
PORPLE: An Extensible Optimizer for Portable
Data Placement on GPU

Guoyang Chen
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
Email: gchen11@ncsu.edu

Dong Li

Oak Ridge National Laboratory
Oak Ridge, TN, USA
Email: lid1@ornl.gov

Bo Wu
Department of Electrical Engineering and Computer Science

Colorado School of Mines
Golden, CO, USA

Email: bwu@mines.edu

Xipeng Shen
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
Email: xshen5@ncsu.edu

Abstract—GPU is often equipped with complex memory sys-
tems, including global memory, texture memory, shared memory,
constant memory, and various levels of cache. Where to place
the data is important for the performance of a GPU program.
However, the decision is difficult for a programmer to make
because of architecture complexity and the sensitivity of suitable
data placements to input and architecture changes.

This paper presents PORPLE, a portable data placement
engine that enables a new way to solve the data placement
problem. PORPLE consists of a mini specification language,
a source-to-source compiler, and a runtime data placer. The
language allows an easy description of a memory system; the
compiler transforms a GPU program into a form amenable
to runtime profiling and data placement; the placer, based on
the memory description and data access patterns, identifies
on the fly appropriate placement schemes for data and places
them accordingly. PORPLE is distinctive in being adaptive to
program inputs and architecture changes, being transparent
to programmers (in most cases), and being extensible to new
memory architectures. Our experiments on three types of GPU
systems show that PORPLE is able to consistently find optimal
or near-optimal placement despite the large differences among
GPU architectures and program inputs, yielding up to 2.08X
(1.59X on average) speedups on a set of regular and irregular
GPU benchmarks.

Keywords-GPU; cache; compiler; data placement; hardware
specification language;

I. INTRODUCTION

Modern Graphic Processing Units (GPU) rely on some
complex memory systems to achieve high throughput. On an
NVIDIA Kepler device, for instance, there are more than eight
types of memory (including caches), with some on-chip, some
off-chip, some directly manageable by software, and some not.
They each have their own sizes, properties, and access con-
straints. Studies have shown that finding the suitable kinds of
memory to place data—called the data placement problem—
is essential for GPU program performance [12]. But due to
the complexity of memory and its continuous evolvement, it
is often difficult for programmers to tell what data placements

fit a program. For some programs, the suitable placements
differ across the program inputs, making the placement even
more difficult to do.

There have been some efforts to addressing the problem.
Some of them use offline autotuning, which tries many dif-
ferent placements and measures the performance on some
training runs [29]. This approach is time-consuming, and
cannot easily adapt to the changes in program inputs or mem-
ory systems. Some others use some high-level rules derived
empirically from many executions on a GPU [12]. These rules
are straightforward, but as this paper shows later, they often
fail to produce suitable placements, and their effectiveness
degrades further when GPU memory systems evolve across
generations of GPU.

In this work, we introduce a new approach to address the
data placement problem. We design the approach based on
three principles.

First, the solution must have a good extensibility. GPU
architecture changes rapidly, and every generation manifests
some substantial changes in the memory system design. For a
solution to have its lasting values, it must be easy to extend
to cover a new memory system. Our solution features MSL
(memory specification language), a carefully designed small
specification language. MSL provides a simple, uniform way
to specify a type of memory and its relations with other pieces
of memory in a system. GPU memory has various special
properties: Accesses to global memory could get coalesced,
accesses to texture memory could come with a 2-D locality,
accesses to shared memory could suffer from bank conflicts,
accesses to constant memory could get broadcast, and so on.
A challenge is how to allow simple but yet well-structured
descriptions of these various properties such that they can
be easily exploited by a data placement mechanism. Our
solution is based on the following insight: All of those special
properties are essentially about the conditions, under which,
concurrent access requests are serialized. We introduce a

“serialization condition” field in the design of MSL, which
allows the specification of all those special properties in
logical expressions of a simple format. The design offers an
underlying vehicle for data placement mechanisms to treat
various types of memory in a single, systematic way. With
this design, extending the language coverage to include a
new memory system can be achieved by simply adding a
new entry into the MSL specification. This design, along
with the compiler support explained next, allows code to be
easily ported into a new GPU architecture with data placement
automatically optimized (Section III).

Second, the solution should be input-adaptive. Different
inputs to a program could differ in size and trigger differ-
ent data access patterns, and hence demand different data
placement. Since program inputs are not known until runtime,
the data placement optimizer should be able to work on the
fly, which entails two requirements. The first is to employ
a highly efficient data placement engine with minimized
runtime overhead. In our solution, we use an agile detection
of data access patterns explained next, a lightweight memory
performance model for fast assessing a data placement plan,
and an open design that allows easy adoption of fast algorithms
for searching for the best placement on the fly (Section IV).
The second requirement is the ability to transform the original
program such that it can work with an arbitrary data placement
decided by the data placement engine at runtime. A typical
GPU program does not meet the requirement because of its
hardcoded data access statements that are valid only under
a particular data placement. In our solution, we develop a
source-to-source compiler named PORPLE-C, which trans-
forms a GPU program into a placement-agnostic form. The
form is equipped with some guarding statements such that
executions of the program can automatically select the appro-
priate version of code to access data according to the current
data placement. A complexity with this solution is a tension
between the size of the generated code and the overhead of
the guarding statements, which is addressed in our solution by
a combination of coarse-grained and fine-grained versioning
(Section V).

Third, the solution should have a good generality. Data
placement is important for both regular and irregular GPU pro-
grams (our results show an even higher potential on irregular
programs, detailed in Section VII.) A good solution to the data
placement problem hence should be applicable to both kinds
of programs. Here the main challenge is to find out the data
access patterns of irregular programs, as they are typically not
amenable for compiler analysis. Our solution is to employ a
hybrid method. In particular, the PORPLE-C compiler tries to
figure out data access patterns through static code analysis.
When the analysis fails, it derives a function from the GPU
kernel with its memory access patterns captured. The function
contains some recording instructions to characterize memory
access patterns. At runtime, the function runs on CPU, but
only for a short period of time. This hybrid method avoids
runtime overhead when possible and at the same time makes
the solution broadly applicable. (Section VI)

Together, these techniques compose an extensible data
placement engine named PORPLE (portable data placement
engine.) PORPLE provides a general solution to GPU data
placement with several appealing properties. It adapts to
inputs and memory systems; it allows easy extension to new
memory systems; it requires no offline training; in most
cases, it optimizes data placement transparently with no need
for manual code modification. In exceptional cases where
automatic code transformation is difficult to do, it is still able
to offer suggestions for code refactoring. Our experiments on
three generations of GPU show that POPRLE successfully
finds optimal or near-optimal data placement across inputs
and architectures, yielding up to 2.08X (1.59X on average)
speedups on a set of regular and irregular GPU benchmarks,
outperforming a rule-based method [12] significantly.

Overall, this work makes the following contributions:
• It presents the first general framework that supports cross-

input, cross-architecture extensible optimizations of data
placement for GPU.

• It introduces a simple yet flexible specification language
that facilitates systematic description of various GPU
memory systems.

• It proposes a way to produce placement-agnostic GPU
programs through offline code staging and online adap-
tation.

• It describes a lightweight performance model for swift
assessment of data placements and demonstrates its ef-
fectiveness for selecting suitable data placements for GPU
programs.

• Through a comparison with manual and rule-based ap-
proaches, it empirically validates the significant benefits
of PORPLE.

II. OVERVIEW OF PORPLE

PORPLE enables cross-input, cross-architecture adaptive
data placement through a combination of offline analysis and
online adaptation.

As shown in Figure 1, at a high level, PORPLE contains
three key components: a specification language MSL for
providing memory specifications, a compiler PORPLE-C for
revealing the data access patterns of the program and staging
the code for runtime adaptation, and an online data placement
engine Placer that consumes the specifications and access
patterns to find the best data placements at runtime. These
components are designed to equip PORPLE with a good
extensibility, applicability, and runtime efficiency. Together
they make it possible for PORPLE to cover a variety of
memory, handle both regular and irregular programs, and
optimize data placement on memory on the fly.

Even though PORPLE is possible to be extended to handle
different types of data structures, it currently focuses on
arrays, the most common data structure used in current GPU
kernels. The methodology of PORPLE is independent of GPU
programming models, but our implementation is on CUDA,
which will be the base for the following description. We next
explain each of the PORPLE components in further details.

PLACER
(placing engine)

MSL
(mem. spec. lang.)

PORPLE-C
(compiler)

architect/user mem
spec

org. program

access
patterns

staged
program

online profile

desired
placement

efficient
execution

offline online

microkernels

Fig. 1. High-level structure of PORPLE.

III. MSL: MEMORY SPECIFICATION FOR EXTENSIBILITY

An important feature of PORPLE is its capability to be
easily extended to cover new memory systems. We achieve this
feature by MSL. In this section, we first present the design of
MSL, and then describe a high-level interface to enable easy
creation of MSL specifications.

A. MSL

MSL is a small language designed to provide an interface
for compilers to understand a memory system.

Figure 2 shows its keywords, operators, and syntax written
in BackusNaur Form (BNF). An MSL specification contains
one entry for processor and a list of entries for memory. We
call each entry a spec in our discussion. The processor entry
shows the composition of a die, a TPC (thread processing
cluster), and an SM.

Each memory spec corresponds to one type of memory,
indicating the name of the memory (started with letters)
and a unique ID (in numbers) for the memory. The name
and ID could be used interchangeably; having both is for
conveniences. The field “swmng” is for indicating whether the
memory is software manageable. The data placement engine
can explicitly put a data array onto a software manageable
memory (versus hardware managed cache for instance). The
field “rw” indicates whether a GPU kernel can read or write
the memory. The field “dim”, if it is not “?”, indicates that the
spec entry is applicable only when the array dimensionality
equals to the value of “dim”. We will use an example to
further explain it later. The field after “dim” indicates memory
size. Because a GPU memory typically consists of a number
of equal-sized blocks or banks, “blockSize” (which could be
multi-dimensional) and the number of banks are next two
fields in a spec. The next field afterwards describes memory
access latency. To accommodate access latency difference
between read and write operations, the spec allows the use
of a tuple to indicate both. We use “upperLevels” and “low-
erLevels” to indicate memory hierarchy; they contain the
names or IDs of the memories that sit above (i.e., closer
to computing units) or blow the memory of interest. The
“shareScope” field indicates in what scope the memory is
shared. For instance, “sm” means that a piece of the memory is
shared by all cores on a streaming multiprocessor. The “con-
currencyFactor” is a field that indicates parallel transactions
a memory (e.g., global memory and texture memory) may
support for a GPU kernel. Its inverse is the average number

of memory transactions that are serviced concurrently for a
GPU kernel. As shown in previous studies [11], such a factor
depends on not only memory organization and architecture, but
also kernel characterization. MSL broadly characterizes GPU
kernels into compute-intensive and memory-intensive, and
allows the “concurrencyFactor” field to be a tuple containing
two elements, respectively corresponding to the values for
memory-intensive and compute-intensive kernels. We provide
more explanation of “concurrencyFactor” through an example
later in this section, and explain how it is used in the next
section.

GPU memories often have some special properties. For
instance, shared memory has an important feature called bank
conflict: When two accesses to the same bank of shared
memory happen, they have to be served serially. But on the
other hand, for global memory, two accesses by the same
warp could be coalesced into one memory transaction if
their target memory addresses belong to the same segment.
While for texture memory, accesses can benefit from 2-D
locality. Constant memory has a much stricter requirement:
The accesses must be to the same address, otherwise, they
have to be fetched one after one.

How to allow a simple expression of all these various
properties is a challenge for the design of MSL. We address
it based on an insight that all these special constraints are es-
sentially about the conditions for multiple concurrent accesses
to a memory to get serialized. Accordingly, MSL introduces a
field “serialCondition” that allows the usage of simple logical
expressions to express all those special properties. Figure 3
shows example expressions for some types of GPU memory.
Such an expression must start with a keyword indicating
whether the condition is about two accesses by threads in
a warp or a thread block or a grid, which is followed with
a relational expression on the two addresses. It also uses
some keywords to represent data accessed by two threads:
index1 and index2 stand for two indices of elements in
an array, address1 and address2 for addresses, and word1
and word2 for the starting addresses of the corresponding
words (by default, a word is 4-byte long). For instance,
the expression for shared memory, “block{word1 6=word2 &&
word1%banks==word2%banks}”, claims that when the words
accessed by two threads in the same thread block are different
and fall onto the same bank (which is a bank conflict),
the two accesses get serialized. The expression for constant
memory claims that if two threads in a warp access the same
address, one memory transaction is enough (because of the
broadcasting mechanism of constant memory); they however
get serialized otherwise. This simple way of expression makes
it possible for other components of PORPLE to easily leverage
the features of the various memory to find good data place-
ments, which will be discussed in the next section.

B. Example

To better explain how MSL offers a flexible and systematic
way to describe a memory system, we show part of the
MSL specification of the Tesla M2075 GPU in Figure 4 as

Mem spec of Tesla M2075:

 die =1 tpc; tpc = 16 sm; sm = 32 core;
 globalMem 8 Y rw na 5375M 128B ? 600clk <L2 L1> <> die <0.1 0.5> warp{ address1/blockSize != address2/blockSize };
 L1 9 N rw na 16K 128B ? 80clk <> <L2 globalMem> sm ? warp{ address1/blockSize != address2/blockSize };
 L2 7 N rw na 768K 32B ? 390clk om om die ? warp{ address1/blockSize != address2/blockSize };

 constantMem 1 Y r na 64K ? ? 360clk <cL2 cL1> <> die ? warp{address1 != address2};
 cL1 3 N r na 4K 64B ? 48clk <> <cL2 constantMem> sm ? warp{ address1/blockSize != address2/blockSize };
 cL2 2 N r na 32K 256B ? 140clk <cL1> <cL2 constantMem> die ? warp{ address1/blockSize != address2/blockSize };

 sharedMem 4 Y rw na 48K ? 32 48clk <> <> sm ? block{word1!=word2 && word1%banks ==word2%banks};

 … …

Fig. 4. The memory specification of Tesla M2075 in MSL.

 Keywords:
 address1, address2, index1, index 2, banks, blockSize, warp, block, grid, sm,
 core, tpc, die, clk, ns, ms, sec, na, om, ?;
 // na: not applicable; om: omitted; ?: unknown;
 // om and ? can be used in all fields

 Operators:
 C-like arithmetic and relational operators, and a scope operator {};

 Syntax:
• specList ::= processorSpec memSpec*
• processorSpec ::= die=Integer tpc; tpc=Integer sm; sm=Integer core; end-of-line
• memSpec ::= name id swmng rw dim size blockSize banks latency upperLevels

 lowerLevels shareScope concurrencyFactor serialCondition ; end-of-line
• name ::= String
• id ::= Integer
• swmng ::= Y | N // software manageable or not
• rw ::= R|W|RW // allow read or write accesses
• dim ::= na | Integer // special for arrays of a particular dimensionality
• sz ::= Integer[K|M|G|T|][E|B] // E for data elements
• size ::= sz | <sz sz> | <sz sz sz>
• blockSize ::= sz | <sz sz> | <sz sz sz>
• lat ::= Integer[clk|ns|ms|sec] // clk for clocks
• latency ::= lat | <lat lat>
• upperLevels ::= <[id | name]*>
• lowerLevels ::= <id*>
• shareScope ::= core | sm | tpc | die
• concurrencyFactor ::= < Number Number>
• serialCondition ::= scope{RelationalExpr}
• scope ::= warp | block | grid

Fig. 2. Syntax of MSL with some token rules omitted.

Examples of serialization conditions:
 constant mem:
 warp{address1 != address2}
 shared mem:
 block{word1!=word2 && word1%banks == word2%banks}
 global mem:
 warp{ address1/blockSize != address2/blockSize }

Fig. 3. MSL expressions for the serialization conditions of various memory.

an example. We highlight two points. First, there are three
special tokens in MSL: the question mark “?” indicating that
the information is unavailable, the token “om” indicating that
the information is omitted because it appears in some other
entries, the token “na” indicating that the field is not applicable

to the entry. For instance, the L2 spec has a “?” in its banks
field meaning that the user is unclear about the number of
banks in L2. PORPLE has some default value predefined for
each field that allows the usage of “?” for unknowns (e.g., 1
for the concurrencyFactor field); PORPLE uses these default
values for the unknown cases. The L2 spec has “om” in
its upperLevels and lowerLevels fields. This is because the
information is already provided in other specs. The L2 spec
has “na” in its dim field, which claims that no dimension
constraint applies to the L2 spec. In other words, the spec
is applicable regardless of the dimensionality of the data to be
accessed on L2.

Second, some memory can manifest different properties,
depending on the dimensionality of the data array allocated
on the memory. An example is texture memory. Its size
limitation, block size, and serialization condition all depend
on the dimensionality of the array. To accommodate such
cases, an MSL spec has a field “dim”, which specifies the
dimensionality that the spec is about. As mentioned earlier, if
it is “na”, that spec applies regardless of the dimensionality.
There can be multiple specs for one memory that have the
same name and ID, but differ in the “dim” and other fields.

In this example, the concurrency factors of global and
texture memory are set to 0.1 for memory-intensive GPU
kernels and 0.5 for compute-intensive GPU kernels. They
are determined based on a prior study on GPU memory
performance modeling [11]. To determine a kernel is com-
pute or memory intensive, we measure the IPC during the
profiling phase by checking performance counters (explained
in Section VI). A kernel with IPC smaller than 2 is treated
as memory-intensive, and compute-intensive otherwise.

MSL simplifies porting of GPU programs. For a new GPU,
given the MSL specification for its memory system, the
PROPLE placer could help determine the appropriate data
placements accordingly.

C. GUI and Other Facilities

It is important to note that MSL specifications are not in-
tended to be written by common programmers. The description
of a type of hardware only needs to be written once—ideally
by some architect or expert of the hardware. It can then be
used by all programmers.

Architects or experts could choose to write the MSL specifi-
cations directly. But it could be error-prone. PORPLE provides
a graphical user interface to enter the memory parameters and
organizations with ease, from which, MSL specifications are
automatically generated. The interface allows users to create a
new memory component, drag it around, connect it with other
components into a hierarchy, and fill out its latency, size, and
other fields. During the MSL specification generation process,
the generator checks for bugs in the specs (e.g., a name or ID
used without defined, inconsistent hierarchy among the specs).

Architects or users could find out the parameters of a type of
memory from architectural documentations, or use detection
microkernels. PORPLE has a collection of microkernels which
users can use to detect some latency parameters, which are
similar to those used in prior studies [28], [24]. Users can add
more of such microkernels into the library of PORPLE.

IV. PLACER: PERFORMANCE MODELING AND PLACEMENT
SEARCH

The Placer in PORPLE has two components: one for
assessment of the quality of a data placement plan for a kernel,
the other for search for the best placement plan. (A placement
plan indicates on which software manageable memory each of
the arrays in a kernel is put.) We next explain each of the two
components.

A. Lightweight Performance Modeling

The first component of the Placer is a performance model,
through which, for a given data placement plan and data access
patterns (or traces), the Placer can easily approximate the
memory throughput, and hence assess the quality of the plan.

To that end, the Placer needs to determine the number of
transactions needed by all the accesses to each array under a
given data placement plan. It is simple to do if there is no
memory hierarchy: Based on the data access patterns and the
serialization conditions, the Placer can directly compute the
number of required transactions.

But when there is a memory hierarchy, the Placer has to
determine at which level of memory a request can be satisfied.
We use the model of reuse distance to address the problem,
thanks to its special appeal for quick estimation of cache
performance—PORPLE has to conduct many such estimations
at runtime to search for the best data placement.

1) Reuse Distance Models. Reuse distance is a classical
way to characterize data locality [4]. The reuse distance of
an access A is defined as the number of distinct data items
accessed between A and a prior access to the same data item
as accessed by A. For example, the reuse distance of the
second access to “b” in a trace “b a c c b” is two because
two distinct data elements “a” and “c” are accessed between

reuse
distance

references (%)

2k 4k 8k 16k0

10

20

30

40

cache
size

hits misses

Fig. 5. Illustration of a reuse distance histogram and its relation with cache
miss rate estimation.

the two accesses to “b”. If the reuse distance is no smaller
than the cache size, enough data have been brought into cache
such that A is a cache miss. Although this relation assumes
a fully-associative cache, prior studies have shown that it is
also effective for approximating the cache miss rates for set-
associative cache [21], [30].

What PORPLE builds, from the data access patterns of
an array, is a reuse distance histogram, which records the
percentage of data accesses whose reuse distances fall into
each of a series of distance ranges. Figure 5 shows an example,
where, the second bar, for instance, shows that 17% of the
references to the array have reuse distances in the range [2K,
4K). With the histogram, it is easy to estimate the cache miss
rate for an arbitrary cache size: It is simply the sum of the
heights of all the bars appearing on the right-hand side of the
cache size as illustrated in Figure 5.

The histogram-based cache miss rate estimation comes
handy especially for the runtime search for the best data
placement by PORPLE. During the search, PORPLE needs to
assess the quality of many placement plans, some of which
have multiple arrays sharing a single cache. Following a
common practice [17], upon the cache contention, the effects
can be modeled as each array (say array i) gets a portion of
the cache, the size of which is proportional to the array size.
That is, the cache it gets equals sizei/

∑
j sizej , where, sizej

is the size of the jth array that share the cache. PORPLE then
can immediately estimate the cache miss rates of the array
by comparing that size with the bars in the reuse distance
histogram. In one run of a GPU program, PORPLE only
needs to construct the histogram for a GPU kernel once, which
can be used for many times in that run for estimating cache
performance of all possible data placements during the search
by PORPLE. With cache miss rates estimated, PORPLE can
then tell the portions of accesses to an array that get a hit at
each level of a memory hierarchy.

Our construction of reuse distance histograms follows the
prior mature techniques, from affine reference patterns [5], and
reference traces [10] for irregular accesses. Construction from
a trace has a near-linear time complexity [10]; construction
from a pattern is even faster. Overall, the time overhead is only
a small portion of the online profiling process. The collection
of the trace could take some time, which will be discussed in

the online profiling part in Section VI.
2) Assessment of Placement Quality. After figuring out what

and how many accesses happen on each type of memory, POR-
PLE converts the numbers into the numbers of transactions by
examining the access patterns with the serialization conditions
of the memory. Let Nij be the number of memory transactions
of array i that happen on memory whose ID equals j. Based
on Nij , PORPLE can assess the quality of the data placement
plan through a performance model.

There have been some GPU performance models studied be-
fore [2], [11], [20]. They mainly target on prediction accuracy,
and are heavyweight in model construction and deployment.
To meet the requirement of online usage, the performance
model must be easy to build and agile to apply. PORPLE uses
a lightweight model to approximate the memory throughput.
The objective is to quickly determine the relative quality of
different data placement plans, rather than giving out the most
accurate performance prediction.

At the center of the model is a formula to compute the
memory throughput factor:

1/
∑

i∈allarrays
∑

j∈memHier(i)Nij ∗ Tj ∗ αj .
The inner summation estimates the total time that accesses to
array i incur and the outer summation sums across all arrays.
In the formula memHier(i) is the memory hierarchy that
accesses to array i go through and Tj is the latency of a mem-
ory transaction on memory j, and αj is the concurrency factor
explained in Section III, which takes into account that multiple
memory transactions may be served concurrently (e.g., on
global and texture memory). Together, the denominator tries
to estimate the time taken by all memory transactions. The
inverse hence reflects the memory throughput. A placement
plan that maximizes the memory throughput factor is regarded
as a best option.

3) Discussion. We acknowledge that the memory perfor-
mance model could be more sophisticatedly designed. One
factor that is not fully considered is the overlapping between
different memory accesses and between a memory access
and computation. Such overlapping is especially common for
GPU thanks to its massive parallelism. However, we note
that the use of concurrency factor in the formula offers a
simple remedy to the limitation of our model. For instance, a
smaller value of the concurrency factor for memory-intensive
programs reflects the fact that more memory transactions are
likely to overlap in such program executions.

Although the remedy is rough, it suits the purpose of this
work by keeping the model simple and fast to use; more
sophisticated designs would easily add much more complexity
and overhead, hurting the runtime efficiency of PORPLE and
its practical applicability. In our experiments, we find that the
simple model works surprisingly well in telling the relative
quality among different data placement plans. The intuition is
that even though the model may not be accurate, it is enough
for ranking the quality of different data placements in most
of the time. Moreover, although the formula uses latency but
not memory bandwidth, GPU latency often correlates with
bandwidth: A memory with a low latency often has a high

bandwidth. As we will see in Section VII, the simple model
used in PORPLE strikes a good tradeoff between complexity
and usability.

B. Search for the Best

With the capability to determine the quality of an arbitrary
data placement plan, the Placer just needs to enumerate all pos-
sible plans to find the best. There are many search algorithms
that PORPLE could use, such as A∗-search, simulated anneal-
ing, genetic algorithm, branch-and-bound algorithm, and so
on. PORPLE has an open design by offering a simple interface;
any search algorithm that is compatible with the interface can
be easily plugged into PORPLE. The interface includes a list
of IDs of software-managed memory, a list of array IDs, and
a data structure for a data placement plan. PORPLE offers a
built-in function (i.e., the memory performance model) that a
search algorithm can directly invoke to assess the quality of a
data placement plan. Users of PORPLE can configure it to use
any search algorithm. All the aforementioned algorithms can
find the placement plan that has the smallest total latency; they
could differ in empirical computational complexity. However,
in this work, we did not see a large difference in their
efficiency, plausibly due to the limited number of arrays in
the benchmarks. For kernels containing many arrays, approx-
imated searching algorithms may help lower the search time.
The reported results in Section VII are from the classic branch-
and-bound algorithm. It does a parallel depth-first search over
a tree. Each tree node represents one way to place an array,
and a path from the root to a leaf of the tree represents one
placement plan. By maintaining the minimum latency of all
visited plans, the algorithm may save some search time by
avoiding (part of) some unpromising paths.

V. PORPLE-C: STAGING FOR RUNTIME PLACEMENT

When an array is put into different types of memory, the
syntax needed to access the array is different. For instance,
Figure 6 shows the syntax for accessing an element in array
A in four scenarios. As shown in Figure 6 (a), using a simple
indexing operator “[]” is enough to access an element of A if
it resides on global memory. But to make sure that the access
goes through the read-only cache, one needs to instead use
the intrinsic “ ldg()”, shown in Figure 6 (b). The code is
more substantially different when it comes to texture memory
and shared memory. For texture memory, as Figure 6 (d)
shows, besides some mandatory intrinsics (e.g., “tex1Dfetch”),
the access has to go through a texture reference defined and
bound to A in the host code. For shared memory, because the
allocation of shared memory has to be inside a GPU kernel, the
kernel must have code that first declares a buffer on shared
memory, and then loads elements of A into the buffer; the
accesses to elements in A also need to be changed to accesses
to that buffer.

For a program to be amenable to the runtime data placement,
it must be placement-agnostic, which means that at runtime,
the program is able to place data according to the suggestions
by PORPLE, and at the same time, is able to run correctly

// host code
 float * A;
 cudaMalloc(A,...);
 cudaMemcopy(A, hA, ...);

// device code
 x = A[tid];

// host code
 float * A;
 cudaMalloc(A,...);
 cudaMemcopy(A, hA, ...);
 texture <float, ...> Atex;
 cudaBindTexture(null, Atex, A);

// device code
 x = tex1Dfetch(Atex, tid);

// host code
 float * A;
 cudaMalloc(A,...);
 cudaMemcopy(A, hA, ...);

// device code
 __shared__ float s[sz];
 s[localTid] = A[tid];
 __synchthreads();
 x = s[localTid];

// host code
 float * A;
 cudaMalloc(A,...);
 cudaMemcopy(A, hA, ...);

// device code
 x = __ldg(&A[tid]);

(a) from global mem. (d) from texture mem. (e) from shared mem.(b) through read-only cache

// global declaration
 __constant__ float * A[sz];

// host code
 cudaMemcpyToSymbol (A, hA, ...);

// device code
 x = A[tid];

(c) from constant mem.

Fig. 6. Codelets in CUDA for accessing an element in an array A.

regardless which part of the memory system the data end up
on. Runtime code modification through just-in-time compila-
tion or binary translation could be an option, but complex.

Our solution is PORPLE-C, a compiler that generates
placement-agnostic GPU program through source-to-source
translation. The solution is a combination of coarse-grained
and fine-grained versioning. The coarse-grained versioning
creates multiple versions of the GPU kernel, with each cor-
responding to one possible placement of the arrays. The
appropriate version is invoked through a runtime selection
based on the result from the Placer.

When there are too many possible placements, the coarse-
grained versions are created for only some of the placements
(e.g., five most likely ones); for all other placements, a special
copy of the kernel is invoked. This copy is fine-grained
versioned, which is illustrated by Figure 7 (d). The figure
shows the code generated by the compiler from a statement
“A1[j]=A0[i]”. Because the compiler is uncertain about where
the array A0 will be put at runtime, it generates a switch
statement to cover all possible cases. The value checked by the
statement, “memSpace[A0 id]”, is the placement of that array
determined by the execution of the Placer. The determination
mechanism is implemented by the function “PORPLE place”
shown in Figure 7 (b). The compiler assigns a unique integer as
the ID number of each array in the program (e.g., A0 id is the
ID number for the array A0). Each case statement corresponds
to one possible placement of the array; the compiler produces
the suitable statement to read the element for each case. A
similar treatment is given to the access to array A1, except
that the compiler recognizes that there are only two data
placement options for A1, either in global or shared memory—
the alternatives cannot happen because of write limitation.

We now further describe each of the five case statements
for the access to A0 shown in Figure 7 (d). Through this
example, we explain how the compiler makes a GPU program
placement-agnostic in general.

1) Global Memory. The first two case statements correspond
to the global memory without or with read-only cache used.
They are straightforward.

2) Texture Memory. The third is when A0 is put onto texture
memory. In that case, accesses have to go through a texture
reference rather than the original array. The compiler hence
generates a global declaration of a texture reference A0tex.
Figure 7 (a) shows such a declaration and also the declarations

for other arrays in the program. The compiler automatically
avoids generating such declarations for arrays (e.g., A1 in our
example) that it regards impossible to be put onto the texture
memory. The binding of a texture reference and its correspond-
ing array is done when the “PORPLE place” function decides
to put the array onto texture memory, as shown in Figure 7
(b).

3) Shared Memory. The fourth case statement is when A0 is
put onto shared memory. Two complexities must be addressed
in this case: The data have to be copied from global memory
into the shared memory and sometimes also copied back; the
index of an element in shared memory differs from its index
in global memory.

Figure 7 (c) shows the code the compiler inserts to the
beginning part of a GPU kernel function to support the case
of shared memory. It starts with the declaration of an array
allocated onto shared memory. That array will be used as
the buffer to store the elements of arrays suitable for using
shared memory. The size of the array is determined by one
of the arguments in the kernel call. Before the kernel call,
the argument is assigned a value that computed by the Placer
at runtime. The computation is based on the data placements
Placer finds. Meanwhile, the Placer tries to ensure that the
size does not lower the number of concurrently runnable thread
blocks (called GPU occupancy) compared to the original GPU
program.

It is allowed for sBuffer to contain the elements of multiple
arrays. To save the address lookup time, the compiler inserts
the declaration of a pointer (e.g., sA0 for A0) for each array
that is possible to be put into shared memory. The pointer
is then set to the starting position of the corresponding array
in sBuffer. By this means, the kernel can access the elements
through that pointer.

The code in the “if” statements in Figure 7 (c) also loads
array elements from global memory into shared memory.
Based on the affine expressions of array accesses in the kernel,
the compiler builds up a one-to-one mapping between the
indices of the elements in the original array and their indices in
shared memory. It uses such a mapping to load the elements of
the array into the corresponding location in shared memory.
This mapping is also used when the compiler generates the
statements in the kernel function to access the correct elements
in the shared memory.

At the end of the kernel, the compiler inserts some code to

copy data from shared memory back to the original array on
global memory, if the data could be modified in the kernel, as
illustrated by Figure 7 (e).

4) Constant Memory. The final case is when the array is put
into constant memory. For the extremely small size of constant
memory, we allow at most one array to be put into it, which
avoids introducing many auxiliary variables for referencing
different arrays in constant memory. The compiler adds a
global declaration for a constant buffer shown at the top of
Figure 7 (a). Its size CSZ is set to the total size of constant
memory. At runtime, when the “PORPLE place” function
decides to put an array into the buffer, it does it immediately
as the call of “cudaMemcpyToSymbol” function in Figure 7
(b) shows. The changes to the kernel is just to replace the
access to that array with the access to that constant buffer as
“case CST” statement in Figure 7 (d) shows.

5) Compiler Implementation. The implementation of the
compiler is based on Cetus [15], a source-to-source compiler.
The input is CUDA code. As a prototype, the compiler cannot
yet handle all kinds of CUDA code complexities; but with
some minor manual help, it is sufficient for proving the
concept. If the input program already has some arrays put
onto memory other than global memory, PORPLE by default
respects the optimizations performed by the programmer and
keep them unchanged; it optimizes the placement of the data
arrays only if they are on global memory. The compiler follows
the following steps to generate the placement-agnostic form of
the code.

Step 1: find all arrays that are on global memory
in the kernel functions, assign ID numbers, and
generate access expressions for the arrays;
Step 2: identify the feasible placement options for
each array to avoid generating useless code in the
follow-up steps;
Step 3: create global declarations for the constant
buffer and texture references (as illus. by Fig 7 (a));
Step 4: customize PROPLE place function accord-
ingly (as illus. by Fig 7 (b));
Step 5: insert code at the start and end of each kernel
function and change data access statements (as illus.
by Fig 7 (c,d,e)).

To make it simple to generate code for accessing a new type
of memory, PORPLE defines five ways of memory accesses:
through direct indexing (global memory-like), through binding
on host (texture memory-like), through host declared buffer
(constant memory-like), through kernel declared buffer (shared
memory-like), and through special intrinsics (read-only global
memory-like). There are some fields that users can fill for each
of the five ways, including the keywords to use to make the
declaration, the intrinsics to use for access, and so on, based
on which, the PORPLE-C will try to generate needed code for
a kernel to utilize a new type of memory. For memory unlike
any of the five, PORPLE provides recommended placement to
the programmer, who can then refactor the code to utilize the
new memory accordingly.

VI. OTHER DETAILS

PORPLE does a lightweight on-line profiling, for two pur-
poses. The first is to find out array sizes. Along with the data
access patterns that PORPLE-C finds out, the array informa-
tion serve for the Placer to search the best data placement. The
second purpose is to complement the capability of the compiler
in data reference analysis. When PORPLE-C cannot find out
the data access patterns (e.g., on irregular programs), it tries
to derive a CPU profiling function, which keep the kernel’s
data access patterns. In cases when the automatic derivation
fails, it asks programmers to provide such a function. The
function comes with some recording instructions. When the
function is invoked at runtime, these instructions generate a
data access trace, including whether a memory access is a
write or read, the array ID and element index, and the GPU
thread ID associated with that access.

The overhead of the online profiling must be strictly
controlled since it happens at runtime. PORPLE uses two
techniques. First, the CPU function only performs the work
of the first thread block. Second, if the kernel contains a loop,
the CPU function only executes the first ten iterations. The
overhead reduction techniques are based on the assumption
that the truncated iteration space of the first thread block is
enough to provide a reasonable approximation of the memory
access pattern of the whole workload, which is confirmed by
the evaluation on a diverse set of benchmarks in Section VII.
Another technique to save the overhead is to discard com-
putations that are irrelevant to data accesses, which is not
implemented in PORPLE-C due to complexity of code slicing
for implementing this technique.

Even with the above optimizations, the profiling time,
in some cases, is still substantial compared to the running
time of one kernel invocation. So the profiling is used only
when the kernel is invoked repeatedly for many iterations,
which is typical for many real-world irregular applications we
have examined. For instance, an N-body simulation program
simulates the position change of molecules through a period
of time; the kernel is invoked periodically at specific number
of time steps. The one-time profiling overhead can be hence
outweighed by the benefits from the many invocations of the
optimized kernel.

VII. EVALUATION

A. Methodology

We evaluate PORPLE on a diverse set of benchmarks
shown in Table I. These benchmarks include all of the level-
1 benchmarks from the SHOC benchmark suite [8] that
come from various application domains. To further evaluate
PORPLE with complicated memory access patterns, we add
three benchmarks from the RODINIA benchmark suite [6]
and three from CUDA SDK. The bottom five benchmarks
in Table I have irregular memory accesses. Their memory
access patterns highly depend on inputs and can only be known
during run-time. Hence, static analysis cannot work for them
and online profiling must be employed. They all have a loop

// code in PORPLE_place function
 PORPLE_place(...){
 /* fill memSpace[] and soffset[] */

 // copy data into constant memory
 cudaMemcpyToSymbol (...);
 // bind texture references
 if (memSpace[0]==TXR)

 ;)0A ,xet0A ,llun(erutxeTdniBaduc
 // no need for binding A1

 if (memSpace[k]==TXR)
 cudaBindTexture(null, Aktex, Ak);
 }

// global declarations
 __constant__ sometype cBuffer[CSZ];
 texture <...> A0tex;
 // no need for A1tex
 ...
 texture <...> Aktex;

(a) added global declarations

(b) relevant code in PORPLE_place

// code inside kernel
 __shared__ char sBuffer[];
 sometype * sA0;
 sometype * sA1;

 sometype * sAk;

 // initiate shared mem. references
 if (memSpace[0]==SHR){
 sA0 = (sometype *) sBuffer + soffset[0];
 sA0[localTid] = A0[...]; // load data
 }
 if (memSpace[1]==SHR){
 sA1 = (sometype *) sBuffer + soffset[1];
 sA1[localTid] = A1[...]; // load data
 }

 if (memSpace[k]==SHR){
 sAk = (sometype *) sBuffer + soffset[k];
 sAk[localTid] = Ak[...]; // load data
 }
 __synchthreads();

(c) code added to the start of the kernel

 // code for statement: A1[j] = A0[i]
switch (memSpace[A0_id]){

case GLB: _tempA0 = A0[i]; break;
case GLR: _tempA0 = __ldg(&A0[i]); break;
case TXR: _tempA0 = tex1Dfetch(A0tex, i); break;
case SHR: _tempA0 = sA0[...]; break; // use local index
case CST: _tempA0 = cBuffer[i]; break;

 } // GLB: global; GLR: read-only global; TXR: texture;
 // SHR: shared; CST: constant

 if (memSpace[A1_id]==SHR)
sA1[...] = _tempA0; // use local index

 else
A1[j] = _tempA0;

// code added to the end of the kernel
// dump changes in shared memory to original arrays.
// here, only need to consider arrays possibly modified
 if (memSpace[A1_id]==SHR)

A1[tid] = sA1[...]; // use local index

(d) code for implementing A1[j] = A0[i]

(e) code for added to the end of the kernel for final output

Fig. 7. Generated placement-agnostic code.

surrounding the GPU kernel call. The loop in bfs has a fixed
number of iterations (100); while the numbers of iterations
of the loops in the other four benchmarks are decided by the
input argument of the benchmark. In our experiments, we use
100 for all of them. We focus on the optimization of the most
important kernel in each of the benchmarks. To optimize data
placement for multiple kernels, PORPLE would need to take
into consideration the possibly required data movements across
the kernels, which is left for our future study.

TABLE I
BENCHMARK DESCRIPTION.

Benchmark Source Description Irregular
mm SDK dense matrix multiplication N

convolution SDK signal filter N
trans SDK matrix transpose N

reduction SHOC reduction N
fft SHOC fast Fourier transform N

scan SHOC scan N
sort SHOC radix sort N
traid SHOC stream triad N

kmeans Rodinia kmeans clustering N
particlefilter Rodinia particle filter Y

cfd Rodinia computational fluid Y
md SHOC molecular dynamics Y

spmv SHOC sparse matrix vector multi. Y
bfs SHOC breadth-first search Y

We evaluate PORPLE on three different machines with
diverse GPU hardware and runtime environment shown in
Table II. We choose different generations of GPU cards for
the purpose of studying portability. The GPU cards have dra-
matically different memory hierarchies. Most notably, C1060

TABLE II
MACHINE DESCRIPTION.

Name GPU card OS CUDA version
K20c NVIDIA K20c Linux-3.7 5.0
M2075 Tesla M2075 Linux-2.6 4.1
C1060 Tesla C1060 Linux-3.11 5.5

does not have any data cache for global memory accesses.
M2075 has a two-level data cache for global memory. K20c
has a L2 cache for global memory, and each SM has a user-
controllable, read-only data cache, working as a L1 cache for
global memory.

Since the specific features of different types of memory are
proprietary information, we use a tool published by Wong [24]
to obtain the memory specification for each machine. The tool
runs a set of microkernels on each machine, and measures
cache size and latency for each type of memory. The memory
latency results are summarized in Table III.

We compare PORPLE with the state-of-the-art memory
selection algorithm published previously [12]. In that work,
data placement decisions are made with several rules. These
rules are based on read/write patterns, loop-based temporal
locality, and status of memory coalescing that are determined
through some static analysis of the kernel code. For data arrays
whose access patterns cannot be inferred through the static
analysis, this algorithm simply leaves them in global memory
space. We call this algorithm the rule-based approach. In
addition, we find the optimal data placement through offline
exhaustive search, which produces the best speedup a data
placement method can achieve. We repeat each experiment for
10 times and calculate the average value of performance. All
the reported speedups in this section are based on the formula
originalTime/newTime, where originalTime refers to the total
execution time taken by all invocations of the original kernel,
and newTime includes the time taken by all invocations of
the optimized kernel plus all optimization overhead (profiling
time, time taken by Placer, etc.).

B. Results with Regular Benchmarks

Figure 8 shows the performance results for regular bench-
marks on Tesla K20c. PORPLE provides on average 13%
speedup, successfully exploiting almost all potential (i.e.,

TABLE III
MEMORY LATENCY DESCRIPTION. CL1 AND CL2 ARE L1 AND L2 CACHES FOR CONSTANT MEMORY. GL1 AND GL2 ARE L1 AND L2 CACHES FOR

GLOBAL MEMORY. TL1 AND TL2 ARE L1 AND L2 CACHES FOR TEXTURE MEMORY.

Machine Name Constant cL2 cL1 Global gL2 gL1 Read-only Texture tL2 tL1 Shared
Tesla K20c 250 120 48 345 222 N/A 141 351 222 103 48
Tesla M2075 360 140 48 600 390 80 N/A 617 390 208 48
Tesla C1060 545 130 56 548 N/A N/A N/A 546 366 251 38

Fig. 8. Speedup of regular benchmarks on Tesla K20c.

14%) from data array placement. The rule-based approach,
however, only provides 5% performance improvement. We
observe that for all benchmarks, except mm, trans and triad,
the data placement strategies in the original programs are
optimal or close to optimal, as the benchmark developers
manually optimized the GPU kernels. Hence, there exists little
potential (<10%) for further improvement. PORPLE and the
rule-based approach both find the optimal placement strategy,
which is almost the same as in the original programs.

The benchmarks mm, trans and triad show much larger
speedup, ranging from 1.18X to 1.45X. PORPLE, as well as
the rule-based approach, identifies the best placement strategy
for mm. But PORPLE outperforms the rule-based approach
by yielding 45% and 18% additional speedup for trans and
triad respectively. Our investigation reveals that the rule-
based approach favors global memory because of its limited
capabilities to characterize memory access patterns and map
them to diverse memory systems. In particular, for arrays with
coalesced accesses and little temporal reuse, the rule-based
approach always places them into global memory. In contrast,
PORPLE’s performance model captures the fact that texture
memory can be faster than global memory for those arrays,
even if those arrays are linearly accessed. As a result, PORPLE
gains significant benefits by placing all those read-only arrays
in texture memory.

The runtime overhead for PORPLE is trivial (around 1%)
for regular benchmarks, and hence they are not reported. As
described in Section V, for these codes that are statically an-
alyzable, PORPLE performs offline transformation to enforce
the placement strategy, which significantly reduces runtime
overhead. For those benchmarks whose data placement strate-
gies cannot be fully determined using the offline approach,
PORPLE can still use static analysis to exclude some data
placement options and reduce search space. This results in
great reduction of runtime overhead.

We elide the results on the other two machines, as they are
similar to those on K20c.

C. Results with Irregular Benchmarks

1) Speedup. Figure 9 shows the results for the irregular

Fig. 9. Speedup of irregular benchmarks on Tesla K20c.

benchmarks on K20c. The complex memory access patterns
of these benchmarks make any static analysis or manual
optimization difficult. The original programs choose data
placement strategies substantially inferior to the optimal. The
optimal placement based on our profiling produces on average
1.68X and up to 2.17X (for particlefilter) speedup over the
original ones. PORPLE provides 1.59X speedup on average
over the original ones, only 9% less than the optimal, but
26% more than the rule-based approach.

We observe that the rule-based approach works well for
some benchmarks, but fails in some others significantly. For
example, it identifies the optimal placement strategy for cfd
and md as PORPLE does, with slightly better performance
than PORPLE because of PORPLE’s runtime overhead. How-
ever, for particlefilter and bfs, the rule-based approach shows
much less speedups compared to the optimal one, because it
abuses texture memory and global memory for some arrays
based on limited static analysis. In particular, for particlefilter,
there is an array named CDF that can benefit better from
constant memory than from texture memory, because the
faster data caches in constant memory is helpful for good
temporal locality associated with this array. However, The
rule-based approach tends to use texture memory to favor
specific memory access patterns, ignoring potentially benefits
of cache hierarchy in constant memory as the size of CDF
is unknown for static analysis. Also, the rule-based approach
places too many arrays in texture memory and causes severe
cache interferences which throttle the benefits on particlefilter.

Benchmark bfs conducts breadth-first search. It is special in
that it allows race conditions to happen. Specifically, all GPU
threads read and write array levels; even though two threads
could access the same data element in that array, bfs uses
no synchronizations for high efficiency. Such race conditions
however do not affect the results because if multiple threads
try to assign values to a single data element in levels, those
values must be identical. After noticing such a property, we
add into PORPLE the check for the profit of duplicating such
an array under such race conditions. Specifically, it checks
the benefit of having the following version: A duplicate of
array levels, named levels1, is created before each kernel

Fig. 10. Speedup of irregular benchmarks on Tesla M2075.

Fig. 11. Speedup of irregular benchmarks on Tesla C1060.

call (BFS kernel warp). In the kernel, all reads to levels are
changed to reads to levels1, while writes remain unchanged.
PORPLE then tries to figure out the best placement of arrays
of this new version and compares its memory throughput with
the throughput of the best placement of the original version.
If it is beneficial, it offers the suggestion to the program-
mer; after confirming the safety of such a transformation,
the programmer may refactor the code accordingly. For bfs,
the transformation is safe, and after the transformation is
done, PORPLE puts array levels1 into the constant memory,
achieving 1.44X speedups over the rule-based approach which
uses only global memory for the arrays.

Figures 10 and 11 display the results on M2075 and C1060.
PORPLE shows some performance gap from the optimal (6%
and 19% less on M2075 and C1060 respectively), however
it still performs much better than the rule-based approach
(26% and 44% more on M2075 and C1060 respectively).
The non-optimal results of PORPOLE are due to two reasons.
First, PORPLE only profiles the memory accesses of the first
thread block in order to minimize runtime overhead. However,
the first thread block may not be a sufficient representative
of other thread blocks, especially for irregular applications.
Second, PORPLE employs a conservative approach to model
cache interference. In some cases, data arrays, when placed
into the same memory system, may not cause severe cache
interference. However PORPLE may choose to spread them
into multiple memory systems based on performance pre-
diction. This could cause non-optimal data placement. This
fact is especially pronounced in the benchmark cfd on K20c.
For this benchmark, PORPLE does not place all read-only
arrays into texture memory because of concerns of cache
interference, while the rule-based approach does not concern
cache hierarchy, and places all arrays into texture memory,
which leads to better performance than PORPLE.

2) Overhead Breakdown. Figure 12 reports runtime over-
head of PORPLE on Tesla K20c. On average, PORPLE
introduces 2.7% overhead, which is outweighed by the per-
formance benefit as evidenced by the speedup results. The

0

0.01

0.02

0.03

0.04

0.05

0.06

particlefilter spmv cfd md bfs

O
v

e
r
h

e
a

d

Transform

Engine

Profiling

Fig. 12. The breakdown of overhead for irregular benchmarks on Tesla K20c.

Fig. 13. Speedup across different inputs for particlefilter.

overhead can be decomposed into three parts: profiling, trans-
form and the placement search (denoted as engine in the
Figure 12). The transform overhead is due to the runtime
checks introduced by PORPLE in the transformed kernels. The
overhead of placement search comes from the performance
modeling and branch-and-bound search. We observe that the
overhead breakdown varies dramatically across benchmarks.
For particlefilter, the profiling on CPU is the main source of
overhead, accounting for 3% of total execution time. For spmv
and cfd, their overhead is dominated by the placement search,
because they have a larger number of data arrays. For md and
bfs, their overhead is very small (less than 1%), because their
long execution times well amortize costs of PORPLE..

3) Portability. Table IV shows the placement decisions
made by the rule-based approach and PORPLE. The rule-
based approach is not portable, and always generates the
same data placement on different platforms, because it ignores
the many subtle architecture differences across hardware. In
contrast, PORPLE explicitly expresses, quantifies, and models
diverse memory features across platforms, hence providing
much better data placement decisions. For benchmark spmv,
for instance, on the three machines, PORPLE makes quite
different decisions.

To study input sensitivity of our method, we use six different
inputs for particlefilter and spmv, and study their performance.
For particlefilter, we use the input generator in the benchmark
to generate inputs with different number of particles. For spmv,
we use matrix inputs from the University of Florida’s sparse

Fig. 14. Speedup across different inputs for spmv.

TABLE IV
PLACEMENT DECISIONS MADE BY PORPLE AND THE RULE-BASED APPROACH. T: TEXTURE MEMORY, C: CONSTANT MEMORY, G: GLOBAL MEMORY, S:

SHARED MEMORY, R:READ-ONLY DATA CACHE. SPMV: A0:ROWDELIMITERS, A1:COLS, A2:VEC, A3:VAL, A4:OUT. PARTICLEFILTER: B0:CDF, B1:U,
B2: ARRAYX, B3:ARRAYY, B4:XJ,B5:YJ.

spmv particlefilter
A0 A1 A2 A3 A4 B0 B1 B2 B3 B4 B5

Rule-Based T T T T G G S&G G G G G
PORPLE-C1060 C T T T G C S&G G G G G
PORPLE-M2075 C T G T G C S&G G G G G
PORPLE-K20c C R T R G C S&R G T G G

matrix database [9].
The results are shown in Figures 13 and 14. The figures

show that PORPLE consistently outperforms the rule-based
approach even if we use different inputs. In particular, the rule-
based approach produces 7% and 24% average speedups for
particlefilter and spmv respectively, while PORPLE produces
72% and 30% average speedups. The only outlier is the spmv
with a special input named random. For this input, PORPLE
performs worse than the rule-based approach. We attribute this
to insufficient workload characterization by profiling the first
thread block.

VIII. RELATED WORK

We categorize the related work into three classes.
1) Automatic Data Placement. The previous sections com-

pared PORPLE with a rule-based placement approach de-
signed by Jang et al. [12]. Ma and others [16] considered the
optimal data placement on shared memory only. Wang and
others [23] studied the energy and performance tradeoff for
placing data on DRAM versus non-volatile memory.

Data placement is also an important problem for CPUs
with heterogeneous memory architectures. Jevdjic et al. [13]
designed a server CPU that has 3D stacked memory. Due to the
various technical constraints, especially heat dissipation, the
stacked memory has limited size and is managed by hardware
like traditional cache. Similarly, some heterogeneous memory
designs [19], [18] involving phase change memory also chose
hardware-managed data placement.

To our best knowledge, PORPLE is the first portable, exten-
sible optimizer that systematically considers data placement on
various types of GPU programs, enabled by its novel design of
the memory specification language and the placement-agnostic
code generator.

2) Performance Modeling.
Hong and others [11] propose a sophisticated GPU analyti-

cal performance model, which has many parameters and needs
multiple runs of micro-benchmarks to determine them. The
work by Zhang and Owens [28] also requires non-trivial exe-
cutions of micro-benchmarks to establish quantitative model.
Baghsorkhi et al. [1] proposes a compiler-based performance
model, which considers very detailed micro-architectures, such
as shared memory bank conflicts and warp divergence. All
these approaches provide sophisticated modeling, but are
costly and suit offline usage. The performance model in
PORPLE is simple to build and use, efficient enough for
online usage. It gives special consideration to cache and cache
contention through the reuse distance model.

3) GPU Memory Optimization. GPU programs heavily rely
on memory performance; memory optimization hence receive
great attention [7], [3], [22], [14]. Yang and others [26] de-
signed a source-to-source offline compiler to enhance memory
coalescing or shared memory use. Zhang and others [27]
focused on irregular memory references and proposed a
pipelined online data reorganization engine to reduce memory
access irregularity. Wu and others [25] formalize the prob-
lem of using data reorganization to minimize non-coalesced
memory accesses, provide the first complexity analysis and
propose several efficient reorganization algorithms. All these
studies mainly focus on optimizing the memory access pattern
rather than choosing the most suitable type of memory for data
arrays. In this sense, PORPLE is complementary to them.

IX. CONCLUSION

Suitable data placement on GPUs produces substantial per-
formance improvement, which, however, is hard to exploit
by programmers due to the complicated memory system, the
unpredictable run-time program behaviors, and the quickly
evolving architectures. In this work, we propose the PORPLE
framework to place data arrays on GPUs in a way that is
transparent to programmers (in most cases), adaptive to inputs
and extensible to new memory architectures. Our experiments
on a diverse set of benchmarks and three different GPUs
showed that PORPLE, by finding the optimal or near-optimal
placement, consistently outperformed the manually optimized
benchmarks and the state-of-the-art memory selection algo-
rithm significantly.

ACKNOWLEDGMENT

The comments by the Micro’14 reviewers and Ayal Zaks
helped enhance the presentation of the paper. This material
is based upon work supported by DOE Early Career Award
and the National Science Foundation (NSF) under Grant No.
1320796 and CAREER Award. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of DOE or NSF. The work was partially performed at the Oak
Ridge National Laboratory, which is managed by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 to the U.S.
Government. Accordingly, the U.S. Government retains a non-
exclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so,
for U.S. Government purposes.

REFERENCES

[1] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W.
Hwu, “An adaptive performance modeling tool for gpu architectures,” in
Proceedings of the 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’10, 2010, pp. 105–114.

[2] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W. mei
W. Hwu, “An adaptive performance modeling tool for GPU architec-
tures,” in ACM SIGPLAN symposium on Principles and practice of
parallel programming, 2010.

[3] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “A compiler framework for optimization
of affine loop nests for GPGPUs,” in ICS’08: Proceedings of the 22nd
Annual International Conference on Supercomputing, 2008, pp. 225–
234.

[4] A. P. Batson and A. W. Madison, “Measurements of major locality
phases in symbolic reference strings,” in Proceedings of the ACM SIG-
METRICS Conference on Measurement & Modeling Computer Systems,
Cambridge, MA, March 1976.

[5] G. C. Cascaval, “Compile-time performance prediction of scientific pro-
grams,” Ph.D. dissertation, University of Illinois at Urbana-Champaign,
2000.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, 2009.

[7] S. Che, J. W. Sheaffer, and K. Skadron, “Dymaxion: Optimizing memory
access patterns for heterogeneous systems,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’11, 2011, pp. 13:1–13:11.

[8] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in GPGPU, 2010.

[9] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

[10] C. Ding and Y. Zhong, “Predicting whole-program locality with reuse
distance analysis,” in Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, San Diego, CA,
June 2003, pp. 245–257.

[11] S. Hong and H. Kim, “An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness,” in International
Symposium on Computer Architecture, 2009.

[12] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting memory access
patterns to improve memory performance in data-parallel architectures,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1,
pp. 105–118, 2011.

[13] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for
servers: hit ratio, latency, or bandwidth? have it all with footprint cache.”
in ISCA, 2013, pp. 404–415.

[14] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and improving
the use of demand-fetched caches in gpus,” in Proceedings of the 26th
ACM international conference on Supercomputing, ser. ICS ’12, 2012.

[15] S. Lee, T. Johnson, and R. Eigenmann, “Cetus - an extensible compiler
infrastructure for source-to-source transformation,” in In Proceedings of
the 16th Annual Workshop on Languages and Compilers for Parallel
Computing (LCPC), 2003, pp. 539–553.

[16] W. Ma and G. Agrawal, “An integer programming framework for
optimizing shared memory use on gpus,” in PACT, 2010, pp. 553–554.

[17] S. Manegold, P. Boncz, and M. L. Kersten, “Generic Database Cost
Models for Hierarchical Memory Systems,” in Proceedings of VLDB,
2002, pp. 191–202.

[18] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in Proceedings of the 36th Annual International Symposium on Com-
puter Architecture, ser. ISCA ’09, 2009, pp. 24–33.

[19] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hybrid
memory systems,” in Proceedings of the International Conference on
Supercomputing, ser. ICS ’11, 2011, pp. 85–95.

[20] J. Sim, A. Dasgupta, H. Kim, and R. W. Vuduc, “A performance analysis
framework for identifying potential benefits in GPGPU applications,”
in ACM SIGPLAN symposium on Principles and practice of parallel
programming, 2012.

[21] A. J. Smith, “On the effectiveness of set associative page mapping and
its applications in main memory management,” in Proceedings of the
2nd International Conference on Software Engineering, 1976, pp. 286–
292.

[22] I.-J. Sung, J. A. Stratton, and W.-M. W. Hwu, “Data layout transforma-
tion exploiting memory-level parallelism in structured grid many-core
applications,” in Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ’10, 2010,
pp. 513–522.

[23] B. Wang, B. Wu, D. Li, X. Shen, W. Yu, Y. Jiao, and J. S. Vetter,
“Exploring hybrid memory for gpu energy efficiency through software-
hardware co-design,” in Proceedings of the 22Nd International Confer-
ence on Parallel Architectures and Compilation Techniques, ser. PACT
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 93–102.

[24] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through
microbenchmarking.” in ISPASS. IEEE Computer Society, 2010,
pp. 235–246.

[25] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen, “Complexity analy-
sis and algorithm design for reorganizing data to minimize non-coalesced
memory accesses on gpu,” in Proceedings of the 18th ACM SIGPLAN
symposium on Principles and practice of parallel programming, 2013.

[26] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A gpgpu compiler for memory
optimization and parallelism management,” in Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’10, 2010, pp. 86–97.

[27] E. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen, “On-the-fly elimi-
nation of dynamic irregularities for gpu computing,” in Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[28] Y. Zhang and J. D. Owens, “A quantitative performance analysis
model for gpu architectures,” in Proceedings of the 2011 IEEE 17th
International Symposium on High Performance Computer Architecture,
ser. HPCA ’11, 2011, pp. 382–393.

[29] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3d
stencil codes on gpu clusters,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization, ser. CGO ’12, 2012,
pp. 155–164.

[30] Y. Zhong, S. G. Dropsho, and C. Ding, “Miss rate prediction across all
program inputs,” in Proceedings of the 12th International Conference
on Parallel Architectures and Compilation Techniques, New Orleans,
Louisiana, September 2003.

