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ABSTRACT

A GPU’s computing power lies in its abundant memory
bandwidth and massive parallelism. However, its hardware
thread schedulers, despite being able to quickly distribute
computation to processors, often fail to capitalize on pro-
gram characteristics effectively, achieving only a fraction
of the GPU’s full potential. Moreover, current GPUs do
not allow programmers or compilers to control this thread
scheduling, forfeiting important optimization opportunities
at the program level. This paper presents a transformation
centered on Streaming Multiprocessors (SM); this software
approach to circumventing the limitations of the hardware
scheduler allows flexible program-level control of schedul-
ing. By permitting precise control of job locality on SMs,
the transformation overcomes inherent limitations in prior
methods.

With this technique, flexible control of GPU scheduling
at the program level becomes feasible, which opens up new
opportunities for GPU program optimizations. The second
part of the paper explores how the new opportunities could
be leveraged for GPU performance enhancement, what com-
plexities there are, and how to address them. We show that
some simple optimization techniques can enhance co-runs of
multiple kernels and improve data locality of irregular appli-
cations, producing 20-33% average increase in performance,
system throughput, and average turnaround time.
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1. INTRODUCTION

Recent years have seen increasing popularity of Graph-
ics Processing Units (GPUs) in general-purpose computing,
thanks to massive parallelism provided by GPUs. With hun-
dreds of cores integrated, the GPU often creates tens of
thousands of threads for an application. The massive paral-
lelism produces large potential throughput, but also imposes
grand challenges for thread management, or scheduling.

Scheduling determines when and where a task is processed.
It is essential for matching communication and memory ac-
cess patterns with underlying architecture, in order to fully
tap into the power of a parallel system. Scheduling is usu-
ally controlled by thread schedulers. On CPU, the thread
scheduling is implemented through system APIs. But on
GPUs, there is no such software API; the scheduling on
GPUs has been controlled by hardware and runtime. Such
a design is demanded by the scale of parallelism: Hundreds
of thousands of threads need to be scheduled in very short
time. However, the lack of software-level control of schedul-
ing forms a major barrier for software to leverage scheduling
to optimize program executions. What increases the barrier
is that the scheduling algorithms employed by GPU hard-
ware and runtime have remained non-disclosed; the sched-
ulers vary substantially across generations and have exhib-
ited some obscure and non-deterministic behaviors (detailed
in the next section).

The restrictions have drawn some recent attentions from
researchers in various domains. A number of studies in-
dependently invented the method of persistent threads to go
around the hardware scheduling problem [3,9,13,41,44]. The
idea is to create only a small number of threads that can si-
multaneously run actively on a GPU. Unlike in traditional
kernels where a thread terminates as it finishes a task, these
threads stay alive throughout the execution of a kernel func-
tion. They continuously fetch and execute tasks from one or
more task queues. By controlling the order of the tasks in
the queues, one can match the executions with some com-
munication patterns among tasks—for example, putting a
producer and its consumer into the same queue.

Although persistent threads offers some support to task
scheduling on the GPU, the support is restrictive. It only
decides which tasks map to which persistent thread and their
execution order; it gives no support for deciding where or



on which processor a task should run. Such location control
is still up to the hardware and proprietary runtime, which
decide the placement of persistent threads, and hence the
placement of tasks associated with those threads.

Lack of such scheduling control at the spatial dimension
hinders persistent threads in supporting optimizations that
are related with non-uniformity in processors. For instance,
a modern GPU consists of multiple streaming multiproces-
sors (SM), with each containing tens of cores. Cores on one
SM usually share some on-chip storage on that SM (e.g., L1
cache and texture cache). As a result, one task may be able
to read the data in a cache brought by another task that
concurrently runs on the same SM. With location control,
one could make two tasks that share lots of data run concur-
rently on the same SM*'. Such optimizations are especially
beneficial for tasks with non-uniform data sharing, which
include tasks of many irregular applications (e.g., N-body
simulations), as well as tasks coming from different kernels
(or applications) that are deployed concurrently on a GPU.
Besides for data sharing, the spatial control is critical when
there are architectural variations among SMs. Unintentional
variations among SMs in a GPU already widely exist to-
day [16]; with frequency scaling [21] possibly implemented
in future GPUs, even more substantial (intentional) varia-
tions (e.g., different SMs could be reconfigured to different
clock frequencies to balance energy and performance) are
possible. In these scenarios, spatial control of scheduling is
important for matching tasks with the suitable SMs.

In this work, we show that spatial scheduling control ac-
tually can be enabled through a simple program transfor-
mation, called SM-centric transformation.

SM-centric transformation includes two essential techniques.

The first is SM-based task selection. In a traditional GPU
kernel execution, with or without persistent threads, what
tasks a thread executes are usually based on the ID of the
thread (or determined randomly in a dynamic task man-
agement). While with SM-based task selection, what tasks
a thread executes is based on the ID of the SM that the
thread runs on. By replacing the binding between tasks
and threads with the binding between tasks and SMs, the
scheme enables a direct, precise control of task placement
on SM.

The second technique is filling-retreating scheme, which
offers a flexible control of the amount of active threads on
an SM. Importantly, the control is resilient to the random-
ness and obscuration in GPU hardware thread scheduling.
It helps SM-centric transformation in two aspects. First, it
ensures an even distribution of active threads on SMs, which
is vital for guaranteeing the correctness of SM-centric trans-
formations. Second, it facilitates online determination of
the parallelism level suitable for a kernel, which is especially
important for the performance of multiple-kernel co-runs,
a scenario benefiting significantly from SM-centric transfor-
mation.

SM-centric transformation, by enabling flexible program-
level control of task scheduling, opens up many new op-
portunities for optimizations. The second part of the pa-
per explores how the new opportunities could be leveraged
for GPU performance enhancement, what complexities there

'Mapping two tasks to the same persistent thread can also
make them map to the same SM, but the tasks have to run
serially by that thread, throttling the benefits of synergistic
data fetching.
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are, and how to address them. Specifically, we explore the
use of the scheduling flexibility to enable affinity-oriented
task scheduling and SM partition for co-runs of multiple ker-
nels. In our experiments on 72 co-runs of kernels, it helps
produce on average 33% improvement in system throughput
and turnaround time. When applied to locality enhance-
ment, the enabled spatial scheduling shortens the execu-
tion times of four irregular applications by 20% on aver-
age. In both cases, it significantly outperforms the support
that persistent threads provide. These results indicate that
SM-centric transformation, by complementing prior meth-
ods, provides a critical missing piece of the puzzle for en-
abling and exploiting flexible control of task scheduling on
the GPU.
In summary, this work makes following contributions.

e [t proposes SM-centric transformation, which, for the
first time enables precise spatial scheduling of GPU
tasks. It offers the missing piece of the puzzle for cir-
cumventing GPU hardware restrictions to implement
a flexible control of task scheduling.

e It uncovers the potential of the enabled scheduling con-
trol for both single-kernel runs and multi-kernel co-
runs.

o [t reveals some major challenges for leveraging spatial
scheduling on the GPU, and develops a set of practical
solutions; experiments demonstrate their effectiveness
and the tangible and substantial benefits with the pro-
posed program-level schedule control.

In the rest of this paper, Section 2 provides some nec-
essary background on GPU scheduling, Section 3 describes
SM-centric transformation, Section 4 discusses the uses of
the enabled spatial scheduling for both locality enhance-
ment in single-kernel runs and throughput improvement in
multi-kernel co-runs, and discusses some major challenges.
Section 5 presents some simple solutions to those challenges,
through which, we are able to examine the practical bene-
fits of the spatial scheduling. Section 6 reports experimental
results, followed by related work and conclusions.

2. BACKGROUND

We base our discussions on terms in NVIDIA CUDA [1];
but the technique could be applied to other GPU program-
ming models.

Organization of Cores and Threads.

As a massively parallel architecture, a GPU consists of a
number of streaming multiprocessors (SM), with each con-
taining tens of cores. A GPU usually creates a large num-
ber of threads at the launch of a kernel (i.e., a CPU-invoked
function that runs on GPU). These threads are typically
organized in a hierarchy: 32 compose a warp, many warps
compose a thread block or called a cooperative thread array
(CTA) and many CTAs compose a grid.

Spatial Scheduling.

A CTA is the unit for spatial scheduling: At a kernel
launch, the GPU hardware scheduler named GigaThread [32]
assigns each CTA to one of its SMs. The assignment algo-
rithm has not been disclosed to the public. It differs from



one generation of GPUs to another, and exhibits lots of ir-
regularity. For example, our experiments on Tesla M2075, a
type of widely used workstation GPUs, show different CTA-
to-SM assignments in two repeated invocations of the same
kernel on the same input, and neither is in a round-robin or
other regular predictable pattern.

Temporal Scheduling.

A warp is the unit for temporal scheduling: All threads
in a warp proceed in lockstep. Many CTAs may be assigned
to an SM, but at one time point, only a limited number of
them can be active—meaning that they attain enough regis-
ters and other hardware resources and are ready to run. All
other CTAs have to wait until some active CTA finishes exe-
cuting the entire kernel function and releases some hardware
resources.

Non-Uniformity on GPU.

Spatial scheduling is potentially beneficial to the GPU, as
non-uniformity exists on both GPU resource sharing and its
workload.

On the resource sharing aspect, modern GPU features
non-uniform cache sharing. In Tesla M2075, for instance,
there are 14 SMs, with each containing some cache—such
as, instruction cache, L1 data cache, constant cache, and
texture cache—that is shared by all cores on that SM but is
not accessible by other SMs.

On the workload aspect, non-uniformity shows in two lev-
els. For a single GPU kernel, a CTA may share different
amounts of data with different CTAs. Molecular Dynamics
(MD) simulation is such an example. It simulates inter-
actions among neighbor atoms. The atoms simulated by
two CTAs may have many or few neighbors, depending on
the distances among them in the simulated space. That
naturally leads to non-uniform data sharing among CTAs.
Meanwhile, recent generations of GPUs start to support con-
current executions of multiple kernels on a single GPU. Al-
though currently the kernels have to be launched from a
single CUDA context, a more general support for concur-
rent executions of multiple GPU applications is expected to
come in the near future. In these co-run scenario’s, non-
uniformity becomes even more common: CTAs from the
same kernel often share more instructions and data than
CTAs from different kernels do.

The non-uniformity suggests the potential of spatial schedul-

ing. As Section 6 quantitatively confirms, a good spatial
scheduling may bring an over 30% speedup on average.

3. SM-CENTRIC TRANSFORMATION

At the center of SM-centric transformation are two tech-
niques: SM-centric task selection, and a filling-retreating
scheme. In this section, we first explain the basic ideas of
the two techniques and how they complement each other to
form a single solution to circumvent the limitation from the
hardware scheduler. As the techniques are generally applica-
ble to various GPU programming models, we use high-level
pseudo-code for description and skip detailed complexities
in implementation so that the ideas can be easily grasped
by general readers. We then use CUDA as an example pro-
gramming model to explain the detailed implementation of
the techniques, including some subtle considerations that
are critical for the techniques to work efficiently. We show
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that the entire SM-centric transformation can be conducted
through a simple pass by compilers. At the end, we give
some discussions on the soundness of the transformation and
its applicable conditions.

3.1 SM-Centric Task Selection

Basic Idea.

SM-centric task selection associates tasks with SMs. We
explain it based on the following abstract model of GPU
kernel executions.

Commonly, an invocation of a GPU kernel causes many
GPU threads to create, which are often organized in a hi-
erarchical structure. At an abstract level, the execution
of a GPU kernel can be regarded as consisting of many
jobs? conducted in parallel by a number of workers on some
SMs. Here, a worker corresponds to a group of GPU threads
(e.g., a CTA), and a job corresponds to the operations con-
ducted by such a thread group, including all their data ac-
cesses. There is a unique ID number associated with each
job, worker, and SM.

In traditional GPU programs, which job a worker does
has been determined by the worker’s ID, as the pseudo code
in Figure 1 (a) shows. The technique of Persistent threads
maps multiple jobs to a single worker, but the set of jobs for
a worker is still determined by the worker’s ID, as shown in
Figure 1 (b). Since the placement of workers on SMs is con-
trolled by the hardware schedulers, the job-worker binding
makes the placement of jobs on SMs solely depend on the
hardware schedulers.

The idea behind SM-centric task selection is to replace the
job-worker binding with a binding established between jobs
and SMs. As Figure 1 (c¢) shows, a job queue is built for
every SM before the invocation of a kernel function. Inside
the kernel function, each worker first figures out on what
SM it resides, and then uses the SM ID to fetch the next
job in the corresponding job queue to execute. In this way,
controlling the placement of a job on a specific SM becomes
simple: Just putting that job’s ID into the job queue of that
SM.

The idea is straightforward. But some complexities must
be addressed to implement the idea soundly and efficiently.

Correctness Issues by Hardware Schedulers.

Through a close look at the pseudocode in Figure 1 (c),
one will see that for it to work correctly on a GPU program,
the number of workers assigned to an SM must be no fewer
than the number of jobs assigned to the SM. It is because
in that code, one worker on an SM processes only one job
assigned to that SM. Some jobs on that SM would be left
unprocessed if the number of workers is less than the number
of jobs.

However, how many workers are assigned to an SM is de-
termined by the GPU hardware scheduler. Our experiments
indicate that the assignment by hardware schedulers is often
unpredictable. On a Tesla M2075 with 14 SMs, for instance,
when running a kernel with 1400 workers (i.e., CTAs), we
observe an uneven distribution of workers: the number of
workers per SM varies from 92 to 110. And when running
the kernel with 14 workers, some SMs get multiple workers

2In this paper, “job” and “task” are interchangeable terms,
although we tend to use “job” more often when referring to
entities in this abstract kernel execution model.



createJobQ4sms(); // on CPU

createJobQ4workers(); // on CPU

kernel_org()
joblD = f (workerID);
processjob (joblD);

kernel_persist()

processjob (jobID);

(a) original kernel

while (joblD = JobQ[workerlD].next() != null)

(b) with persistent thread

kernel_smc()
smlID = getSMID();
jobID = JobQ[smID].next();
if (jobID != null)
processjob (jobID);

(c) with SM-centric task selection

Figure 1: Conceptual relations among jobs, workers, and SMs.

while others get none. Moreover, the worker distribution
varies from run to run, displaying lots of randomness.

Such non-determinism jeopardizes the soundness of the
basic SM-centric task selection. An option is to allow dy-
namic job stealing such that workers on one SM can steal
jobs left on another SM. It requires more complicated code
to be inserted into the GPU kernel to implement the job
stealing logic, and hence increases register pressure and re-
duces parallelism. More importantly, the stealing changes
the intended job-to-SM mapping.

3.2 Filling-Retreating Scheme

We address the complexity through a filling-retreating scheme.

This scheme offers a simple way to precisely control the num-
ber of active workers on each SM.

The scheme works hand-in-hand with the concept of per-
sistent threads. Similar to persistent threads, with this
scheme, a small number of workers are kept alive for each
SM throughout the kernel execution. These workers contin-
uously fetch and process the jobs assigned to the SM until
the queue gets empty. The tricky part is on how to pre-
cisely control the number of active persistent threads (or in
our term, active workers) for each SM.

Filling-retreating offers a simple solution. It leverages a
common property of GPU schedulers. On GPUs, each SM
can only support a limited number of active workers at the
same time due to hardware limitation. On all GPUs we
tested, despite the differences in their schedulers, one com-
mon property is that they always try to assign a worker to
an SM that can still accommodate some active workers if
there is any (rather than putting the worker into a waiting
queue of an SM).

Suppose that one SM can support at most m active work-
ers at the same time. In the filling-retreating scheme, a total
of m* M workers are created at a kernel launch, where M is
the number of SMs in the GPU. Due to the aforementioned
common property, each SM gets m workers assigned. This
step is the “filling” part of the scheme.

Although the “filling” step ensures every SM gets m work-
ers, as multiple studies have shown [20,25], having the largest
number of workers on an SM is not always the best for max-
imizing the computing efficiency due to cache and bus con-
tention. This phenomenon is also confirmed in Section 6.
The “retreating” part of our scheme facilitates flexible ad-
justment of the number of active workers on an SM. Suppose
one wants to have niqrgetr active workers per SM. A counter
is created for each SM to record the number of workers that
have started processing jobs on that SM. Each worker, be-
fore starting working on a job, first atomically increases the
corresponding counter and then checks whether the counter
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createJobQ4sms(); // on CPU

kernel_smc()
smID = getSMID();
workers = workerCounters[smID]++; // atomic
if (workers > wantedNumPerSM)
return;
while (jobID = JobQ[smID].next() != null)
processjob (jobID);

Figure 2: Psuedo code of a GPU kernel in a filling-
retreating scheme.

value already exceeds niarget. If 50, the worker exits imme-
diately. Figure 2 shows the pseudo code.

The correctness of the filling-retreating scheme relies on
the fast distribution of thread blocks by the hardware sched-
uler. That is, the filling phase should finish before any
thread block retreats (i.e., exiting its execution). Other-
wise, the hardware scheduler could assign totally more than
m workers onto an SM because of the vacancy on that SM
formed by the early retreat of some workers on it. Corre-
spondingly, some other SMs would get less than m workers
assigned. Fortunately, our experiments show that such cases
have never happened, plausibly due to the extreme speed
of the hardware-based assignment of workers. A check put
into the runtime driver could further ensure the condition to
hold, the necessity of which is not shown in our experiments.

The benefits of the precise control of the number of active
workers on an SM goes beyond helping with the correctness
of SM-centric task selection. It also enables a precise control
of parallelism on GPU, which facilitates flexible partitions
of SMs among co-running kernels shown in Section 5.

3.3 Implementation

The SM-centric transformation can be easily applied ei-
ther manually or through a compiler. For proof of concept,
we build a prototype source-to-source compiler based on Ce-
tus [22], in which the transformation is implemented as a
pass over the input code. The experience taught us the
importance of several subtle considerations in the design,
which we highlight next before showing the full details of
the implementation.

First, the dequeue operation in the while loop in Fig-
ure 2 is good for illustrating the basic idea but poor for
performance. An atomic operation could cause substan-
tial overhead especially when the work in the loop body
is small. When implementing the transformation, it is im-
portant to avoid such atomic operations in the while loop.



In our design, we circumvent the needs for atomic job fetch-
ing by leveraging a property offered by the filling-retreating
scheme: There are precisely N¢qrget active workers on an
SM. With that property, each active worker only needs to
process W/Niarget jobs, where W is the total number of jobs
assigned to the SM. So if we put the job IDs of an SM into
an array, the set of jobs for a worker just corresponds to a
segment of the array. The starting and ending indices of the
segment can be easily attained before the worker enters the
job fetching and processing loop. With this improvement,
the while loop in Figure 2 can be converted into a simple
for loop, iterating the elements in the segment assigned to
the worker, and the atomic operation can be hence removed
from the loop. In our implementation, we actually use a
single array to store the IDs of all jobs. The set of jobs of an
SM corresponds to just one section of the array. The posi-
tion of a job ID in the array hence determines on which SM
it will be processed. (Lines 9 to 16 in Listing 1 implement
this design; explained later.)

Second, the ID of an SM can be obtained efficiently. CUDA,
like the C programming language, allows programmers to in-
sert assembly code, which is designed by NVIDIA as an in-
termediate representation named Parallel Thread Execution
(PTX) [34]. It has a special register, %smid, which stores
the SM identifier. One “mov” instruction can copy the value
in %smid to an integer variable. Line 27 in Listing 1 shows
the code.

Details.

In this part, we describe some low-level complexities that
our description has skipped. The discussion is based on
CUDA, but the implementation can be done for other GPU
programming models, such as OpenCL.

On GPU;, the spatial scheduling unit is not a thread but
a CTA, an array of threads. Correspondingly, the job as-
signments to processors in our design is in the unit of job
chunks—the set of jobs executed by a CTA in the original
GPU program. In a typical GPU program, the thread ID
is used to distinguish jobs, and one CTA handles one job
chunk; the ID of a CTA in the original program is hence
treated as the ID of the job chunk that CTA processes.

To minimize changes needed to the original GPU pro-
gram, we encapsulate most parts of the code for SM-centric
transformation into four macros. With them, applying SM-
centric transformation involves only several minor changes
to the original GPU program. As Listing 2 shows, on the
CPU-side code, it inserts one macro, _ SMC_init, before the
invocation of a GPU kernel, and appends three arguments
to the kernel call. On the GPU-side code, it inserts the calls
to two other macros, _SMC_Begin and __SMC_End, and re-
places the appearances of the ID of CTA in the kernel with
__SMC_chunkID. These can be done easily by the compiler
in one pass over the original GPU program.

The above four macros are defined in Listing 1. The first,
__SMC_init, initiates the three variables with the number
of workers needed, the array of the desired sequence of IDs
of job chunks, and an all-zero counter array to count active
workers. The functions used to initiate the first two variables
can be provided by the programmer or the optimizing com-
piler; their definitions depend on the purpose of the specific
application of the SM-centric transformation, as Section 5
will illustrate. The second macro, __SMC_Begin, first calls
the fourth macro to get the ID of the SM by reading the
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Listing 1: Macros that materialize SM-centric trans-
formation (N jobs; M SMs).
#define _SMC_init '\
unsigned int x _SMC_workersNeeded = __SMC_numNeeded(); \
unsigned int * __SMC_newChunkSeq = __SMC_buildChunkSeq(); \
unsigned int *+ __SMC_workerCount= _SMC_initiateArray();

#define _SMC_Begin \
_shared int _SMC_workingCTAs; \
_SMC_getSMid; \
if(offsetInCTA == 0) \
_SMC_workingCTAs = \
atomicInc (&_SMC_workerCount[_SMC_smid], INT_MAX); \
synchthreads(); \
if(_SMCS_workingCTAs >= _ SMC_workersNeeded) return; \
int _SMC_chunksPerCTA =\
__SMC_chunksPerSM / __SMC_workersNeeded; \

int _SMC_startChunkIDidx = __SMC_smid * __SMC_chunksPerSM + \

_SMC_workingCTAs * _SMC_chunksPerCTA;\

for (int _SMC_chunkIDidx = __SMC_startChunkIDidx; \
_SMC_chunkIDidx < __SMC_startChunkIDidx+\

_SMC_chunksPerCTA ; \

_SMC_chunkIDidx++) { \
_SMC_chunkID = _SMC_newChunkSeq[_SMC_chunkIDidx];

#define _SMC_End }

// get the ID of the current SM

#define _SMC_getSMid \

uint _ SMC_smid;\

asm("mov.u32 %0, %smid;” : ”=r”(_SMC_smid) )

particular register, then checks whether the SM already has
enough active CTAs. If not, it computes the starting and
ending positions of the sets of jobs it should work on, gets
into the for loop to process them one by one. The third
macro, _SMC_End, is trivial, just putting in the ending
bracket of the “for” loop in the second macro.

3.4 Soundness

At a high level, SM-centric transformation manipulates
the association between jobs and processors, and hence al-
ters the mapping between jobs and threads and possibly the
execution order of the jobs. As a kind of remapping transfor-
mation as persistent threads is, for SM-centric transforma-
tion to work soundly, the GPU program needs to meet the
same conditions as in the case of persistent threads [9,13]:

(1) The operations by different threads are discriminated
only by the global thread ID; (2) The execution order of the
CTAs does not disturb the correctness of the kernel.

The first condition ensures that SM-centric transforma-
tion does not change integrity of a job even though all ap-
pearances of the CTA ID in a kernel are replaced with the
__SMC_chunklId. We note that even though current GPUs do
not migrate CTAs across SMs, the job integrity holds even if
CTA migrates—given that the attainment of _SMC_chunkld
is atomic. The second condition ensures that the new order
of execution maintains the meaning of the program.

The two conditions hold for well-formed GPU programs,
due to the nature of GPU execution models. At a high level,
they are Single-Program-Multiple-Data (SPMD) models; all
GPU threads at a kernel launch execute the same function,
while their specific operations are determined only by the
thread ID. Meanwhile, for a GPU program to work properly,
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Listing 2: GPU program after SM-centric transfor-

mation (N vector elements; K job chunks; M SMs).
J/*kxkk CPU—side code xxxx/
main (){

_SMC_init;
invoke original kernel with three extra arguments:
_SMC_chunkCount, - SMC_newChunkSeq, K/M

-

Jrxxk GPU—side code sx%x/
__global__ kernel (...,

unsigned int *__SMC_chunkCount,
unsigned int *__SMC_newChunkSeq,
unsigned int __SMC_chunksPerSM)

_SMC_Begin
// the original kernel with the ID of CTA
// replaced with _SMC_chunkID

_SMC_End
}

it should not rely on the execution order of CTAs, because
due to the non-determinism in CTA scheduling on the GPU,
it is hard to know what order would be taken in a run. Free
from data race helps ensure the conditions hold. Recent
years have seen a number of studies on data race detection
for GPUs [5,47], which could serve as part of the automatic
check of the applicability of SM-centric transformation.

4. USES AND COMPLEXITIES

By enabling program-level spatial scheduling, SM-centric
transformation opens up some new opportunities for GPU
optimizations. This section discusses some of them, and
examines the main complexities associated with these new
opportunities.

4.1 Example Uses

SM Partition for Multi-kernel Co-runs.

It has been observed that many GPU kernels exhibit sub-
linear speedups when the number of SMs used for the kernel
increases [2,33]. As a result, simulations have shown that
if the set of SMs in a GPU can be partitioned such that
different subsets of SMs work for different kernels concur-
rently, the system often gives higher throughput and the
kernels manifest better overall responsiveness [2]. However,
such partitions have not been feasible in practice for lack of
scheduler controllability. On NVIDIA GPUs, for instance,
when two kernels are launched concurrently (each usually
has many CTAs), their CTAs are assigned to all SMs. And
if the threads by one kernel already use too much register or
shared memory on an SM, before its completion, the other
kernel cannot start, hence resulting in a serial execution of
the two kernels.

With minor extension to the SM-centric transformation,
partitions of SMs among concurrent kernels becomes possi-
ble. For instance, if we want the first 6 SMs to work for
kernel fi, and the remaining 8 SMs for kernel f>, we can set
the mapping array used in SM-centric transformation such
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that all jobs of fi map to the first 6 SMs and those of f> to
the other 8 SMs. When the two kernels get launched, the
GPU scheduler still assigns CTAs of both kernels to every
SM. However, a statement is inserted in each kernel after
obtaining the SM ID, which checks whether the ID of this
SM is one of the SMs supposed to work for this kernel. If
not, the CTA returns immediately so that the SM can work
for the other kernel.

Affinity-Based Scheduling.

Many GPU applications have inherent non-uniform data
interactions, such as the MD example mentioned in Sec-
tion 2. It causes non-uniform data sharing among job chunks.
Following the concepts on traditional CPU [49], we state
that two job chunks have good reference affinity if they share
lots of data. As Section 2 mentions, each SM has an on-chip
cache. So, if we can manage to assign onto the same SM the
job chunks with good affinity, we may enhance the perfor-
mance of the cache. SM-centric transformation makes this
affinity-based scheduling possible.

4.2 Complexities

There are some complexities for applying SM-centric trans-
formation to the use cases mentioned earlier.

For SM partition for co-runs, the key is to decide the
best partition. For affinity-based scheduling, the key is to
compute the affinity among job chunks and then group job
chunks accordingly.

Additionally, there is a common complexity existed in
both use cases: determining the suitable number of active
CTAs for a kernel. As some studies have shown [20], creat-
ing the maximum number of CTAs that an SM can hold of-
ten gives suboptimal performance, because of cache and bus
contention among them. The CTA aggregation employed
in SM-centric transformation allows flexible control of the
number of active CTAs for a kernel.

However, determining the suitable numbers of active CTAs
is challenging. It depends on many factors, including the
interaction between SM partitioning and data locality, pro-
gram inputs, kernels’ resource requirement and so on. More-
over, when coupling with the various methods to partition
SMs (for co-runs), they could result in a large search space.
For 2 kernels on a 14-SM GPU, if an SM can support at most
6 active CTAs, the search space contains 6 x 6 x 14 = 504
cases.

5. DESIGNS FOR VALIDATION

In this section, we describe our design to address the com-
plexities listed in the previous section. Our goal is to val-
idate the practical value of the spatial scheduling enabled
by SM-centric transformation, rather than to find the best
solution to those complexities. Simplicity and practicality
are the principles in our design. The rationale is that if
the enabled spatial scheduling could bring substantial bene-
fits with minimum support, the promise of the technique is
validated.

5.1 Optimal Configuration Search

We first discuss the challenges for determining the best
number of active CTAs (i.e., the ntarger mentioned in Sec-
tion 3.2, which is also called parallelism control) for a kernel
and for finding the best partition of SMs between co-running
kernels. We call these parameters together as a configura-



tion in our discussion. The difficulty is that the space of
the configuration values is large and the best configuration
depends on many factors. It is often too costly to try every
possible configuration at runtime. We employ the standard
sampling method to efficiently approximate the best con-
figuration. When a kernel is inside a loop, the sampling
may happen during the first several iterations; otherwise,
the sampling may happen offline or across runs.

Because SM partition mainly affects interactions across
SMs, while the parallelism control is mainly related with
resource usage inside an SM, we observe that the optimal
level of parallelism for a kernel is only loosely connected
with how we partition SMs. Hence our search scheme first
evenly partitions the SMs among kernels, and tries to find
the appropriate numbers of active CTAs for each kernel. It
starts with the maximum CTAs supported by an SM for the
kernel (no larger than 8), and decreases the number by 1 in
each iteration until it observes decreased performance or the
number reaches 1. This is a typical process of hill climbing.
After that, our search scheme fixes the CTA numbers but
adjusts SM partition by setting the number of SMs assigned
to a co-run kernel from 1 to the maximum-1 (in a step size of
three) while the rest SMs are used for the other co-running
kernel. As a prior study [33] does, this work considers only
co-runs of two kernels. Based on the sampled data, the
optimal partition is approximated through interpolation.

Like other online sampling-based approaches, our search
scheme cannot work well when different iterations behave
dramatically differently. Combining the sampling approach
with domain knowledge about the behavior patterns of the
program may help, which is out of the scope of this paper.
In our experiment, we encountered only one such program,
reduction. We did not give special treatment to it. The
results in Section 6 show that even though the sampling
method finds only suboptimal configurations for some pro-
grams, the overall benefits are still substantial, confirming
the value of the SM-centric transformation.

5.2 Affinity-Based Scheduling

To implement the affinity-based scheduling, we model the
scheduling problem as a graph partitioning problem. The
modeling consists of two steps: graph construction and graph
partitioning.

Graph Construction.

This step establishes a set of graphs named affinity graphs,
in which, each vertex represents a job chunk and each edge
weight represents the affinity score between two job chunks.
Affinity score is defined as follows. Let Si and S2 be the

set of data blocks assessed by two job chunks J; and Js
[S1ns2|
[STUS?|
between two vertices when their affinity score is less than

a threshold (0.05 in our experiment). If the affinity score
is too small, there is only a small amount of data sharing
and its effects on performance is negligible; ignoring them
often breaks one affinity graph into multiple smaller graphs,
allowing efficient graph partitioning in the next step.
Compiler techniques exist for analyzing working sets [35]
for regular applications. On irregular applications, it is chal-
lenging as data access patterns may be unknown until run
time. Runtime inspection techniques have been proposed to
analyze data access patterns [27]. For GPU programs, prior
work has shown the feasibility to employ CPU to implement

respectively. Their affinity score is There is no edge
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the inspection asynchronously when the GPU is executing
the kernel [45]. In this work, we used simple synchronous
parallel inspection for irregular programs. But the asyn-
chronous method may further reduce the overhead.

Graph Partitioning.

Given M SMs, this step partitions the set of vertices into
M equal-size clusters. The job chunks corresponding to
a cluster are scheduled to one single SM. This problem is
known to be NP-hard. There are some existing heuristic
algorithms, but we find them costly. Instead, we design a
random, lightweight and highly parallelizable algorithm. Its
basic idea is to select a seed vertex for each cluster and greed-
ily enlarge each cluster to include the vertices that have high
affinity scores with the selected vertices. The algorithm has
three steps. (1) Seeds selection. Selecting the seed vertices
is important for the partitioning quality; we try to minimize
the affinity among them. The initial seed set is formed by
randomly selecting a vertex from each of the affinity graphs.
If the number of affinity graphs is no less than M, only M
of them are randomly selected. If there are less than M
seeds in the set, we iterate over the remaining vertices un-
til we find one, whose affinity scores with all current seeds
are smaller than a threshold (initialized to 0) and add it to
the seed set. This step stops once we get M seeds. After
iterating all vertices if we still need more seeds, we increase
the threshold by 0.1 and start the next round of search. Ten
rounds are needed at most as the threshold would grow to
1, the largest possible affinity score. In practice, we have
not seen the need for more than 1 round. After the seeds
selection, we have M clusters, each containing 1 vertex. (2)
Sorted lists construction. For each seed vertex T;, we cre-
ate a descending list of all the vertices that fall into the
same affinity graph as T;. (3) Cluster enlargement. This
step repetitively iterates through all clusters until all ver-
tices are partitioned. In each iteration, it randomly selects
a vertex from the current cluster, and includes the vertex
that, among all remaining vertices, has the largest affinity
score with this vertex, which can be determined in constant
time with the sorted lists produced in step 2.

In our implementation, this graph partitioning happens
in parallel on CPU. Its time complexity, in the worst case
when all vertices fall into one graph, is O(N?logN) (N for
number of job chunks). But in practice, as graphs are never
very large, the algorithm terminates quickly shown in the
next section.

6. EVALUATIONS

We focus our experiments on answering the following main
questions:

(1) How much potential does spatial scheduling enabled by
SM-centric transformation have?

(2) How much overhead does SM-centric transformation have?
(3) How much benefit can it bring in practice with the simple
support outlined in the previous section?

To that end, we implement the two use cases of SM-centric
transformation as described in Section 4: One is SM parti-
tion for multi-kernel co-runs, and the other is affinity-based
scheduling for single-kernel runs. The implementation inte-
grates the solutions described in Section 5. For comparison,
we also implement the persistent threads with the best ef-
forts to support these two use cases.



6.1 Methodology

Benchmarks.

Given that the focus of our use cases are on enhancing
memory performance, we need a set of memory intensive
programs for the validation. Meanwhile, for a comprehen-
sive assessment of the applicability of our techniques, the
benchmark set should consist of programs of a broad range
of domains, and have a good coverage of both regular and
irregular programs. For these reasons, we select nine bench-
marks to form our test set. As Table 1 shows, these programs
come from four benchmark suites, cover a broad set of do-
mains, and include a similar number of regular and irregular
programs. Those irregular benchmarks impose special chal-
lenges for GPGPU optimization, and have drawn a lot of
attention from the community recently [6,24,29, 30,43, 45].

We give a brief description for these benchmarks. IRREG
(a partial differential solver kernel) and NBF (a molecular
dynamics kernel) were rewritten to CUDA from C bench-
marks [15]. These two benchmarks were studied heavily
by previous work [11,14,39,42]. MD and SPMV are both
from the SHOC benchmark suite developed by Oak Ridge
National Laboratory [10]. CFD from Rodinia benchmark
suite [7] simulates fluid dynamics. MM and REDUCE taken

from the CUDA SDK samples represent two compute-intensive

applications used widely in real-world. We also take NN and
PF from the popular Rodinia benchmark suite for a broader
coverage.

Co-runs of Kernels.

As current GPUs cannot support the co-existence of two
different contexts yet, following prior work [33], we combine
two programs into one and use two separate CUDA streams
to execute the kernels of the two original programs. Since
which kernels run together depends on the practical context,
we co-run each pair of the benchmarks for a comprehensive
coverage. We use two metrics, System Throughput (STP)
and Average Normalized Turnaround Time (ANTT), pro-
posed in [12] and used in [33]. STP shows overall throughput
of the whole system, and ANTT shows programs’ respon-
siveness. We measure the execution time of kernel execu-
tions and the extra overhead introduced by the transforma-
tion (if any) for the calculation of STP and ANTT. Since we
are only interested in the overlapped execution, we modify
the approach proposed by Tuck and Tullsen [40] and im-
mediately invoke a kernel after it finishes until both kernels
are invoked at least 7 times. The last instance of the kernel
invocation that finishes later than the other co-run kernel is
discarded, because the execution of the last instance of the
kernel invocation is not fully overlapped.

Versions based on Persistent Threads.

We compare SM-centric transformation with persistent
threads using both SM partition and affinity-based schedul-
ing. As aforementioned, persistent threads by itself can-
not directly dictate mappings between jobs and SMs. But
with careful designs, it could still support SM partition and
affinity-based scheduling, although the support is very lim-
ited and requires an awkward implementation. Our specific
implementations are as follows.

For SM partition between two co-running kernels, we gen-
erate N1(1 < N1 < M) persistent CTAs for kernel 1, and
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(M — Nip) persistent CTAs for kernel 2 (where M is the
number of SMs in the GPU). In this way, if the hardware
scheduler happens to assign one CTA onto each SM, the
two kernels would run on different sets of SMs, and the SM
partition is materialized. Given that an even distribution is
not guaranteed by hardware schedulers, in our experiments,
we repeat the experiments many times and use only the re-
sults when the distribution happens to be even (performance
under uneven distributions is much worse as some SMs are
left idle). In order to maintain a good amount of paral-
lelism, each CTA is set to the largest allowable size for the
particular kernel, as prior usage of persistent threads often
does [9,44]. Our experiments enumerate all possible parti-
tions (i.e., all values of Ni), and the best performance in
these settings is used to compare with the performance of
SM-centric transformation results.

We employ a similar idea to let persistent threads support
affinity-based scheduling of single-kernel runs. The launch of
a kernel creates M (i.e., number of SMs) persistent CTAs.
We again use the performance measured only in the runs
where the CTAs are evenly distributed on the SMs. When
creating the job queue for a persistent CTA, we try to put
into the queue the jobs from the same affinity group as iden-
tified with the method in Section 5.2. We again make each
persistent CTA as large as allowed such that the maximum
number of jobs from the CTA queue could get concurrently
executed by the CTA. This method, in effect, makes the
jobs run concurrently on the same SM, just as what affinity-
based scheduling aims to achieve—but only to a limited de-
gree, subject to the number of jobs a CTA can concurrently
execute.

Machine Environment.

We run all workloads on an NVIDIA M2075 GPU with
CUDA runtime 4.2, compiled by NVCC with the highest
optimization level. The host machine has an Intel 8-core
Xeon X5672 CPU and 48 GB main memory and runs 64-
bit Redhat enterprise 6.2. Without notice, each reported
timing result is an average of 10 repeated measurements,
and includes all overhead incurred by the transformed code.

6.2 Results in Co-Runs

Figure 3 shows the speedup in terms of ANTT brought
by the optimized co-runs respectively supported with SM-
centric transformation and persistent threads. The baseline
is the traditional and default way to concurrently execute
the original kernels. The speedup is defined as the ratio
of the optimized ANTT to the original ANTT. “SMC Pre-
dicted” and “SMC Optimal” represent the speedups from
the SM-centric transformation with, respectively, the pa-
rameters predicted by the online model and the best param-
eters found through offline exhaustive search. We observe
the potential speedup because of SM-centric transformation
1.36X. Our prediction model successfully exploits most of
the potential by providing 1.33X speedup on average. Three
co-runs benefit from the SM-centric transformation substan-
tially with a potential of more than 1.8X speedup. The re-
sults validate that SM-centric transformation with the pre-
diction model better exploits the SM and cache resources
than the default co-runs. We also observe that the improve-
ment of ANTTSs varies across benchmarks. In some cases
(e.g., the co-run of mm and reduce), the optimized co-runs
have around 2% slowdown. There are two plausible rea-



Table 1|: Benchmarks

[ Benchmark | Source Description [ Irregular |
irreg Maryland [15] partial diff. solver Y
nbf Maryland [15] force field Y
md SHOC [10 molecular dynamics Y
spmv SHOC [10 sparse matrix vector multi. Y
cfd Rodinia [7 finite volume solver Y
nn Rodinia [7 nearest neighbor N
pf Rodinia [7 dynamic programming N
mm CUDA SDK [31] | dense matrix multiplication N
reduce CUDASDK [31] reduction N
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Figure 3: Speedup of average normalized turnaround time.

sons. First, the kernels already have good scalability and
hence reducing the number of SMs allocated to them sig-
nificantly degrades their performance. Second, since those
kernels efficiently use shared memory, they do not heavily
rely on L1 cache’s performance. For example, when MM'’s
thread blocks size is 256, one matrix element is reused 16
times after being loaded into shared memory.

Persistent threads perform much worse than SM-centric
transformation. Its best partition leads to more than 50%
ANTT degradation for 3 co-run programs. On average, we
observe 17% slowdown. The main reason comes from the
rigid control of parallelism in persistent threads. As the
previous subsection describes, without the capability for a
direct control of the job-to-SM mapping, the design of per-
sistent threads support is subject to some restrictions on the
number of a CTAs and their size, which cause suboptimal
performance on the kernels.

Figure 4 provides the results on system throughput. The
baseline is of the same case in Figure 3. SM-centric transfor-
mation offers up to 71% (an average of 37%) improvement
on STP. The predicted configurations exploit the potential
well by providing an average improvement of 33%. We did
not observe any throughput degradation for the optimized
co-runs, but some co-runs (e.g., cfd and mm) have trivial
throughput improvement due to the same reasons as ex-
plained for the worsened ANTTs. As known [12], ANTT
and STP measure different aspects of a co-run execution; a
better ANTT does not always mean a better STP. For in-
stance, the co-run of reduce and pf has the largest ANTT
speedup of 2.3X, but its STP improvement is below the av-
erage.

Different from the results on ANTT, persistent threads
produce an average of 11% STP improvement. The influence
of persistent threads on ANTT varies greatly across co-run
programs, yielding results between 63% slowdown and 64%
improvement. As explained for the increased ANTT, We
observe non-trivial throughput loss for some programs be-
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cause of the suboptimal level of parallelism. Overall, the
results showed that SM-centric transformation is a much
better choice for SM partitioning than persistent threads.
The SM-centric results also indicate that the simple method

for predicting configurations outlined in Section 5.1 is suf-
ficient for SM-centric transformation to effectively support
SM partition. To get a direct measure of the method’s effec-
tiveness, we report in Figure 5 its accuracy in predicting the
suitable configurations. The percentage on the X axis shows
the accuracy requirement of the predicted configuration. To
be more specific, P% means that the predicted configuration
outperforms at least N x (1 — P%) configurations, where
N(N = 36 in this evaluation) is the total number of config-
urations. The bar height shows the percentage of co-runs
whose predicted configuration satisfies the accuracy require-
ment. So the bars on the right should be higher than the
bars on the left, because a larger percentage on the X axis
indicates a more relaxed requirement. For ANTT, when the
accuracy requirement is 1%, 63% of co-runs satisfy it. Note
that 1% is a harsh requirement, as only the optimal con-
figuration can satisfy it in a limited configuration space. If
we relax the requirement to 2%, 83% of co-runs satisfy it,
showing a high prediction accuracy. When the requirement
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is 16%, we notice that the predicted configuration of every
co-run satisfies the requirement. For STP, the prediction
accuracy is a bit lower, but over 90% of co-runs satisfy the
accuracy requirement of 4%. The results echo our improve-
ment on ANTT and STP and show that a simple online
model suffices to yield reasonably good configurations.

6.3 Results in Single-Kernel Runs

We also evaluate persistent threads and SM-centric trans-
formations on single-kernel runs. We consider 4 programs
(md, irreg, cfd and nbf), as they show a significant level
of non-uniform data sharing and rely heavily on the data
cache’s performance due to their irregular memory access
pattern.

Figure 6 provides the speedup results for single-kernel
runs of four benchmarks over the original code. Without
affinity-based scheduling, persistent threads suffer from in-
sufficient parallelism and produce 22% performance degra-
dation. Affinity-based scheduling improves its performance
and reduces the average degradation to 15%. The results
indicate that persistent threads, unlike SM-centric trans-
formation, fails to achieve a good balance between paral-
lelism and locality: Keeping one active thread block on each
SM enables scheduling jobs with lots of data sharing to one
SM, but due to the limitation of the block size, does not
have enough concurrent active threads to fully explore the
computing power. On the contrary, SM-centric transforma-
tion’s precise control enables us to find a better trade-off
between parallelism and locality, leading to an average of
21% speedup.

Figure 7 shows the L1 cache performance improvement
obtained through CUDA hardware performance monitors.
The reduction of the cache miss ratios shows the trends
largely aligning with the speedup trends. It confirms that L1
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cache performance is critical to irregular applications, and
the parallelism control and affinity-based scheduling enabled
by SM-centric transformation exploit L1 data cache more ef-
fectively than the default scheduling does. CFD is an excep-
tion, on which, the SM-centric approach performs less well
than the persistent threads with affinity-based scheduling.
A plausible reason is the effects of warp scheduling, which is
out of the control of SM-centric scheduling but could some-
times affect the cache performance substantially.

6.4 Overhead from the SM-centric Transfor-
mation

SM-centric transformation adds extra code to the kernels.
To quantify the overhead, for each benchmark we run the
transformed kernel (with the same number of active threads
as the default runs of the original kernels have) but without
affinity-based scheduling, whose execution time is denoted
as Tirans. The overhead is defined as (Tirans — Torg)/Torg,
where Torg is the execution time of the original kernel. Fig-
ure 8 provides the overhead results. We notice that the over-
head can be non-trivial for some benchmarks (e.g., 6.5% for
pf) due to two reasons. First, the transformation introduces
atomic operations and extra memory accesses to obtain the
mapping decision data. Second, the aggregation (i.e., the
enhanced version of the transformation) introduces a loop,
which does not exist in the original kernels. On average, the
overhead from the transformation is 2.8%, but as the previ-
ous results show, the overhead is substantially outweighed
by the overall benefits.

7. DISCUSSION

Currently, the SM-centric optimization works only on CUDA
programs. The reason is that other GPU programming mod-
els, such as OpenCL, do not yet support run-time retrieval of
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compute unit identifier. It is our hope that with the evidence
provided in this work, OpenCL community will add such a
functionality in the near future. Once OpenCL provides a
similar interface, the proposed optimization techniques can
be easily extended to cover OpenCL programs.

OpenCL has introduced the concept of sub-device, in or-
der to allow partitions of computing units by wrapping a
subset of computing unites into a sub-device. It is however
supported on only multicore CPUs. Moreover, the partition-
ing is at the level of OpenCL kernels or applications rather
than threads, making it hard to use to manage scheduling
of threads or tasks within the same kernel (e.g., the affinity-
based scheduling mentioned in Section 4). SM-centric trans-
formation offers a simple, unified solution that supports both
scheduling and resource partition, and is ready to use on all
GPUs that allows SM ID retrieval.

Although it might be risky to say that future GPUs will

never offer interface to allow software control of thread schedul-

ing, there is no evidence showing that such support is com-
ing anytime soon. As a simple pure-software solution that
requires no extra hardware cost and complexity, the SM-
centric method has its special appeal and practical value.
The job selection component determines the job-to-SM
mapping before the kernel is invoked. This fixed mapping
could incur load-unbalance due to the non-uniformity in SM
processing capability and jobs. It is possible to detect the
load-unbalance during the sampling phase. The framework
can then invoke the original kernel if load-unbalance hap-
pens. Some kernels may change dramatically across invo-
cations in terms of execution time and memory access in-
tensity, creating challenges to sampling-based approaches.

Combination with program phase detection and prediction [36,

37] could help address such complexities.

8. RELATED WORK

Prior software methods for task scheduling on GPU mainly
concentrate on persistent threads with either static or dy-
namic (e.g., job stealing) partition of task sets [3,9,13, 38,
41,44]. As aforementioned, although persistent threads and
task queues together facilitate task scheduling to a certain
degree, they cannot precisely control which tasks run on
which SM. It is because tasks are assigned to threads rather
than SMs, and the mapping between threads and SMs is
determined by hardware (with randomness). As our experi-
ments have shown, for the precise control of task assignment
to SMs, the SM-centric transformation offers new opportu-
nities for enhancing data locality and multi-kernel co-run
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performance, outperforming persistent threads-based opti-
mizations significantly.

There are some studies on changing hardware schedulers
for performance, such as the large warp architecture by
Narasiman and others [28], the two-level warp scheduler by
Jog and his colleagues [18,19], and the thread block sched-
uler by Kayiran and others [20]. The SM-centric scheduling
is a software solution to the restrictions of hardware sched-
ulers, orthogonal to these hardware approaches. There are
some software scheduling works published before, the focus
of which have been dealing with the load balance between
CPUs and GPUs through task scheduling [4, 26].

Recent years have seen an increasing interest in support-
ing concurrent executions of GPU kernels. Pai et al. [33] ob-
served significant resource under-utilization during concur-
rent kernel executions. They proposed elastic kernels to bal-
ance resource usage among concurrent kernels through fine-
grained resource control. According to the authors of elastic
kernels, the technique does not control SM partitions, and
cannot be applied to kernels that use shared memory [33].
The spatial scheduling enabled in this work is complemen-
tary to elastic kernels, in the sense that it is not subject to
the shared-memory limitation, and it improves co-run per-
formance from a different angle, spatial scheduling. These
two techniques can be used together. Adriaens and oth-
ers [2] proposed hardware extensions to partition SMs to
different applications for more efficient resource utilization,
and evaluated it on a simulator. Zhong and He [48] proposed
a runtime system, named Kernelet, which slices kernels into
sub-kernels and schedule them for better resource control.
It does not enable spatial scheduling of the GPU. CTA ag-
gregation itself is not new. Earlier work has used a similar
idea to control resources a kernel uses [33]. It is for the first
time used for supporting spatial scheduling.

Many studies have been proposed to improve GPU mem-
ory performance, including data placement in memory [§]
or on chip [23], streamlining irregular memory accesses or
control flows at runtime [43,45,46], bypassing L1 cache [17]
and so on. The precise control of task-SM affinity enabled
by SM-centric transformation opens new opportunities, as
illustrated by the affinity-based scheduling.

9. CONCLUSION

This paper presents SM-centric transformation, a simple
method that for the first time offers a systematic solution
to enable program-level spatial scheduling on the GPU. It
reveals the potential of the enabled scheduling control for
executions of both single-kernel runs and multi-kernel co-
runs. It lists some main challenges for leveraging spatial
scheduling on the GPU, and develops a set of practical so-
lutions. It opens up opportunities for leveraging scheduling
for optimizing GPU executions.
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