debug

and verify programs. In summary, our memory-transfer

verification and optimization mechanism can detect various

types of incorrect/missing/redundant memory transfers. In

combination with the kernel verification method in §III-A,

our interactive profiling techniques allow programmers to

easily pinpoint various errors and data transfer redundancy

residing in the input GPU-directive programs. For debugging

and optimization problems, these techniques make the prob-

lems manageable for directive-based GPU programming.

��������������	�

���
����������
�� � !�"����"��������
��!�
������"��������!��"� #�

��$������������	�

�����"�	������%��������"%�
��������"�"���������
�����"���������"���������

�&�	�
����
������"�

�����������������
"����'��

Figure 2: Interactive debugging/optimization system overview

1 . . .
2 f o r (k =0; k<ITER ; k++) {
3 c h e c k w r i t e (a , GPU) ; c h e c k r e a d (b , GPU) ;
4 m a i n k e r n e l 0 (a , b) ; / / R /O(b) , W/O(a)
5 r e s e t s t a t u s (a , CPU, n o t s t a l e) ;
6 c h e c k w r i t e (b , GPU) ; c h e c k r e a d (a , GPU) ;
7 m a i n k e r n e l 1 (a , b) ; / / R /O(a) , W/O(b)
8 memcpyout (b) ; s e t s t a t u s (b , CPU, n o t s t a l e) ;
9 }

10 . . .
11 c h e c k r e a d (b , CPU) ; . . . / / b i s read here .

Listing 3: GPU code excerpt from JACOBI kernel with partially
optimized memory transfers

C. Application Knowledge-Guided Debugging and Opti-
mization

The above debug and optimization methods are general,

and can be applied to any GPU kernel. However, our tools

provide flexibility to customize the above methods based on

application knowledge. Using debugging and optimization

guided by application knowledge has a couple of benefits;

(1) it avoids false positive debugging (e.g., the states of the

target GPU kernel are different from those of the reference

CPU execution, but the difference is acceptable); (2) it can

accelerate debug and optimization by enforcing program

invariance-based automatic bug detection, instead of relying

on frequent interactions with users.

To implement (1), we introduce a set of directives to

allow users to bound the values of the variables in the target

GPU kernel. When the values of variables are different from

the reference CPU execution, if they fall within the user-

specified bound, the tools will ignore the difference and do

not report them to the users. To implement (2), we introduce

a debug assertion API. The users can implement the API

by performing customized bug detection (e.g., establishing

checksums and verifying them). The API will be inserted at

the end of the kernel call to enable automatic error detection.

IV. EVALUATION

In this section, we evaluate the coverage of the kernel

verification scheme and memory-transfer verification/opti-

mization scheme, and measure their overhead. Our work

is based on an open source compiler framework called

OpenARC [28], which provides extensible environment,

where various performance optimizations and traceability

mechanisms can be built for better debuggability and per-

formance for challenging GPU programming.

A. Methodology

For evaluation, we selected twelve OpenACC programs

from various application domains. These OpenACC pro-

grams include two kernel benchmark (JACOBI and SPMUL),

two NAS Parallel Benchmarks (EP and CG), and eight

Rodinia Benchmarks [27] (BACKPROP, BFS, CFD, SRAD,

487

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 01:55:48 UTC from IEEE Xplore. Restrictions apply.

HOTSPOT, KMEANS, LUD, and NW). These programs are

translated to output CUDA programs by OpenARC and

then compiled using GCC 4.4.6 and NVCC 5.0 using -O3
option. We executed compiled programs on a platform with

Intel Xeon X5660 host CPUs and a NVIDIA Tesla M2090

GPU, using the largest available inputs that fit into the GPU

memory. To get reliable results, we ran experiments multiple

times (from 10 to 200 times, depending on the runtime

variation). The reported results are the average values.

(�

)�

*�

+�

,�

-(�

-)�

-*�

����	
�	�
��
� ���

�
��� �	�

���
	���

�������

�����
�
��

��
���

	����

���

��
��

���
��
���

��
�	

�

���
��

��

�	����������� �	������������ �������.�����
��	.�
���/�
���
/
����� �	�������

2915

Figure 3: Breakup of execution time for kernel verification tests.
The execution times are normalized to those of sequential CPU
executions.

Table II: Summary for the kernel verification tests to detect race
conditions caused by missing privatization or incorrect reduction
recognition

Description Count

Number of tested kernels 46
Number of kernels containing private data 16
Number of kernels containing reduction 4
Number of kernels incurring active errors 4
Number of kernels incurring latent errors 16

B. Kernel Verification

Figure 3 shows the breakdown of execution times when

verifying all kernels in input programs. Within the figure,

Result-Comp refers to the time to compare GPU kernel

results against reference CPU results, Mem Transfer refers

to memory transfers time between CPU and GPU, Async-
Wait refers to the time that the host CPU has to wait to finish

asynchronous GPU kernel executions and memory transfers,

and CPU Time refers to the time spent for the host CPU

work. The breakdown indicates that Result-Comp and Mem
Transfer constitute most of the overhead. This is because

each kernel verification always uses reference CPU data to

avoid error contamination from previous GPU computation,

and all data written by the kernels are examined to detect

any errors potentially affecting program outputs.

Table II summarizes kernel verification tests to find kernel

errors caused by race conditions. Those errors may occur if

the GPU directive compiler fail to detect missing private

− Copying b from d e v i c e t o h o s t i n u p d a t e 0
(e n c l o s i n g loop i n d e x = 1) i s r e d u n d a n t .

− Copying b from d e v i c e t o h o s t i n u p d a t e 0
(e n c l o s i n g loop i n d e x = 2) i s r e d u n d a n t .

. . . / / r e p e a t e d u n t i l t h e l a s t k−l oop i t e r a t i o n

Listing 4: Sample debugging messages for JACOBI kernel in
Listing 3. update0 refers to memcpyout(b) in line 8 in Listing 3.

variables or reduction variables. For those tests, private/re-

duction clauses are manually removed from the directive

programs, and the directive compiler is configured to dis-

able any automatic privatization or reduction recognition.

In the table, active errors refer to the cases where race

conditions actively alter program output, while latent errors

do not change program behaviors. The proposed verification

scheme successfully detected all active errors, but none of

latent errors was detected. Further investigation found that

the latent errors are related to private data. Even if a private

variable is incorrectly translated as shared, the resulting race

condition may not affect the program outputs if the compiler

caches the intermediate values of the falsely shared variable;

the race condition occurs when the value finally dumps back

to the variable; however, the variable is no longer used after

value dumping, hence incurring no visible errors. This shows

that our verification scheme can effectively detect errors that

directly affect kernel outputs. Theoretically, the proposed

scheme can detect various active errors. In practice, the

inconsistent floating-point precision between CPU and GPU

can make error detection non-trivial and demand limited user

involvement to pre-define error conditions.

C. Memory Transfer Verification and Interactive Optimiza-
tion

To evaluate the performance of our memory transfer ver-

ification/optimization scheme, we first created unoptimized

versions for tested programs. Then, the programs were iter-

atively optimized to find optimal transfer patterns according

to our tool’s suggestions. At each verification iteration,

the tool provides three types of suggestions: (i) informa-

tion on redundant memory transfers, (ii) error messages

on missing/incorrect transfers, and (iii) warnings of may-

redundant/may-missed transfers. Listing 4 shows sample

debugging output that the tool generates for the JACOBI
kernel in Listing 3, which says memory transfer of variable b
from the device to the host in line 8 in Listing 3 is redundant

except for the first iteration of the enclosing k-loop (line 2),

indicating that the memory transfer can be deferred until the

k-loop finishes (line 10). Then, user can modify data clauses

in the input program according to the suggestions and rerun

the program (iterate the verification steps as necessary).

Among the three types of suggestions, warning messages

require special attention, since programmers have to verify

correctness of the suggested changes. The may-redundant/

488

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 01:55:48 UTC from IEEE Xplore. Restrictions apply.

may-missed transfers occur because of uncertainty in may-

dead variables. In most cases, verifying deadness is relatively

easy, since our tool informs which code section should be

checked. If the whole data of the variable is written at

that code, then the programmer can know the variable is

guaranteed to be dead. In some cases, like NAS benchmark

CG in Listing 1, where data are partially written, however,

deciding deadness may become non-trivial. This challenge

arises from the fact that the programmer has to check all the

execution paths following the tool-suggested point to check

whether written parts cover all the following reads.

Table III: Memory-transfer-verification performance. In the table,
incorrect iterations refers to the number of iterations where the
tool suggests incorrectly, and # uncaught redundancy refers to the
number of redundant memory transfers that the tool can not detect,
compared to the manually optimized versions.

Benchmark # total iter-
ations

incorrect it-
erations

uncaught re-
dundancy

BACKPROP 3 1 0
BFS 3 0 0
CFD 4 0 1
CG 2 0 0
EP 2 0 0
HOTSPOT 2 0 0
JACOBI 3 0 0
KMEANS 2 0 0
LUD 4 3 0
NW 2 0 0
SPMUL 3 0 0
SRAD 2 0 0

Table III summarizes the performance of the proposed

scheme; in most cases, we successfully figure out optimal

memory transfer patterns with up to four iterative verifica-

tion steps. However, the table also indicates that the memory

transfer verification scheme may falsely suggest in some

cases (e.g., non-zero incorrect iterations in BACKPROP and

LUD). Those cases occur when the compiler cannot resolve

the relationship between (may-)aliased pointers. If the user

follows the false suggestions, the resulting programs may

be corrupted. However, the next verification step (i.e., kernel

verification) is able to detect new errors caused by the previ-

ous incorrect suggestions and indicate the previous incorrect

suggestions. (The memory transfer and kernel verification

schemes complement each other.) Therefore, the user is

still able to find optimal memory transfer patterns, even

though intermediate wrong suggestions may unnecessarily

prolong the iteration steps (e.g., LUD). The undetected

redundant transfer in CFD is because current implementation

locally optimizes the memory-transfer-checking mechanism

proposed in §III-B.

Figure 4 shows the memory transfer verification overhead

normalized to the execution times without the verification.

The results indicate that the proposed verification scheme

incurs negligible runtime overhead in most cases. The neg-

ative overheads mainly come from memory transfer time

variation on PCI-e bus. The large performance variance in

the PCI-e bus in combination with short execution time on

GPU results in the negative overhead for those kernels.

���

��

��

��

��

��

��

	�

����	
�	�
��
� ���

�
��� �	�

���
	���

�������

�����
�
��

��
���

	����

���

��
��

���
��
��	

��
�

��
���

��
�

�������
�������������������	���
����

Figure 4: Memory-transfer-verification overhead normalized to no
verification versions. The negative overheads are due to runtime
variation in those cases with very short execution times.

V. CONCLUSIONS

We have presented novel techniques to debug and opti-

mize programs for directive-based GPU programming. Our

work is motivated by the challenges commonly seen in de-

bugging and optimizing the directive-based GPU programs:

even though those programming models provide very high-

level abstraction, multiple stages of complex translations

hidden by the directive compilers shift significant debugging

and optimization burden to GPU program developers. The

proposed, iterative profiling scheme offers an intuitive and

synergistic environment, where programmers, compilers,

and runtimes can interact with each other in an abstract

manner to achieve productive GPU computing. We have

implemented the proposed schemes on top of a new open

source OpenACC compiler, called Open Accelerator Re-

search Compiler (OpenARC). Evaluation using twelve Ope-

nACC programs from various application domains demon-

strates that our user-controlled kernel verification can detect

all active errors affecting program outputs. In addition, our

memory-transfer verification and optimization, combined

with the kernel verification method, allows users to find

optimal memory transfer patterns iteratively.

REFERENCES

[1] A. Bland et al., “Titan: 20-petaflop cray XK6 at

oak ridge national laboratory,” in Contemporary High
Performance Computing: From Petascale Toward Ex-
ascale, 1st ed., ser. CRC Computational Science Series,

J. S. Vetter, Ed. Boca Raton: Taylor and Francis, 2013,

vol. 1, p. 900.

[2] S. Matsuoka et al., “TSUBAME2.0: The first petascale

supercomputer in japan and the greenest production

in the world,” in Contemporary High Performance
Computing: From Petascale Toward Exascale, 1st ed.,

489

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 01:55:48 UTC from IEEE Xplore. Restrictions apply.

ser. CRC Computational Science Series, J. S. Vetter,

Ed. Boca Raton: Taylor and Francis, 2013, vol. 1, p.

900.

[3] X. Liao, Y. Lu, and M. Xie, “Tianhe-1A supercom-

puter: System and application,” in Contemporary High
Performance Computing: From Petascale Toward Ex-
ascale, 1st ed., ser. CRC Computational Science Series,

J. S. Vetter, Ed. Boca Raton: Taylor and Francis, 2013,

vol. 1, p. 900.

[4] J. S. Vetter et al., “Keeneland: Bringing heterogeneous

GPU computing to the computational science commu-

nity,” IEEE Computing in Science and Engineering,

vol. 13, no. 5, pp. 90–95, 2011.

[5] P. Kogge et al., “Exascale computing study: Tech-

nology challenges in achieving Exascale systems,”

DARPA Information Processing Techniques Office,

Tech. Rep., 2008.

[6] J. C. Beyer, E. J. Stotzer, A. Hart, and B. R. de Supin-

ski, “OpenMP for Accelerators.” in IWOMP’11, 2011,

pp. 108–121.

[7] T. D. Han and T. S. Abdelrahman, “hiCUDA: High-

level GPGPU programming,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 1, pp.

78–90, 2011.

[8] HMPP, “OpenHMPP directive-based programming

model for hybrid computing,” [Online]. Available: http:

//www.caps-entreprise.com/openhmpp-directives/, (ac-

cessed Jan. 29, 2014).

[9] S. Lee and R. Eigenmann, “OpenMPC: Extended

OpenMP programming and tuning for GPUs,” in

SC’10: Proceedings of the 2010 ACM/IEEE conference
on Supercomputing. IEEE press, 2010.

[10] A. Leung et al., “A mapping path for multi-GPGPU

accelerated computers from a portable high level pro-

gramming abstraction,” in Proceedings of the 3rd Work-
shop on General-Purpose Computation on Graphics
Processing Units, ser. GPGPU ’10. ACM, 2010, pp.

51–61.

[11] OpenACC, “OpenACC: Directives for Accelerators,”

[Online]. Available: http://www.openacc-standard.org,

(accessed Jan. 29, 2014).

[12] PGI Accelerator, “The Portland Group, PGI Fortran

and C Accelarator Programming Model,” [Online].

Available: http://www.pgroup.com/resources/accel.

htm, (accessed Jan. 29, 2014).

[13] S. Lee and J. S. Vetter, “Early evaluation of directive-

based GPU programming models for productive Exas-

cale computing,” in the International Conference for
High Performance Computing, Networking, Storage,
and Analysis (SC). IEEE press, 2012.

[14] NVIDIA, “CUDA,” [Online]. Available:

https://developer.nvidia.com/category/zone/cuda-zone,

(accessed Jan. 29, 2014).

[15] AMD, “GPU PerfStudio 2,” [Online]. Available:

http://developer.amd.com/tools-and-sdks/

graphics-development/gpu-perfstudio-2/, (accessed

Jan. 29, 2014).

[16] A. D. Malony, S. Biersdorff, W. Spear, and

S. Mayanglambam, “An experimental approach to per-

formance measurement of heterogeneous parallel appli-

cations using CUDA,” in Proceedings of the 24th ACM
International Conference on Supercomputing, ser. ICS

’10. ACM, 2010, pp. 127–136.

[17] NVIDIA, “NVIDIA Visual Profiler,” [Online].

Available: https://developer.nvidia.com/

nvidia-visual-profiler, (accessed Jan. 29, 2014).

[18] RogueWave, “TotalView graphical debugger,” [On-

line]. Available: http://www.roguewave.com/products/

totalview.aspx, (accessed Jan. 29, 2014).

[19] Allinea, “Distributed Debugging Tool (DDT),” [On-

line]. Available: http://www.allinea.com/products/ddt/,

(accessed Jan. 29, 2014).

[20] K. Spafford et al., “The tradeoffs of fused memory

hierarchies in heterogeneous architectures,” in ACM
Computing Frontiers (CF), Cagliari, Italy, 2012.

[21] I. Gelado et al., “An asymmetric distributed shared

memory model for heterogeneous parallel systems,”

in Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages and
operating systems, ser. ASPLOS ’10. ACM, 2010, pp.

347–358.

[22] T. B. Jablin et al., “Automatic CPU-GPU communica-

tion management and optimization,” in Proceedings of
the 32nd ACM SIGPLAN conference on Programming
language design and implementation, ser. PLDI ’11.

ACM, 2011, pp. 142–151.

[23] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil,

“Fast and efficient automatic memory management

for GPUs using compiler-assisted runtime coherence

scheme,” in Proceedings of the 21st international
conference on Parallel architectures and compilation
techniques, ser. PACT ’12. ACM, 2012, pp. 33–42.

[24] T. B. Jablin et al., “Dynamically managed data for

CPU-GPU architectures,” in Proceedings of the Tenth
International Symposium on Code Generation and Op-
timization, ser. CGO ’12. ACM, 2012, pp. 165–174.

[25] OpenCL, “OpenCL,” [Online]. Available: http://www.

khronos.org/opencl/, (accessed Jan. 29, 2014).

[26] C. Dave et al., “Cetus: A source-to-source compiler

infrastructure for multicores,” IEEE Computer, vol. 42,

no. 12, pp. 36–42, 2009.

[27] S. Che et al., “Rodinia: A benchmark suite for hetero-

geneous computing,” in Proceedings of the IEEE In-
ternational Symposium on Workload Characterization
(IISWC), 2009.

[28] “OpenARC: Open Accelerator Research Compiler,”

[Online]. Available: http://ft.ornl.gov/research/openarc,

(accessed Jan. 29, 2014).

490

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 01:55:48 UTC from IEEE Xplore. Restrictions apply.

