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Abstract—Use of non-volatile memory (NVM) devices such
as resistive RAM (ReRAM) and spin transfer torque RAM
(STT-RAM) for designing on-chip caches holds the promise
of providing a high-density, low-leakage alternative to SRAM.
However, low write endurance of NVMs, along with the write-
variation introduced by existing cache management schemes
significantly limits the lifetime of NVM caches. We present
LastingNVCache, a technique for improving the cache lifetime
by mitigating the intra-set write variation. LastingNVCache
works on the key idea that by periodically flushing a frequently-
written data-item, next time the block can be made to load
into a cold block in the set. Through this, the future writes to
that data-item can be redirected from a hot block to a cold
block, which leads to improvement in the cache lifetime. Mi-
croarchitectural simulations have shown that LastingNVCache
provides 6.36X, 9.79X, and 10.94X improvement in lifetime
for single, dual and quad-core systems, respectively. Also, its
implementation overhead is small and it outperforms a recently
proposed technique for improving lifetime of NVM caches.

Keywords-Non-volatile memory (NVM), microarchitectural
technique, device lifetime, write-endurance, wear-leveling,
intra-set write variation.

I. INTRODUCTION

Recent trends of increasing system core-count and mem-
ory bandwidth-wall problem have led to a large increase in
the size of last level caches (LLCs), for example, Intel’s
Enterprise Xeon processor uses 30 MB LLC [1]. Conven-
tionally, SRAM has been used for designing LLCs because
it provides fast access speed and high write endurance.
However, SRAM consumes high leakage power and has low
density, and hence, SRAM LLCs contribute significantly to
the chip power and area budget. For example, L2 cache
consumes 25% of the total processor power in the Niagara-
2 processor [2]. As cache capacity requirement increases,
the increased power consumption will necessitate expensive
cooling solutions (e.g. liquid cooling) and may also severely
restrict further performance scaling.

To address this issue, researchers have explored non-
volatile memory, such as ReRAM (resistive RAM), STT-
RAM (spin transfer torque RAM) and PCM (phase change
RAM) for designing on-chip caches [3–7]. NVMs provide
high density, low-leakage power and non-volatile operation.
As an example, the size of an SRAM cell ranges from 125–
200F 2, while that of a ReRAM cell ranges from 4–10F 2

[8–10]. However, a critical limitation of NVMs is that their

write endurance value is orders of magnitude smaller than
that of SRAM and DRAM. Specifically, while the write
endurance of SRAM and DRAM is more than 1015 [8],
for ReRAM, STT-RAM and PCM, these values are 1011,
4 × 1012 and 108, respectively [8, 11–13]. Due to process
variations, these values may be further reduced by an order
of magnitude [14].

Further, since existing cache management policies are
write-variation unaware, the large amount of write variation
introduced by them may significantly reduce the cache
lifetime compared to the expected lifetime assuming uniform
write distribution. For example, LRU (least recently used)
replacement policy keeps the recently accessed data in
the cache to leverage temporal locality, however, this may
significantly increase the number of writes to the blocks
storing those data-items.

In this paper, we propose LastingNVCache, a microarchi-
tectural technique for improving cache lifetime by mitigating
the intra-set write variation in NVM caches. LastingN-
VCache works on the key idea that if a frequently-written
data-item is periodically flushed without updating its LRU-
age information, the next time it will be loaded into a cold
block in the set. Through this, the future writes to that data-
item can be redirected from a hot block to a cold block,
which leads to intra-set wear-leveling. Thus, by uniformly
distributing the write-pressure, the worst-case writes on any
block can be reduced which leads to improvement in the
lifetime of the cache (Section III).

The storage requirement of LastingNVCache is less than
0.8% of the L2 cache size, which is very small. Also, it does
not require changing the set-decoding (unlike [4]), or extra
swap-buffers for in-cache data movement (unlike [6, 15]), or
compiler analysis (as in [16]) or including tag bits as part of
set-index (unlike [3]). In this paper, we assume a ReRAM
cache and based on the explanation, LastingNVCache can
be easily applied to LLCs designed with other NVMs. For
sake of convenience, we henceforth use the terms ReRAM
and NVM interchangeably.

Microarchitectural simulations have been performed using
an x86-64 simulator and benchmarks from SPEC2006 suite
and HPC (high-performance computing) field IV. Also, we
compare LastingNVCache with a recently proposed tech-
nique for improving lifetime of NVM caches, namely PoLF
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[11]. Results have shown that LastingNVCache provides
higher improvement in lifetime than PoLF and also incurs
smaller loss in performance and energy. For single, dual
and quad-core systems, the average improvement in lifetime
on using LastingNVCache is 6.36×, 9.79×, and 10.94×,
respectively (Section V ). Additional experiments confirm
that LastingNVCache works well for a wide range of system
and algorithm parameters.

II. BACKGROUND AND RELATED WORK

The raw lifetime of cache is determined by the first
memory-cell that wears out and thus, the lifetime of cache
can be maximized by minimizing the worst-case write count
to a cache line. This can be achieved by either minimiz-
ing the number of writes to the cache or by uniformly
distributing them over cache (called wear-leveling). Some
write-minimization techniques reduce the number of writes
at cache-access level by using buffers or additional level
of caches [7, 17], while others avoid redundant writes
at bit-level [5, 18]. Our technique uses wear-leveling and
can be synergistically integrated with write-minimization
techniques.

Based on the granularity of wear-leveling, different tech-
niques can be divided into set-level (or cache color-level)
[3, 4, 11], way-level [11, 15] or memory-cell level [5]. Our
technique uses way-level wear-leveling, which unlike set-
level and color-level wear-leveling, does not require chang-
ing the set-decoding of the cache or flushing the contents of
cache on reconfiguration and thus, incurs smaller overhead.

Wang et al. [11] propose an intra-set wear-leveling tech-
nique named PoLF (probabilistic set-line flush). In PoLF,
after a fixed number of write hits (called flush threshold FT)
in the entire cache, a write-operation is skipped; instead,
the data item is directly written-back to memory and the
cache-block is invalidated, without updating the LRU-age
information. Probabilistically, the flushed block is expected
to be hot and hence, the hot data-item will be loaded in
another cold block which leads to intra-set wear-leveling. We
both qualitatively and quantitatively compare our technique
with PoLF in Sections III and V.

III. METHODOLOGY

Notations: Our notation is as follows. N shows the
number of cores. For L2 cache, S, A, B and G denote
the number of sets, associativity, cache block (line) size
and tag size, respectively. In this paper, we assume B = 64
bytes and G = 40 bits. We use the terms ‘block’ and ‘line’
synonymously and similarly for ‘flushing’ and ‘invalidation’.

A. Main Idea

Caches work by exploiting the temporal locality principle,
by which frequently accessed data are kept in the cache
to improve the hit-rate. However, if few cache blocks are
repeatedly written, the number of writes to them may

become much larger than those to the remaining blocks in
the set.

LastingNVCache works on the key idea that if after a fixed
number of writes to a cache block, the data-item stored in
that block is invalidated, then the storage location of the hot
data-item in the set can be changed, and thus, the future
writes can be redirected to another ‘cold’ block-location.
This helps in achieving wear-leveling which improves the
lifetime of the cache.

B. Implementation Details

Algorithm 1 shows the working of LastingNVCache. We
now describe it in detail.

Algorithm 1: LastingNVCache: algorithm for handling
a write-hit in set-index i

1 Let k be the index of the write-hit block
2 Increment nWrite[i][k] by 1
3 if nWrite[i][k] == Φ then
4 Write-back incoming data and invalidate cacheData[i][k]
5 for all blocks j in set i do
6 if j ̸= k AND nWrite[i][j]>0 then
7 Reduce nWrite[i][j] by λ
8 end
9 end

10 else
11 Write incoming data to cacheData[i][k], mark dirty and update

LRU-age information
12 end

We use a parameter Φ, which denotes the flushing thresh-
old. With each cache block, we use a counter (termed
nWrite), which records the number of writes to the block in
its current generation, i.e. from the point of time when the
existing data-item was stored in that block-location. On each
write-hit to a block, its nWrite counter is incremented by 1.
When on a write, the nWrite value reaches Φ, the write is
skipped and the data-item is directly written back to memory,
without updating the LRU information of the block. Thus,
any subsequent miss will invalidate the actual LRU block
and store the hot data in it, and not in the above mentioned
invalidated block. Effectively, the cache-block invalidation
induced by LastingNVCache works to change the location of
hot block and thus, distribute the write-pressure uniformly.

In LastingNVCache, before a block is invalidated, writes
to it may not happen in a short window of time. This
is because the write counters accumulate writes over a
complete generation of a block. In such a case, when a block
is actually invalidated, it may not “currently” be a hot block.
To address this, and actually capture the temporal locality,
we proceed as follows. When a cache block is invalidated,
the write-counter of all the other blocks in the set is reduced
by λ, which is a tunable parameter. Typical values of λ are
0, 1 and 2. By using λ > 0, we ensure that all or most
of the write operations to a block have taken place in a
‘recent’ window of time. This is because, if another block
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Table I: The behavior of a 4-way cache set for an access pattern under LRU, PoLF and LastingNVCache schemes. A to F are valid
data-items, ‘X’ shows invalid data-item. The numbers after data-items show LRU-age, 0 being the MRU and 3 being the LRU. Cache
block being written is marked in bold. Note that LastingNVCache distributes write more uniformly than PoLF (see ‘# writes’ row).

LRU Policy PoLF Scheme (FT=3) LastingNVCache Scheme (Φ=3, λ=0 )
Command (Data LRU-age)4 Result (Data LRU-age)4 Result (Data LRU-age)4 Result

Initial status A 0 B 1 C 2 D 3 A 0 B 1 C 2 D 3 A 0 B 1 C 2 D 3
Write B A 1 B 0 C 2 D 3 Hit A 1 B 0 C 2 D 3 Hit A 1 B 0 C 2 D 3 Hit
Write B A 1 B 0 C 2 D 3 Hit A 1 B 0 C 2 D 3 Hit A 1 B 0 C 2 D 3 Hit
Read E A 2 B 1 C 3 E 0 Miss A 2 B 1 C 3 E 0 Miss A 2 B 1 C 3 E 0 Miss
Write E A 2 B 1 C 3 E 0 Hit A 2 B 1 C 3 X 0 Hit, Flush E A 2 B 1 C 3 E 0 Hit
Read F A 3 B 2 F 0 E 1 Miss A 3 B 2 F 0 X 1 Miss A 3 B 2 F 0 E 1 Miss
Write B A 3 B 0 F 1 E 2 Hit A 3 B 0 F 1 X 2 Hit A 3 X 2 F 0 E 1 Hit, Flush B
Write B A 3 B 0 F 1 E 2 Hit A 3 B 0 F 1 X 2 Hit B 0 X 3 F 1 E 2 Miss
Read F A 3 B 1 F 0 E 2 Hit A 3 B 1 F 0 X 2 Hit B 1 X 3 F 0 E 2 Hit
Write B A 3 B 0 F 1 E 2 Hit A 3 X 1 F 0 X 2 Hit, Flush B B 0 X 3 F 1 E 2 Hit
Write B A 3 B 0 F 1 E 2 Hit B 0 X 2 F 1 X 3 Miss X 0 X 3 F 1 E 2 Hit, Flush B
# writes 0 6 1 2 1 4 1 1 2 2 1 2

Summary 8 hits, 2 misses, 9 writes 7 hits, 3 misses, 7 writes, 2 flushes 7 hits, 3 misses, 7 writes, 2 flushes

in the set has been recently flushed, then the write-counter
of this block would be reduced by λ, and hence, more writes
need to happen to this block to reach the Φ limit. By virtue
of this, we ensure that we invalidate based on the number
of writes relative to other blocks (which actually indicates
high intra-set write variation) and not based on the absolute
number of writes alone. A value of λ = 0 indicates that
the writes to a block are accounted over its one complete
generation, irrespective of the writes to other blocks in the
set. The higher the value of λ, the higher are chances that
a block being invalidated has seen large number of writes
in recent interval. We have chosen to study these values
of λ since they are reasonable and small and thus help us
in exercising moderate control in aggressiveness of cache
flushing and wear-leveling.

Table I compares it with LRU and PoLF scheme for an
example access pattern. It can be easily understood based
on the explanation provided above and in Section II.

C. Salient Features
LastingNVCache provides several key advantages over

PoLF. LastingNVCache records the number of writes to
each cache block in its current generation and flushes a
block only if the block alone has accumulated Φ number
of writes. If before that, the block is evicted, another block
will be installed which will have nWrite initialized to 0 and
its flushing will be postponed. By contrast, PoLF blindly
flushes 1/FT fraction of write hits and hence, with PoLF,
even a newly-installed block may be flushed (see Table I)
since PoLF flushes in a probabilistic manner. Also, there is
no guarantee that the block chosen for invalidation currently
stores a hot data-item. Due to this, for workloads which have
high write-intensity but low write-variation, PoLF may lead
to unnecessarily large number of invalidations leading to
performance and energy loss.

D. Overhead Assessment
LastingNVCache does not record all the writes on a block,

rather, it only records writes in a single generation and thus,

its storage requirement is small. For each cache block, we
use ⌈log2(Φ)⌉ bits to store the number of writes on it. Thus,
the percentage overhead of LastingNVCache, compared to
the L2 cache can be computed as

Overhead =
S ×A× log2(Φ)

S ×A× (B +G)
× 100 (1)

For Φ = 16, we obtain Overhead = 0.72%, and thus, the
storage overhead of LastingNVCache is small.

For both PoLF and LastingNVCache, we assume that on
each write-hit, comparison of write-counter with threshold
value takes 3 cycles, since the write-counter has only few
(e.g. 4-5) bits. Note that due to instruction-level parallelism
(ILP), a small increase in latency of LLC can be easily
hidden, as confirmed by the results. For LastingNVCache,
when a data-item is flushed, the latency of reducing the
write-counters of remaining blocks is hidden by the la-
tency of write-back operation. The performance overhead
of LastingNVCache comes from extra writebacks to the
memory, which we model in our experiments. For further
optimization, we assume that the overhead of writebacks
can be hidden by using write-back buffers and MSHR (miss-
status holding registers) techniques. The counters used for
measuring the number of writes are not designed NVM and
hence, they do not have write-endurance issues. If required,
to minimize the dynamic power consumption of counters,
Gray counters can be utilized.

IV. EXPERIMENTAL METHODOLOGY

Simulation Platform: We use Sniper x86-64 simula-
tor [19] for performing microarchitectural simulation. The
processor frequency is 2GHz. Both L1-I and L1-D caches
are 4-way 32KB caches with 2 cycle latency. We assume
that L1 caches are designed using SRAM for performance
reasons. L2 cache parameters are shown in Table II, which
are obtained using NVSim [10], assuming 32nm process,
write energy-delay product (EDP) optimized cache design
and sequential cache access. All caches use LRU, write-
back, write-allocate policy and L2 cache is inclusive of L1
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caches. L1 caches are private to each core and L2 cache is
shared among cores. Main memory latency is 220 cycles.
Memory bandwidth for 1-core, 2-core and 4-core systems is
10, 15 and 25GB/s, respectively.

Table II: Parameters for 16-way ReRAM L2 cache
2MB 4MB 8MB 16MB 32MB

Hit Latency (ns) 5.059 5.120 5.904 5.974 8.100
Miss Latency (ns) 1.732 1.653 1.680 1.738 2.025
Write Latency (ns) 22.105 22.175 22.665 22.530 22.141

Hit energy (nJ) 0.542 0.537 0.602 0.662 0.709
Miss energy (nJ) 0.232 0.187 0.188 0.190 0.199
Write energy (nJ) 0.876 0.827 0.882 0.957 1.020

Leakage Power (W) 0.019 0.037 0.083 0.123 0.197

Workloads: As single-core workloads, we use all 29
benchmarks from SPEC CPU2006 suite with ref inputs
and 6 benchmarks from HPC field (shown in italics in
Table III). Using these, we create 18 dual-core and 9 quad-
core multiprogrammed workloads such that each benchmark
is used exactly once (except for completing the left-over
group). Table III shows these workloads.

Table III: Workloads used in the experiments

Single-core workloads and their acronyms
As(astar), Bw(bwaves), Bz(bzip2), Cd(cactusADM), Ca(calculix)
Dl(dealII), Ga(gamess), Gc(gcc), Gm(gemsFDTD), Gk(gobmk)
Gr(gromacs), H2(h264ref), Hm(hmmer), Lb(lbm), Ls(leslie3d)
Lq(libquantum), Mc(mcf), Mi(milc), Nd(namd), Om(omnetpp)
Pe(perlbench), Po(povray), Sj(sjeng), So(soplex), Sp(sphinx)
To(tonto), Wr(wrf), Xa(xalancbmk), Ze(zeusmp), Co(CoMD)

Lu(lulesh), Mk(mcck), Ne(nekbone), Am(amg2013), Xb(xsbench)
Dual-core workloads (Using acronyms shown above)

AsDl, GcBw, GmGr, SoXa, BzMc, OmLb, NdCd, CaTo, SpPo
LqMi, SjWr, LsZe, HmGa, GkH2, PePo, NeLu, MkXb, CoAm

Quad-core workloads (Using acronyms shown above)
AsGaXaLu, GcBzGrTo, CaWrMkMi, LqCoMcBw

LsSoSjH2, PeZeHmDl, GkPoGmNd, LbOmCdSp, AmXbNeGa

Evaluation Metrics: Our baseline is a ReRAM L2
cache, which uses LRU replacement policy, but does not
use any wear-leveling technique. We model the energy of
L2 and main memory. The leakage power and dynamic
energy of main memory are taken as 0.18W and 70nJ/access,
respectively [20] and the energy parameters for L2 are shown
in Table II. We ignore the overhead of counters and buffers,
since it is several orders of magnitude smaller compared
to the memory subsystem (L2 + main memory), as also
confirmed by previous works [21]. We show the results
on a) relative cache lifetime where the lifetime is defined
as the inverse of maximum writes on any cache block b)
coefficient of intra-set write-variation, termed as IntraV [11],
c) percentage energy loss d) weighted speedup [22], e)
absolute increase in MPKI (miss-per-kilo-instructions) [20]
and f) the number of flush operations (nFlush).

We fast-forward the benchmarks for 10B instructions
and simulate each workload till the slowest application
executes 300M instructions. In multi-core workloads, the

benchmarks which complete early are allowed to run but
their IPC is recorded only for the first 300M instructions,
following well-established simulation methodology [22, 23].
Remaining metrics are computed for the entire simulation,
since they are system-wide metrics (while IPC is a per-
core metric) [20]. Relative lifetime and speedup values are
averaged using geometric mean and the remaining metrics
are averaged using arithmetic mean. We henceforth refer
weighted speedup as the relative performance. For dual and
quad-core systems, we have also computed fair speedup
[20, 22] and observed their values to be nearly same as
weighted speedup and thus, LastingNVCache does not cause
unfairness. For brevity, we omit these results.

V. RESULTS AND ANALYSIS

A. Main Results

Figures 1, 2 and 3 show the results. Here, the size of L2
for N =1, 2, and 4 are 4MB, 8MB and 16MB, respectively
and Φ (for LastingNVCache) and FT (for PoLF) are both 16.
For MPKI increase and nFlush, we omit the per-workload
figures for brevity and only state the average. The value
for nFlush for N = 1, 2 and 4 for LastingNVCache (resp.
PoLF) are 25K (resp. 95K), 69K (resp. 219K) and 163K
(resp. 533K), respectively. Increase in MPKI for N = 1,
2 and 4 for LastingNVCache (resp. PoLF) are 0.14 (resp.
0.30), 0.15 (resp. 0.31) and 0.15 (resp. 0.29) respectively.
We now analyze the results.

For all configurations, LastingNVCache achieves higher
improvement in lifetime than PoLF with much smaller
number of invalidations and also smaller performance and
energy loss. For some workloads, LastingNVCache im-
proves the lifetime by more than 10×, for example, Po,
Ga, Nd, Sj, BzMc, CoAm, AsGaXaLu, GkPoGmNd etc. As
evident from figures, for N = 1, 2 and 4, LastingNVCache
(resp. PoLF) reduces the IntraV from 139.6% to 38.1%
(resp. 52.6%), from 137.0% to 36.0% (resp. 44.2%) and
from 122.7% to 28.6% (resp. 34.2%), respectively. Clearly,
LastingNVCache reduces intra-set write variation more ef-
fectively with smaller number of invalidations.

The lifetime enhancement achieved with a workload also
depends on the write-variation originally present in the
baseline. Thus, the highest amount of lifetime improvement
is achieved for workloads which have highest amount of
write-variation and vice-versa. Hence, for workloads such
as Lq, Mi, Xb etc. which have small write variation, the im-
provement in lifetime can be achieved by other methods such
as write-minimization (see Section II). For a few workloads,
the performance shows very small improvement (instead of
loss) on using LastingNVCache and PoLF, for example, for
Hm, the relative performance with both LastingNVCache
and PoLF are 1.002×. This happens because writebacks
occur eagerly on cache flushing, and hence, they are less
likely to stall the processor later on, as also observed by the
previous works [21, 24].

537

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 03,2020 at 01:56:04 UTC from IEEE Xplore.  Restrictions apply. 



 1
 3
 5
 7
 9

 11
 13
 15
 17

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Co Lu Mk Ne Am Xb Avg

Relative Lifetime (More is better) LastingNVCache PoLF

0%
50%

100%
150%
200%
250%
300%
350%
400%
450%

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Co Lu Mk Ne Am Xb Avg

IntraV (Less is better) Baseline LastingNVCache PoLF

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Co Lu Mk Ne Am Xb Avg

 Relative Performance (More is better) LastingNVCache PoLF

 0

 10

 20

 30

 40

 50

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Co Lu Mk Ne Am Xb Avg

 Percentage Loss in Energy (Less is better) LastingNVCache PoLF

Figure 1: Results for Single-core System
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Figure 2: Results for Dual-core System

On average, PoLF flushes more than 3× the number of
blocks as LastingNVCache and increases MPKI by nearly
the double. For workloads such as Lb, which have high
write-intensity but low write-variation, the advantage of
LastingNVCache can be clearly seen. For these workloads,
PoLF flushes much more number of blocks for achieving
nearly the same improvement in lifetime as LastingN-
VCache. This clearly shows the advantage of LastingN-
VCache. The advantage of PoLF is that it only requires one
global counter.

Both LastingNVCache and PoLF incur loss in energy
due to flushing operations which increase the number of
off-chip accesses. However, note that due to their high-
density and low-leakage, NVMs facilitate use of larger sized
LLCs than SRAM, which in general leads to better energy
efficiency. Also, write-density minimization comes as a side-
benefit of wear-leveling, which leads to reduced thermal
density and chip-temperature. Hence, a small loss in energy
due to the use of LastingNVCache may be acceptable,
since our technique addresses the most crucial bottleneck
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Figure 3: Results for Quad-core System

of NVMs, namely the small device-lifetime due to limited
write-endurance. Further, as we show below and in Section
V-B, by choosing a suitable value of Φ and λ, a designer
can trade-off the desired improvement in performance and
acceptable performance and energy loss.

Table IV shows the results with LastingNVCache and
PoLF for different flushing threshold values. The higher the
value of Φ (or FT), the smaller is the improvement in lifetime
and the energy overhead of the technique. Conversely, for
smaller value of flushing thresholds, higher improvement in
lifetime is obtained at the cost of higher energy loss. Also
note that LastingNVCache provides better results than PoLF
on all configurations and parameters evaluated.

Table IV: Comparison of LastingNVCache (LNC) and PoLF
(Rel. = relative, LfT = Lifetime, Perf. = performance.)

Rel. Energy Rel. nFlush ∆
LfT Loss % Perf. MPKI

Single-core System
LNC Φ=12 6.65 10.65 0.99 34K 0.20
PoLF FT=12 4.83 14.84 0.99 127K 0.39
LNC Φ=20 6.10 5.94 1.00 19K 0.11
PoLF FT=20 4.29 8.98 0.99 76K 0.24

Dual-core System
LNC Φ=12 10.08 12.03 0.99 95K 0.21
PoLF FT=12 8.74 16.88 0.99 285K 0.42
LNC Φ=20 9.55 6.87 1.00 51K 0.11
PoLF FT=20 8.32 10.12 0.99 171K 0.25

Quad-core System
LNC Φ=12 11.23 16.4 0.99 225K 0.20
PoLF FT=12 9.93 23.66 0.99 711K 0.38
LNC Φ=20 10.62 9.34 1.00 125K 0.11
PoLF FT=20 8.99 14.41 0.99 427K 0.23

B. Parameter Sensitivity Results

We now focus exclusively on LastingNVCache and eval-
uate it for different parameters. Each time we only change
one parameter compared to those mentioned in Section V-A
and summarize the results in Table V.

Table V: LastingNVCache Parameter Sensitivity Study
Rel. IntraV IntraV Energy Rel. nFlushLfT Base LNC Loss % Perf.

Single-core System
Default 6.36 139.6 38.1 7.88 1.00 25K
λ = 0 6.43 139.6 37.6 8.26 1.00 26K
λ = 2 6.35 139.6 38.7 7.64 1.00 24K
8-way 4.17 110.3 32.3 8.13 1.00 25K
32-way 8.54 170.4 43.0 6.95 1.00 24K
2MB 4.61 108.2 26.7 7.33 1.00 23K
8MB 7.65 179.3 60.6 7.38 0.99 28K

Dual-core System
Default 9.79 137.0 36.0 8.76 1.00 69K
λ = 0 9.92 137.0 35.4 9.10 1.00 70K
λ = 2 9.82 137.0 36.6 8.56 1.00 68K
8-way 5.79 106.1 30.3 8.97 1.00 69K
32-way 15.77 174.4 41.2 8.27 1.00 66K
4MB 6.86 100.2 23.0 8.85 1.00 63K
16MB 11.04 171.6 53.1 9.79 1.00 83K

Quad-core System
Default 10.87 122.7 28.8 12.05 0.99 161K
λ = 0 10.92 122.7 28.4 12.79 0.99 167K
λ = 2 10.87 122.7 28.8 12.05 0.99 161K
8-way 5.91 96.6 25.1 12.28 0.99 164K
32-way 19.96 152.9 31.1 11.31 0.99 155K
8MB 9.17 97.8 22.1 10.16 0.99 138K
32MB 12.83 154.1 39.7 12.39 0.99 200K

Change in λ: On decreasing λ, the lifetime enhancement
is slightly increased at the cost of a small increase in the
loss in performance and energy. This is expected, since for
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smaller λ, the aggressiveness of cache flushing and wear-
leveling is increased.

Change in associativity: With increasing cache as-
sociativity, the intra-set write-variation also increases, as
evident from the value of IntraV in Table V. Clearly,
LastingNVCache provides large improvement in lifetime,
in proportion to IntraV and is especially important for the
caches of large associativity.

Change in cache size: With increasing cache size, the
hit-rate also increases since workloads have fixed working
set size. This increases the IntraV, since a few blocks see
repeated hits. Hence, the lifetime improvement provided by
LastingNVCache also increases. Since future systems are
expected to have large LLCs, the importance of LastingN-
VCache will grow even further in next-generation systems.

Clearly, LastingNVCache works well for a wide range of
system and algorithm parameters.

VI. CONCLUSION

NVM devices hold the promise of being used as a univer-
sal memory solutions in the future computing systems. How-
ever, some of their limitations such as low write-endurance
present a crucial bottleneck in their use for designing on-chip
caches. In this paper, we presented a technique for improving
the lifetime of NVM caches by mitigating the intra-set write-
variation. With only small implementation overhead, Last-
ingNVCache provides large improvement in cache lifetime
and also outperforms a recently proposed technique. Our
future work includes integrating LastingNVCache with the
techniques for mitigating inter-set write-variation for further
improving the cache lifetime.
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