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Abstract—Modern GPUs feature complex memory system designs. One GPU may contain many types of memory of different

properties. The best way to place data in memory is sensitive to many factors (e.g., program inputs, architectures), making portable

optimizations of GPU data placement a difficult challenge. PORPLE is a recently proposed method that overcomes the difficulties by

enabling online optimizations of data placement through a three-way synergy: a specification language for memory system description,

a compiler framework for data access analysis and code staging, and a runtime library for efficiently finding and materializing data

placement on the fly. This article provides a comprehensive description of this method, and presents several extensions that

significantly improve the scalability of PORPLE, which include a novel algorithm design for efficiently searching for the best data

placements, the use of active profiling for reducing the online-profiling overhead, and a systematic examination of a path-based

performance model. By automatically tailoring data placements for each execution of a GPU program, the enhanced PORPLE brings

significant speedups (1.72X on average) to many GPU kernels across GPU architectures and program inputs.

Index Terms—GPU, memory performance, cache, compiler, data placement, hardware specification language

Ç

1 INTRODUCTION

WITH its massive parallelism and tremendous comput-
ing power, Graphic Processing Units (GPU) have

received a rapid adoption in modern computing. To meet
the ever growing demands for data by the large number of
computing units, modern memory systems become com-
plex, sophisticated, and heterogeneous. One memory sys-
tem often consists of a number of components, which each
have some different properties (e.g., access bandwidth,
access latency, endurance, memory organization, preferable
access patterns, and programming paradigms). For exam-
ple, on an NVIDIA Kepler GPU, there are more than eight
types of memories (global, texture, shared, constant, and
various caches), with some on-chip, some off-chip, some
directly manageable by software, and some not. Even for a
single type of memory, there are often several ways to
access it with different performance implications (e.g., some
going through cache, some not, some enjoying 2-D locality,
some not). Emerging memory technologies (e.g., 3D stacked
memory, non-volatile memory) may further increase the
variety of memory components in a future memory system.

The sophisticated design of memory systems is a double-
edged sword. Studies have shown that finding the suitable
kinds (or pieces) of memory to place data—called the data
placement problem—can significantly improve, sometimes

double, the performance of some already manually opti-
mized programs [1], [2], [3]. On the other hand, the com-
plexity and fast evolvement of such memory systems make
the potential difficult to tap into. Recent studies show that
many memory-intensive GPU applications carefully written
by developers cannot yet reach half of the performance that
they could achieve with a better memory usage [1], [2]. Yet,
manual efforts have been what existing programming sys-
tems (e.g., CUDA, OpenCL) all require. The urgency for
addressing the issue is likely to increase even more as
emerging memory technologies (e.g., Non-volatile memory,
3D stacked memory) add more kinds of components and
complexities into future memory systems.

Prior efforts for solving the problem have concentrated
on two directions. The first is offline auto-tuning, which
tries many different placements and measures the perfor-
mance on some training runs [4]. This approach is time-con-
suming, and cannot easily adapt to the changes in program
inputs or memory systems. The second is to use some high-
level rules derived empirically from many executions on a
GPU [1]. These rules are straightforward, but as shown later
in this paper, they often fail to produce suitable placements,
and their effectiveness degrades further when GPUmemory
systems evolve across generations of GPU.

This paper presents PORPLE, a portable data placement
engine that enables a portable and extensible way to solve the
data placement problem. A key feature of PORPLE is its strat-
egy of lazy placement: It finds and realizes the appropriate data
placement during the execution time of the program in ques-
tion; when necessary, it postpones the recognition of data
access patterns of the program to the execution time as well.
The lazinessmakes it possible to recognize the input-sensitive
attributes of data accesses (e.g., patterns, sizes) and finds
the placements suiting the current execution by matching
up those attributes with the properties of underlying
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architecture. The unique design gives PORPLE some impor-
tant properties, making its data placement automatically
adapt to both program input changes and architectural differ-
ences. It also grants PORPLE a broad applicability, making it
able to handle both regular (e.g., with affinememory accesses)
and irregular programs (e.g., with indirectmemory accesses).

The appealing properties come from the support offered by
a set of techniques. As shown in Fig. 1, at a high level, PORPLE
contains three key components: a specification language MSL
for providing memory specifications, a compiler PORPLE-C
for revealing the data access patterns of the program and stag-
ing the code for runtime adaptation, and an online data place-
ment engine Placer that consumes the specifications and
access patterns to find the best data placements at runtime.

Memory specification language (MSL), is a carefully
designed small specification language. It provides a simple,
uniform way to specify a type of memory and its relations
with other pieces of memory in a system. It features a
“serialization condition” construct that allows a systematic
specification of all the special properties of the various types
of GPU memory. With this design, extending the language
coverage to include a new memory system can be achieved
by simply adding a new entry into the MSL specification.

PORPLE-C is a source-to-source compiler, which ana-
lyzes program data access patterns, and transforms a GPU
program into a placement-agnostic form such that it can work
with an arbitrary data placement decided by the data place-
ment engine at runtime. The form is equipped with some
guarding statements. Executions of the program can auto-
matically select the appropriate version of code to access
data according to the current data placement.

Placer is the runtime engine of PORPLE, embodied by a
set of library functions inserted into the target program by
PORPLE-C. It features a lightweight bandwidth-centric per-
formance model, useful for efficiently assess the profits of
candidate placements. It includes a hybrid, extensible search
module to support effective and scalable search for appropri-
ate data placements on the fly. It uses online profiling to find
out the data access patterns of irregular programs, and
employs active learning tominimize the overhead.

Together, these techniques make PORPLE an extensible
data placement engine, offering a general solution to GPU
data placement. It adapts to inputs and memory systems; it
allows easy extension to new memory systems; it requires
no offline training; in most cases, it optimizes data place-
ment transparently (i.e., with no need for manual code mod-
ification). In exceptional cases where automatic code
transformation is difficult to do, it is still able to offer sug-
gestions for code refactoring. Our experiments on three gen-
erations of GPU show that POPRLE successfully finds
optimal or near-optimal data placement across inputs and

architectures, yielding up to 2.63X (1.72X on average) speed-
ups on a set of regular and irregular GPU benchmarks, out-
performing a rule-based method [1] significantly.

Some features of PORPLE have been described in two
earlier papers [2], [3]. This article provides a more complete
description, including three new extensions that signifi-
cantly improve the scalability and efficiency of PORPLE:
(1) It replaces the previous memory latency-centric perfor-
mance model with a path-based performance model
(Section 3.1). Even though the new model was briefly men-
tioned in a 5-page magazine version [3], this paper gives the
first comprehensive description and evaluation. (2) It com-
plements the branch-and-bound search algorithm with a
greedy algorithm to make the search scalable (Section 3.2).
(3) It introduces active learning into the online profiling
process to significantly reduce the profiling overhead
(Section 3.3). The evaluation section (Section 5) presents the
results after the framework gets extended with the three
techniques, and added a study on the scalability of the tech-
nique (Section 5.3.4) on two kernels from a real-world large
application containing many arrays.

In the following, we present each of the major compo-
nents of PORPLE and then report the experimental results.

2 MSL: SPECIFICATION FOR EXTENSIBILITY

An important feature of PORPLE is that it is easy to extend
to new memory systems. We achieve this feature by MSL.

MSL is a small language designed to provide an interface
for compilers to understand a memory system. Fig. 2 shows
its keywords, operators, and syntax written in Backus–Naur
Form (BNF). An MSL specification contains one entry for
processor and a list of entries for memory. We call each
entry a spec. The processor entry shows the composition of a
die, and an SM.

Each memory spec corresponds to one type of memory,
indicating the name of the memory (started with letters)

Fig. 1. High-level structure of PORPLE.

Fig. 2. Syntax of MSL with some token rules omitted.
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and a unique ID (in numbers) for thememory. The name and
ID could be used interchangeably; having both is for conven-
iences. The field “swmng” is for indicating whether the
memory is software manageable. The data placement engine
can explicitly put a data array onto a software manageable
memory (versus hardware managed cache for instance). The
field “rw” indicates whether a GPU kernel can read or write
the memory. The field “dim” is designed for memory that
manifest different properties when the array has a different
dimension (e.g., texture memory). If it is not “?”, the spec
entry is applicable only when the array dimensionality
equals to the value of “dim”. The field after “dim” indicates
memory size. Because a GPU memory typically consists of a
number of equal-sized blocks or banks, “blockSize” (which
could be multi-dimensional) and the number of banks are
next two fields in a spec. The next field afterwards describes
memory access latency. To accommodate access latency dif-
ference between read and write operations, the spec allows
the use of a tuple to indicate both. We use “upperLevels”
and “lowerLevels” to indicate memory hierarchy; they con-
tain the names or IDs of the memories that sit above (i.e.,
closer to computing units) or below the memory of interest.
The “shareScope” field indicates in what scope the memory
is shared. For instance, “sm” means that a piece of the mem-
ory is shared by all cores on a streamingmultiprocessor.

The “concurrencyFactor” is a field that indicates parallel
transactions a memory (e.g., global memory and texture
memory) may support for a GPU kernel. Its inverse is the
average number of memory transactions that are serviced
concurrently for a GPU kernel. As shown in previous stud-
ies [5], such a factor depends on not only memory organiza-
tion and architecture, but also kernel characterization. MSL
broadly characterizes GPU kernels into compute-intensive
and memory-intensive, and allows the “concurrencyFactor”
field to be a tuple containing two elements, respectively cor-
responding to the values for memory-intensive and com-
pute-intensive kernels. We provide more explanation of

“concurrencyFactor” through an example later in this sec-
tion, and explain how it is used in the next section.

GPU memories often have some special properties. For
instance, shared memory has an important feature called
bank conflict: When two accesses to the same bank of shared
memory happen, they have to be served serially. But on the
other hand, for global memory, two accesses by the same
warp could be coalesced into one memory transaction if
their target memory addresses belong to the same segment.
While for texture memory, accesses can benefit from 2-D
locality, constant memory has a much stricter requirement:
The accesses must be to the same address, otherwise, they
have to be fetched one after another.

How to allow a simple expression of all these various
properties is a challenge for the design of MSL. We address
it based on an insight that all these special constraints are
essentially about the conditions for multiple concurrent
accesses to a memory to get serialized. Accordingly, MSL
introduces a field “serialCondition” that allows the usage of
simple logical expressions to express all those special prop-
erties. Fig. 3 shows example expressions for some types of
GPU memory. Such an expression must start with a key-
word indicating whether the condition is about two accesses
by threads in a warp or a thread block or a grid, which is fol-
lowed with a relational expression on the two addresses. It
also uses some keywords to represent data accessed by two
threads: index1 and index2 stand for two indices of elements
in an array, address1 and address2 for addresses, and word1
and word2 for the starting addresses of the corresponding
words (by default, a word is 4-byte long). For instance, the
expression for shared memory, “block{word16¼word2 &&
word1%banks==word2%banks}”, claims that when the
words accessed by two threads in the same thread block are
different and fall onto the same bank (which is a bank con-
flict), the two accesses get serialized. The expression for con-
stant memory claims that if two threads in a warp access the
same address, one memory transaction is enough (because
of the broadcasting mechanism of constant memory); they
however get serialized otherwise. This simple way of
expression makes it possible for other components of POR-
PLE to easily leverage the features of the various memory to
find good data placements as next section shows.

Fig. 4 shows the exerted MSL specification for Tesla
M2075. Three special notations “?”, “om”, and “na” are used
for unknown, inferrable, or not applicable info. For instance,
L2 has “om” in its upperLevels field as it is inferrable from

Fig. 3. Example serialization conditions in MSL.

Fig. 4. Memory specification of Tesla M2075 in MSL (“?”: unknown; “om”: ommitted, inferrable from other entries; “na”: not applicable).
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other spec entries. In this example, the concurrency factors of
global and texture memory are set to 0.1 for memory-
intensive GPU kernels and 0.5 for compute-intensive GPU
kernels (based on a prior performance model [5]). IPC in the
profiling phase can be used to tell the two types of kernels
apart. The compiler uses some default values for unknown
(i.e., “?”) fields; currently, three fields could be unknown:
banks, dimension, and concurrency factor.

MSL simplifies porting of GPU programs. For a new
GPU, given the MSL specification for its memory system,
the PORPLE placer could help determine the appropriate
data placements accordingly.

Architects or users could find out the parameters of mem-
ory from manuals, or through detection microkernels. POR-
PLE has a collection of microkernels which users can use to
detect some latency parameters, which are similar to those
used in prior studies [6], [7]. Users can add more of such
microkernels into the library of PORPLE. PORPLE is
equipped with a Graphic User Interface (GUI) for users to
enter the memory parameters and organizations with ease,
fromwhich,MSL specifications are automatically generated.

3 PLACER: PERFORMANCE MODELING AND

PLACEMENT SEARCH

The Placer in PORPLE has three components: one for assess-
ment of the quality of a data placement plan for a kernel,
one for search for the best placement plan, and one for
online profiling. (Here, a placement plan indicates on which
software manageable memory each of the arrays in a kernel
is put.) We next explain each of the three components.

3.1 Lightweight Performance Modeling

The first component of the Placer is a performance model,
through which, for a given data placement plan and data
access patterns (or traces), the Placer can estimate the mem-
ory throughput, and hence assess the quality of the plan.

To that end, the Placer tries to determine the number of
transactions needed by all the accesses to each array under
a given data placement plan. It is simple if there is no mem-
ory hierarchy: Based on the data access patterns and the
serialization conditions, the Placer can directly compute the
number of required transactions. But when there is a mem-
ory hierarchy, the Placer has to determine at which level of
memory a request can be satisfied. We use the model of
reuse distance to address the problem, thanks to its special
appeal for quick estimation of cache performance—POR-
PLE has to conduct many such estimations at runtime to
search for the appropriate data placement.

3.1.1 Reuse Distance Models

Reuse distance is a classical way to characterize data local-
ity [8]. The reuse distance of an access A is defined as the
number of distinct data items accessed between A and a
prior access to the same data item as accessed by A. For
example, the reuse distance of the second access to “b” in a
trace “b a c c b” is two because two distinct data elements “a”
and “c” are accessed between the two accesses to “b”. If the
reuse distance is no smaller than the cache size, enough data
have been brought into cache such that A is a cache miss.
Prior studies have shown that that relation is effective for
estimatingmiss rates even for set-associative caches [9], [10].

What PORPLE builds, from the data access patterns of an
array, is a reuse distance histogram, which records the per-
centage of data accesses whose reuse distances fall into each
of a series of distance ranges. Cache miss rates can then be
estimated as the sum of the heights of all the bars appearing
on the right-hand side of the cache size in the histogram.
When multiple arrays share a single cache, we consider that
each of the arrays gets an equal portion of the cache. The
approach is not very precise, but is simple and efficient and
has been shown to work reasonably well in prior practi-
ces [11]. In one run of a GPU program, PORPLE only needs
to construct the histogram for a GPU kernel once, which can
be used for many times in that run for estimating cache per-
formance of all possible data placements during the search
by PORPLE. With cache miss rates estimated, PORPLE can
then tell the portions of accesses to an array that get a hit at
each level of a memory hierarchy.

Our construction of reuse distance histograms follows the
prior mature techniques, from affine reference patterns [12],
and reference traces [13] for irregular accesses. Construction
from a trace has a near-linear time complexity [13]; construc-
tion from a pattern is even faster. Overall, the time overhead
is only a small portion of the online profiling process. The
collection of the trace could take some time, which will be
discussed in the online profiling part in Section 3.3.

3.1.2 Assessment of Placement Quality

After figuring out what and how many accesses happen on
each type of memory, PORPLE converts the numbers into
the numbers of transactions by examining the access pat-
terns with the serialization conditions of the memory. Let
Nij be the number of memory transactions of array i that
happen on memory whose ID equals j. Based on Nij, POR-
PLE can assess the quality of the data placement plan
through a performance model.

Unlike prior heavyweight models [5], [14], [15] that focus
on accuracy, PORPLE introduces a light performance model
easy to build and quick to use, important for online usage.
The model is path-based. It estimates the amount of time
taken by data transfers over each of the data transfer paths in
the system. On NVIDIA Kepler GPUs, for instance, there are
three data transfer paths: one between a core and the global
memory, one between a core and the texture memory, and
one between a core and the constant memory. Note that the
first also covers accesses between a core and the sharedmem-
ory since those transfers take a part of that first path. Similarly,
the second also covers accesses to and from the read-only
cache. Because the three paths transfer data concurrently, the
performancemodel uses themaximumof the times estimated
on those paths to assess the quality of a data placement.

Specifically, let P be the set of paths, AðpÞ be the set of
arrays whose accesses take path p, Nij be the number of
memory transactions of array i that happen on memory
whose ID equals j, PORPLE assesses the quality (denoted as
T ) of a data placement plan through the following perfor-
mance model:

T ¼ maxp2PT ðpÞ;
T ðpÞ ¼

X
i2AðpÞ

X
j2memHierðiÞNij � Tj � aj:
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The second formula computes the total time taken by data
accesses through one of the paths. The inner summation esti-
mates the total time that accesses to array i incur and the outer
summation sums across all arrays going through path p. In the
formula,memHierðiÞ is thememory hierarchy that accesses to
array i go through and Tj is the latency of a memory transac-
tion on memory j. The parameter aj is the concurrency factor
of the memory, which takes into account that multiple mem-
ory transactions may be served concurrently. For instance,
multiple memory transactions can be served concurrently on
the global and texture memory (hence for them, 0 < aj < 1),
while only one memory transaction on the constant memory
(aj ¼ 1). The values of concurrency factor are given in the
MSL specification; in our experiments, we use 1 for constant
memory and 0.2 for other types of memory. That comes from
some empirical studies. On particlefilter and bfskernels run-
ning on Tesla K20c, for instance, when the factor value is fixed
to 1 for the constant memory, PORPLE selects different data
placements as the concurrency factor value changes from 0 to
1 for the other types of memory. The speedups are 1.18X and
1.25X respectively when the factor value is between 0 and
0.12, 2.11X and 1.25Xwhen the value is between 0.12 and 0.15,
and 2.11X and 1.32X when the value is greater than 0.15. Our
experiments show that 0.2 gives the overall best results.

3.1.3 Discussion

We acknowledge that the memory performance model
could be more sophisticatedly designed. One factor that is
not fully considered is the overlapping between different
memory accesses and between a memory access and com-
putation. Such overlapping is especially common for GPU
thanks to its massive parallelism. However, we note that
the use of concurrency factor in the formula offers a simple
remedy to the limitation of our model. For instance, a
smaller value of the concurrency factor for memory-inten-
sive programs reflects the fact that more memory transac-
tions are likely to overlap in such program executions.

Although the remedy is rough, it suits the purpose of this
work by keeping the model simple and fast to use; more
sophisticated designs would easily add much more com-
plexity and overhead, hurting the runtime efficiency of
PORPLE and its practical applicability. In our experiments,
we find that the simple model works well in telling the rela-
tive quality among different data placement plans. The intu-
ition is that even though the model may not be accurate, it is
enough for ranking the quality of different data placements
in most of the time. Moreover, although the formula uses
latency but not memory bandwidth, GPU latency often cor-
relates with bandwidth: A memory with a low latency often
has a high bandwidth. In cases where latency ratio does not
correlate with bandwidth ratios, one could use different
concurrency factors (determined empirically) to capture the
different influence from the different bandwidths.

3.2 Search for Appropriate Placements

With the capability to determine the quality of an arbitrary
data placement plan, the Placer may find the best placement
by enumerating all possible plans. However, due to interfer-
ences of different arrays in cache, the inter-dependence of
arrays performance causes a combinatorially large plan
space. Better search algorithms are needed to do the search
efficiently.

In the current PORPLE, we implement a hybrid search
scheme. It consists of two search algorithms: the branch-
and-bound algorithm, and a greedy algorithm. The branch-
and-bound algorithm does a parallel depth-first search over
a tree. Each tree node represents one way to place an array,
and a path from the root to a leaf of the tree represents one
placement plan. By maintaining the minimum latency of all
visited plans, the algorithm may save some search time by
avoiding (part of) some unpromising paths. This algorithm
guarantees to find the placement that gives the best result
upon the performance model. However, its worst time com-
plexity is exponential to the number of arrays.

The greedy algorithm we propose offers a solution more
scalable than the branch-and-bound algorithm. The greedy
algorithm takes two heuristics to prioritize the types of
memory and data arrays in the placement process. The first
heuristic is related with the properties of constant memory
over texture memory. There are two scenarios in which con-
stant memory is a better choice than texture memory. The
first is when all threads in a warp access the same memory
location; the value of the location would be broadcast to all
those threads. The second is when too much contention
exists in the texture cache. By putting some arrays into the
constant memory, the contention gets reduced. Therefore,
one may give constant memory a higher priority than other
types of memory in the placement process. The second heu-
ristic is that different arrays differ in their optimization
potential, and hence one may prioritize the arrays in the
placement as well.

Procedure 1 outlines the greedy algorithm. Lines 2 and 3
place the appropriate arrays into constant memory. Lines 5
to 8 estimate the potential benefit of optimizing the place-
ment of each of the remaining arrays (ignoring shared cache
contention). Lines 9 to 12 then place those arrays one after
one in an descending order of their potential.

Procedure 1. Greedy Algorithm for Searching for
Appropriate Data Placements

1: //dxðAiÞ is the extra memory performance of array Ai (i.e.,
reduction of memory transactions) when it is placed on mem-
ory x (“c”,”t”,“s”,“r”) versus on global memory.

2: currState = NULL
3: Calculate dcðAiÞ for each array (c for constant memory).
4: Sort arrays in descending order of dcðAiÞ (the larger the

better), and place them into the constant memory until
full.

5: Update currState by indicating the placements
6: for each of the remaining arrays Ai do
7: Calculate dtðAiÞ, dsðAiÞ, drðAiÞ (t for texture mem; s for

shared mem; r for loading through read-only cache).
8: potential(Ai) =max(dtðAiÞ, dsðAiÞ, drðAiÞ)
9: end for
10: for each of the remaining arrays in a descending order of

potential do
11: Find the best placement of the array under currState;
12: Update currState by marking the placement
13: end for

3.3 Online Profiling

PORPLE does a lightweight on-line profiling, for two pur-
poses. The first is to find out array sizes, which is useful for
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the Placer to determine the best data placements. The sec-
ond is to complement the capability of the compiler in data
reference analysis. When PORPLE-C cannot find out the
data access patterns (e.g., on irregular programs), it tries to
derive a CPU profiling function that keeps the kernel’s data
access patterns. In cases when the automatic derivation
fails, it asks programmers to provide such a function. The
function comes with some recording instructions. When the
function is invoked at run time, these instructions generate
a data access trace, including whether a memory access is a
write or read, the array ID and element index, and the GPU
thread ID associated with that access.

The profiling happens on the host thread before the GPU
kernel gets invoked. Its overhead must be strictly con-
trolled. PORPLE uses two techniques to do so.

First, if the kernel contains a loop, the CPU function only
executes the first ten iterations. It is based on the assump-
tion that the truncated iteration space of the first thread
block is enough to provide a reasonable approximation of
the memory access pattern of the whole workload, which is
confirmed by the evaluation on a diverse set of benchmarks
in Section 5. We could additionally discard from the func-
tion the computations that are irrelevant to data accesses,
which is not yet implemented in PORPLE-C.

Second, we employ active learning to further reduce the
number of instructions to profile. The CPU function derived
from a GPU kernel adds an outmost loop to the kernel
body, with each iteration corresponding to the execution of
one GPU thread. Using active learning allows PORPLE to
profile only a small number of iterations of the loop while
still capturing the important access patterns.

Active learning is a technique from machine learning,
used for collecting new data points based on the current
observations. We use the technique to decide whether
we need to profile more iterations of the loop. As the online
profiling is mainly to derive the data access patterns—more
specifically, reuse distance histograms—of the kernel,
the desired design of using active learning is to stop profil-
ing when profiling more does not change the reuse distance
histogram much. However, that would require many
rounds of calculations of reuse distance histograms, causing
large overhead. Through experiments, we find that the aver-
age of accessed array indices could serve as a good low-cost
clue. Our observation is that if a new iteration causes little
change to the average of accessed array indices, adding the
data accesses of that iteration usually has little influence on
the reuse distance histogram.

The heuristic can be more clearly understood through the
pseudo code in Procedure 2. We first explain the cases when
there are no data dependences across threads. The code in
Procedure 2 outlines the basic algorithm for the active learn-
ing-based profiling. The two loops (Lines 2 and 4) are the
loops added that surround the kernel body; the outer loop
corresponds to all warps, while the inner loop corresponds
to the threads within a warp. Lines 6, 7, and 10 represent
the code derived directly from the original GPU kernel.
Line 7 shows an example access to an element in array y.
Line 8 is the profiling instruction, which records the info of
that access into a trace buffer for the later analysis.

The other lines in Procedure 2 are related with the active
learning. Lines 3, 5, 9, and 11-16 show the code for active

learning across the within-a-warp iterations. It uses sumIn-
dex to record the sum of the indices of elements accessed in
the current iteration. It then checks whether this iteration
causes large changes to the average of the accessed indices.
If not, it moves to profile the next warp’s execution. In the
same way, the active learning works across warps as Lines
1 and 18-23 show.

Although the simple heuristic may not faithful reflect
changes in reuse distance histograms for some special cases,
it turns out to work well in all our tested cases (Section 5).
The code in Procedure 2 is for cases when there are no inter-
thread data dependences. When there are, the pruning of
iterations for profiling could be problematic. The dependen-
ces typically could exist at two levels: among threads in a
warp, and across an entire thread block. The active learn-
ing-based pruning is disabled at a level if there are data
dependences at that level. In the worst case, PORPLE pro-
files the executions of an entire thread block.

Procedure 2. Profiling based on Active Learning

1: prevAvg1g = 0;prevAvg2g = �1;
2: for i 0 to NumOfWarps do
3: prevAvg1l = 0; prevAvg2l = �1;
4: for j 0 to WarpSize do
5: sumIndex = 0;
6: ... " ommitted kernel code
7: ... = y[index] + ...; " a kernel statement
8: log info of y[index] into a trace buffer;
9: sumIndex+=index; " added at each array access
10: ... " ommitted kernel code
11: curAvgl=(prevAvg1l*j+sumIndex)/(j+1);
12: if IsStable(curAvgl, prevAvg1l, prevAvg2l) then
13: break;
14: else
15: prevAvg2l=prevAvg1l; prevAvg1l=curAvgl;
16: end if
17: end for
18: curAvgg = (prevAvg1g*i+curAvgl)/(i+1);
19: if IsStable(curAvgg, prevAvg1g, prevAvg2g) then
20: break;
21: else
22: prevAvg2g=prevAvg1g; prevAvg1g=curAvgg;
23: end if
24: end for
25: function ISSTABLE(cur, pre1, pre2)
26: dCur = jcur - pre1j;
27: dPre = jpre1 - pre2j;
28: if (dCur< 0.005*pre1 jj 0.995*dPre< dCur< 1.005*dPre)

then
29: return true;
30: else
31: return false;
32: end if
33: end function

The online profiling is used only when the kernel is
invoked repeatedly for many iterations, which is typical for
many real-world irregular applications we have examined.
For instance, an N-body simulation program simulates the
position change of molecules through a period of time; the
kernel is invokedperiodically at specific number of time steps.
The one-time profiling overhead can be hence outweighed by
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the benefits from the many invocations of the optimized
kernel.

Profiling on GPU rather than CPU is a posisble alterna-
tive. It can better capture the warp scheduling effects. One
complexity is that for irregular kernels (e.g., those contain-
ing indirect memory accesses like A[D[tid]]), the data (e.g.,
the array D in our example) would need to be copied to
GPU for the profiling to take effect. Otherwise, the data
access patterns cannot be observed. Moreover, there is ker-
nel launching overhead. We use CPU-based profiling for it
can avoid such complexities. A carefully designed hybrid
scheme could possibly get the best of both worlds, which is
left for future studies.

Active learning has been used for mapping parallel pro-
grams to heterogeneous computing devices [16] and perfor-
mance modeling [17]. We are not aware of a prior use of it
for online program profiling.

4 CODE STAGING THROUGH PORPLE-C

When an array is put into different types of memory, the
syntax needed to access the array is different. For instance,
Fig. 5 shows the syntax for accessing an element in array A
in four scenarios. As shown in Fig. 5a, using a simple index-
ing operator “[]” is enough to access an element of A if it
resides on global memory. But to make sure that the access
goes through the read-only cache, one needs to instead use
the intrinsic “__ldg()”, shown in Fig. 5b. The code is more
substantially different when it comes to texture memory
and shared memory. For texture memory, as Fig. 5d shows,
besides some mandatory intrinsics (e.g., “tex1Dfetch”), the
access has to go through a texture reference defined and
bound to A in the host code. For shared memory, because
the allocation of shared memory has to be inside a GPU ker-
nel, the kernel must have code that first declares a buffer on
shared memory, and then loads elements of A into the
buffer; the accesses to elements in A also need to be changed
to accesses to that buffer.

For a program to be amenable to the runtime data place-
ment, it must be placement-agnostic, meaning at runtime, the
program is able to place data according to the suggestions
by PORPLE, and at the same time, run correctly regardless
which part of the memory system the data end up on. Run-
time code modification through just-in-time compilation or
binary translation could be an option, but complex.

Our solution is PORPLE-C, a compiler that generates
placement-agnostic GPU programs through source-to-
source translations. The solution is a combination of coarse-
grained and fine-grained versioning. The coarse-grained
versioning creates multiple versions of the GPU kernel,

with each corresponding to one possible placement of the
arrays. The appropriate version is invoked through a run-
time selection based on the result from the Placer.

When there are too many possible placements, the
coarse-grained versions are created for only some of the
placements (e.g., five most likely ones); for all other place-
ments, a special copy of the kernel is invoked. This copy is
fine-grained versioned, which is illustrated by Fig. 6d. The
figure shows the code generated by the compiler from a
statement “A1[j]=A0[i]”. Because the compiler is uncertain
about where A0 will be put at runtime, it generates a switch
statement to cover all possible cases. The value checked by
the statement, “memSpace[A0_id]”, is the placement of that
array determined by the execution of the Placer. The deter-
mination mechanism is implemented by the function
“PORPLE_place” shown in Fig 6b. The compiler assigns a
unique integer as the ID number of each array in the pro-
gram (e.g., A0 id is the ID number for the array A0). Each
case statement corresponds to one possible placement of the
array; the compiler produces the suitable statement to read
the element for each case. A similar treatment is given to the
access to array A1, except that the compiler recognizes that
there are only two data placement options for A1, either in
global or shared memory—the alternatives cannot happen
because of write limitation.

We now further describe each of the five case statements
for the access to A0 shown in Fig. 6d. Through this example,
we explain how the compiler makes a GPU program place-
ment-agnostic in general.

1) Global Memory. The first two case statements corre-
spond to the global memory without or with read-only
cache used. They are straightforward.

2) Texture Memory. The third is when A0 is put onto tex-
ture memory. In that case, accesses have to go through a tex-
ture reference rather than the original array. The compiler
hence generates a global declaration of a texture reference
A0tex. Fig. 6a shows such a declaration and also the declara-
tions for other arrays in the program. The compiler auto-
matically avoids generating such declarations for arrays
(e.g., A1 in our example) that it regards impossible to be put
onto the texture memory. The binding of a texture reference
and its corresponding array is done when the
“PORPLE_place” function decides to put the array onto tex-
ture memory, as shown in Fig. 6b.

3) Shared Memory. The fourth case statement is when A0
is put onto shared memory. Two complexities must be
addressed in this case: The data have to be copied from
global memory into the shared memory and sometimes also
copied back; the index of an element in shared memory dif-
fers from its index in global memory.

Fig. 5. Codelets in CUDA for accessing an element in an array A.
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Fig. 6c shows the code the compiler inserts to the begin-
ning part of a GPU kernel function to support the case of
shared memory. It starts with the declaration of an array
allocated onto shared memory. That array will be used as
the buffer to store the elements of arrays suitable for using
shared memory. The size of the array is determined by one
of the arguments in the kernel call. Before the kernel call,
the argument is assigned a value computed by the Placer at
runtime. The computation is based on the data placements
Placer finds. Meanwhile, the Placer tries to ensure that the
size does not lower the number of concurrently runnable
thread blocks (called GPU occupancy) compared to the origi-
nal GPU program.

It is allowed for sBuffer to contain the elements of multi-
ple arrays. To save the address lookup time, the compiler
inserts the declaration of a pointer (e.g., sA0 for A0) for each
array that is possible to be put into shared memory. The
pointer is then set to the starting position of the correspond-
ing array in sBuffer. By this means, the kernel can access the
elements through that pointer.

The code in the “if” statements in Fig. 6c also loads array
elements from global memory into shared memory. Based
on the affine expressions of array accesses in the kernel, the
compiler builds up a one-to-one mapping between the indi-
ces of the elements in the original array and their indices in
shared memory. It uses such a mapping to load the ele-
ments of the array into the corresponding location in shared
memory. This mapping is also used when the compiler gen-
erates the statements in the kernel function to access the cor-
rect elements in the shared memory.

At the end of the kernel, the compiler inserts some code
to copy data from shared memory back to the original array
on global memory, if the data could be modified in the ker-
nel, as illustrated by Fig. 6e.

4) Constant Memory. The final case is when the array is
put into constant memory. The treatment is similar
to shared memory. Fig. 6c illustrates the code for putting
an array into the constant memory through the call of

“cudaMemcpyToSymbol” function. Multiple arrays could
share the constant memory in a way similar to that of shared
memory; details omitted.

5) Compiler Implementation. The implementation of the
compiler is based on Cetus [18], a source-to-source com-
piler. The input is CUDA code. As a prototype, the compiler
cannot yet handle all kinds of CUDA code complexities; but
with some minor manual help, it is sufficient for proving
the concept. If the input program already has some arrays
put onto memory other than global memory, PORPLE by
default respects the optimizations performed by the pro-
grammer and keep them unchanged; it optimizes the place-
ment of the data arrays only if they are on global memory.
The compiler follows the following steps to generate the
placement-agnostic form of the code.

Step 1: find all arrays that are on global memory in the
kernel functions, assign ID numbers, and generate
access expressions for the arrays;

Step 2: identify the feasible placement options for each array
to avoid generating useless code in the follow-up steps;

Step 3: create global declarations for the constant buffer and
texture references (as illus. by Fig. 6a);

Step 4: customize PORPLE_place function accordingly (as
illus. by Fig. 6b);

Step 5: insert code at the start and end of each kernel func-
tion and change data access statements (as illus. by
Figs. 6c, 6d, 6e).

To make it simple to generate code for accessing a new
type of memory, PORPLE defines five ways of memory
accesses: through direct indexing (global memory-like),
through binding on host (texture memory-like), through
host declared buffer (constant memory-like), through kernel
declared buffer (shared memory-like), and through special
intrinsics (read-only global memory-like). There are some
fields that users can fill for each of the five ways, including
the keywords to use to make the declaration, the intrinsics
to use for access, and so on, based on which, the PORPLE-C

Fig. 6. Generated placement-agnostic code.
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will try to generate needed code for a kernel to utilize a new
type of memory. For memory unlike any of the five, POR-
PLE provides recommended placement to the programmer,
who can then refactor the code accordingly.

5 EVALUATION

We conduct experiments on three GPU models to evaluate
the effectiveness and portability of the technique.

5.1 Methodology

We evaluate PORPLE on a diverse set of benchmarks shown
in Table 1. These benchmarks include all of the level-1 bench-
marks from the SHOC benchmark suite [19] that come from
various application domains. To further evaluate PORPLE
with complicated memory access patterns, we add three
benchmarks from the RODINIA benchmark suite [20] and
three from CUDA SDK. To test the scalability of PORPLE,
we additionally include the two most time-consuming ker-
nels from lulesh, a large application from Lawrence Liver-
more National Lab for modeling hydrodynamics [21]. They
usemuchmore (16) arrays than the other benchmarks do.

As shown by the rightmost column of Table 1, seven of
the benchmarks have irregular memory accesses. Their
memory access patterns highly depend on inputs and can
only be known during run-time. Hence, static analysis can-
not work for them and online profiling must be employed.
They all have a loop surrounding the GPU kernel call. We
focus on the optimization of the most time-consuming ker-
nel in each of the benchmarks. To optimize data placement
for multiple kernels, PORPLE would need to take into

consideration the possibly required data movements across
the kernels, which is left for future studies.

We evaluate PORPLE on three different machines with
diverse GPU hardware and runtime environment shown in
Table 2. The GPU cards have quite different memory hier-
archies. Most notably, C1060 does not have any data cache
for global memory accesses. M2075 has a two-level data
cache for global memory. K20c has a L2 cache for global
memory. Each SM on it has a read-only L1 data cache.
However, it is used for global memory accesses only if the
accesses are to read-only data through some intrinsics. One
transaction for a global load is 128 bytes on M2075, but
32 bytes on K20c.

Since the specifics of some of the memories are undis-
closed, we use a tool published by Wong [7] to obtain the
memory specification for each machine. The tool runs a set
of microkernels on each machine, and measures cache size
and latency for each type of memory. The memory latency
results are summarized in Table 3.

We compare PORPLE with the state-of-the-art memory
selection algorithm published previously [1]. In that work,
data placement decisions are made with several rules. These
rules are based on read/write patterns, loop-based tempo-
ral locality, and status of memory coalescing that are deter-
mined through some static analysis of the kernel code. For
data arrays whose access patterns cannot be inferred
through the static analysis, this algorithm simply leaves
them in global memory space. We call this algorithm the
rule-based approach. In addition, we find the optimal data
placement through offline exhaustive search, which produ-
ces the best speedup a data placement method can achieve.
The search time varies across the kernels. On glassForce
with a single small input on one architecture, for example,
the time is over two hours.

We repeat each time measurement experiment for 10
times. We report the average performance along with the
error bars in the overall speedup results. All the reported
speedups in this section are based on the formula original-
Time/newTime, where originalTime refers to the total execu-
tion time taken by all invocations of the original kernel, and
newTime includes the time taken by all invocations of the
optimized kernel plus all optimization overhead (profiling
time, time taken by Placer, etc.).

TABLE 1
Benchmark Description

Benchmark
Kernels

Source Description Irregular

mm SDK matrix multiplication N
trans SDK matrix transpose N
convolution SDK signal filter N
kmeans Rodinia kmeans clustering N
particlefilter Rodinia particlefilter Y
cfd Rodinia computational fluid Y
reduction SHOC reduction N
fft SHOC fast Fourier transform N
scan SHOC scan N
sort SHOC radix sort N
triad SHOC stream triad N
md SHOC molecular dynamics Y
spmv SHOC sparse matrix vector multi. Y
bfs SHOC breadth-first search Y
glassForce Lulesh force computation Y
glassControl Lulesh glass control for element Y

TABLE 2
Machine Description

Name GPU card OS Processor CUDA

C1060 Tesla C1060 Linux-3.11 E5640 5.5
M2075 Tesla M2075 Linux-2.6 Intel Xeon(R) X5672 5.5
K20c Tesla K20c Linux-3.13 Intel Xeon(R) E5-1607v2 6.5

TABLE 3
Memory Latency Description

Machine Name Constant cL2 cL1 Global gL2 gL1 Read-only Texture tL2 tL1 Shared

Tesla K20c 250 120 48 345 222 N/A 141 351 222 103 48
Tesla M2075 360 140 48 600 390 80 N/A 617 390 208 48
Tesla C1060 545 130 56 548 N/A N/A N/A 546 366 251 38

cL1 and cL2 are L1 and L2 caches for constant memory. gL1 and gL2 are L1 and L2 caches for global memory. tL1 and tL2 are L1 and L2 caches for texture
memory.
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5.2 Results of Regular Benchmarks

Fig. 7 shows the performance results for regular benchmarks
on Tesla K20c. PORPLE provides on average 22 percent
speedup and obtains almost all the potential (23 percent) by
finding out the best data placement. The rule-based approach
only provides 5 percent performance improvement. We
observe that on kmeans and scan, the data placement strate-
gies in the original programs are either close to optimal,
showing that the programmers have already taken advan-
tage of their easily analysable memory access patterns and
made good placement decisions. Hence, there is little poten-
tial for further improvement. On them, PORPLE and the
rule-based approach both find the optimal placement strate-
gies, which perform similarly as the original programs do.

Benchmarks mm, trans and triad show much larger speed-
ups (1.18X to 2.64X). For instance, PORPLE outperforms the
rule-based approachwith 45 and 18 percent additional speed-
ups on trans and triad. Our investigation reveals that the rule-
based approach favors global memory because of its limited
capabilities to characterize memory access patterns and map
them to diverse memory systems. In particular, for arrays
with coalesced accesses and little temporal reuse, the rule-
based approach always places them into global memory. In
contrast, PORPLE’s performance model captures the fact that
texture cache can be used instead of L1/L2 cache for those
arrays, even if those arrays are linearly accessed. Moreover,
the path-based performance model helps PORPLE select the
placements that can balance the different data transfer paths.
Program fft shows a little slowdown over the original pro-
gram. The inaccuracy in the cache performance estimation
causes the runtime placer to select a suboptimal placement.

The runtime overhead for PORPLE is marginal (around 1
percent) on regular benchmarks, and hence they are not
reported. As described in Section 4, for these codes that are
statically analysable, PORPLE performs offline transforma-
tion to enforce the placement strategy, which significantly
reduces runtime overhead. For those benchmarks whose
data placement strategies cannot be fully determined using
the offline approach, PORPLE can still use static analysis to
exclude some data placement options and reduce search
space. This results in great reduction of runtime overhead.

The results on the other two machines are similar to
those on K20c. We ommit them for the interest of space.

5.3 Results with Irregular Benchmarks

5.3.1 Speedup

Fig. 8 shows the results on the irregular benchmarks on
K20c. The complex memory access patterns of these

benchmarks make them difficult to optimize by both static
analysis and manual efforts. The original programs choose
data placement strategies substantially inferior to the opti-
mal. PORPLE again gives near optimal performance, on
average 1.68X and up to 2.17X (for particlefilter) speedups
over the original ones.

We observe that the rule-based approach works well for
some benchmarks, but fails to find the optimal dataplace-
ment. For example, it identifies optimal placement strategy
for some important arrays in spmv, cfd and md, but fails for
other arrays. For particlefilter and bfs, the rule-based
approach shows much smaller speedups compared to the
optimal one, because it inappropriately uses texture mem-
ory and global memory for some arrays. For particlefilter, for
instance, there is an array named CDF that can benefit more
from constant memory than from texture memory, because
its access patterns meet the broadcasting requirements and
constant cache can hence be accessed more efficiently than
texture cache. However, the rule-based approach tends to
use texture memory to favor specific memory access pat-
terns, ignoring potentially benefits of cache hierarchy in
constant memory; as many arrays are put onto texture
memory, texture cache interferences are severe.

Benchmark bfs conducts breadth-first search. It is special
in that it allows race conditions to happen. Specifically, all
GPU threads read and write array levels; even though two
threads could access the same data element in that array, bfs
uses no synchronizations for high efficiency. Such race con-
ditions however do not affect the results because if multiple
threads try to assign values to a single data element in levels,
those values must be identical. After noticing such a prop-
erty, we add into PORPLE the check for the profit of dupli-
cating such an array under such race conditions.
Specifically, it checks the benefit of having the following
version: A duplicate of array levels, named levels1, is created
before each kernel call (BFS_kernel_warp). In the kernel, all
reads to levels are changed to reads to levels1, while writes
remain unchanged. PORPLE then tries to figure out the best
placement of arrays of this new version and compares its
memory throughput with the throughput of the best place-
ment of the original version. If it is beneficial, it offers the
suggestion to the programmer; after confirming the safety
of such a transformation, the programmer may refactor the
code accordingly. For bfs, the transformation is safe, and
after the transformation is done, PORPLE puts array levels1
into the constant memory, achieving 30 percent extra speed-
ups over the rule-based approach which uses only global
memory for the arrays. For the rule-based approach, after

Fig. 7. Speedup (avarage with errors bar) of regular benchmarks on
Tesla K20c.

Fig. 8. Speedup (average with error bars) of irregular benchmarks on
Tesla K20c.
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the same duplication, it achieves 1.18X speedups. It still
misses the good placement because although it can put lev-
els1 on constant memory, it puts all other read-only arrays
on texture memory and causing a lot of cache interferences.

Figs. 9 and 10 display the results on M2075 and C1060.
PORPLE shows little performance gap from the optimal,
and performs much better than the rule-based approach
(33 and 60 percent more on M2075 and C1060 respectively).
There are two main reasons that could cause disparity of
PORPLE from the optimal. First, PORPLE only profiles the
memory accesses of part of the threads in order to minimize
runtime overhead, which could cause some inaccuracy in
the profiling results. Second, PORPLE employs a conserva-
tive approach to model cache interference. In some cases,
data arrays, when placed into the same memory system,
may not cause severe cache interference. However PORPLE
may choose to spread them into multiple memory systems
based on performance prediction. This could cause non-
optimal data placement. The results show that the influence
of the factors on the final data placement is marginal.

There are some differences in the performance gains
among the different GPUs, due to the differences in their
memory latencies and cache hierarchy. For example, L1
cache exists on K20c and M2075, but not on C1060. The
global memory access latency on C1060 is also much longer
than on the other two GPUs. As a result, we see that some
programs (e.g., particlefilter, spmv, md) enjoy larger speedups
on C1060 than on other GPUs when PORPLE puts some
arrays onto the texture memory. L1 cache exists on K20c but
loads from the global memory on K20c do not go through
L1 cache. That is why quite large speedups are also seen on
K20c. The speedups on M2075 is relatively smaller for its L1
cache helps hide the latency of global memory accesses.

5.3.2 Overhead Breakdown

Fig. 11 reports runtime overhead of PORPLE on Tesla K20c.
On average, PORPLE introduces 0.06 percent overhead,
which is outweighed by the performance benefits as the
speedup results show. The overhead can be decomposed
into three parts: profiling, transform and the placement

search (denoted as engine in the Fig. 11). The transform over-
head is due to the runtime checks introduced by PORPLE in
the transformed kernels. The overhead of placement search
comes from the performance modeling and branch-and-
bound search. We observe that the overhead of engine is the
main source of overhead due to analyze trace and place-
ment search, accounting for average 0.04 percent of total
execution time. Programs spmv and cfd are subject to some-
what higher transformation overhead. For cfd, the reason is
that the number of fine-grained checks is large due to the
large number of arrays. For spmv, the reason is that it has a
for loop and the number of fine-grained checks for one array
inside the loop is large.

5.3.3 Portability

Table 4 shows the placement decisions made by the rule-
based approach and PORPLE. The rule-based approach
gives the same data placement on different platforms,
because it ignores the many subtle architecture differences
across hardware. In contrast, PORPLE explicitly expresses,
quantifies, and models diverse memory features across plat-
forms, hence providing much better data placement deci-
sions. For benchmark spmv, for instance, on the three
machines, PORPLE makes quite different decisions.

To study adaptivity of PORPLE to input changes, we use
six different inputs to particlefilter and spmv, and examine
the data placements PORPLE finds and the corresponding
performance. For particlefilter, we use the input generator in
the benchmark to generate inputs with different number of
particles. For spmv, we use matrix inputs from the Univer-
sity of Florida’s sparse matrix database [22].

The results are shown in Figs. 12 and 13. The figures
show that in most cases PORPLE outperforms the rule-
based approach across the different inputs, with much
larger average speedups (72 and 30 percent respectively)
over those of the rule-based approach (7 and 24 percent
respectively). The only exception is when spmv runs on a

Fig. 9. Speedup of irregular benchmarks on Tesla M2075.

Fig. 10. Speedup of irregular benchmarks on Tesla C1060.

Fig. 11. Overhead breakdown on irregular benchmarks on Tesla K20c.

TABLE 4
Placement Decisions Made by PORPLE

and the Rule-Based Approach

spmv particlefilter

A0 A1 A2 A3 A4 B0 B1 B2 B3 B4 B5

Rule-Based T T T T G G S&G G G G G
PORPLE-C1060 C T T T G C S&G G G G G
PORPLE-M2075 C T G T G C S&G G G G G
PORPLE-K20c C R T R G C S&R G T G G

T: texture memory, C: constant memory, G: global memory, S: shared memory,
R:read-only data cache. Spmv: A0:rowDelimiters, A1:cols, A2:vec, A3:val, A4:
out. Particlefilter: B0:CDF, B1:u, B2: arrayX, B3:arrayY, B4:xj,B5:yj.
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special input named random. For this input, it is difficult to
precisely capture the data access patterns, and PORPLE per-
forms slightly worse than the rule-based approach.

5.3.4 Scalability

We conduct a scalability study of PORPLE through a series
of experiments on eight kernels that are more sensitive to
the runtime overhead of PORPLE than other kernels. The
set includes the two kernels from lulesh that use much more
kernels than other kernels do, four other irregular bench-
marks and two regular benchmarks from the set of kernels
listed in Table 1.

The main overhead of PORPLE resides in the online pro-
filing part, the search for appropriate data placements, and
runtime checks in the GPU kernels. Among them, the first
two parts happen only once in a program execution regard-
less how many times the GPU kernel gets invoked, and the
third part occur in every GPU invocation. Experiments
however show that the first two parts are actually the domi-
nant sources of overhead.

In this scalability study, we change the number of itera-
tions of the loop that surrounds a kernel invocation. As the
number of iterations decreases, the influence of the runtime
overhead becomes more visible. We compare the perfor-
mance of PORPLE with the rule-based method, as well as

an earlier version of PORPLE [2] (denoted as “PORPLE
W/O”) that does not use the aforementioned optimizations
to profiling and search (active profiling and hybrid scalable
search).

Fig. 14 reports the performance comparison on Tesla
K20c (results on other GPUs show similar trends). The num-
ber of iterations starts with 1,496 (a number used in the orig-
inal lulesh application) and decreases to 500, 250, and 50.
Observations are as follows.

(1) For the leftmost four benchmarks (mm, trans, particle-
filter, and spmv), the influence of the runtime over-
head across the number of iterations stays almost the
same for all the three methods. That is because the
four benchmarks are either regular or use very few
arrays. The profiling and search time weighs little in
the overall running time. PORPLE and PORPLE
W/O performs similarly well except that on spmv,
PORPLE gains slightly more benefits thanks to the
reduction of profiling overhead by active profiling.

(2) For the other four benchmarks, the influence of the
runtime overhead varies significantly for PORPLE
W/O when the number of iterations decreases. On
glassForce, the large search time of the branch-and-
bound method in PORPLE W/O makes the kernel

Fig. 12. Speedup across different inputs for particlefilter. Fig. 13. Speedup across different inputs for spmv.

Fig. 14. Speedups on Tesla K20c when the number of kernel invocations changes.
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run much slower than the original version does,
even when the kernel is called for 1,496 times. The
branch-and-bound search has an exponential com-
plexity. For the 16 arrays in glassForce, the search
time is unaffordable. PORPLE, through the hybrid
search algorithm, overcomes the scalability issue. It
gives significant speedups across all the cases even
when the number of iterations is reduced to 50.

(3) In all the scenarios, both PORPLE versions give a
higher average speedup than the rule-based method,
demonstrating the benefits of the better data place-
ments those methods find.

Table 5 reports the breakdown of the runtime overhead
on the six irregular programs (the overhead of the two regu-
lar ones is less than 1 percent, hence omitted). The active
profiling saves profiling time by 1.79X to 4X. On spmv, for
instance, PORPLE W/O profiles the work of an entire
thread block, while PORPLE profiles only the work of two
threads per warp (8 warps in total). Similarly, on md, POR-
PLE profiles the work of only some threads (9, 6, 2, 7, 11
threads) in the first 5 (out of 8) warps. The reduced profiling
still captures enough information about the data access
patterns.

The time savings by the hybrid search algorithm is even
greater, ranging from 5.3X to 106X. It is because the algo-
rithm reduces the computational complexity from exponen-
tial to linear when there are many arrays.

Overall, the two optimizations significantly improve the
scalability of PORPLE.

6 RELATED WORK

Data placement on GPU memory has drawn some previous
studies, including the rule-based method that the previous
section has compared with [1]. In addition, some other stud-
ies have investigated data placement on some special type
of memory. Ma and others [23] have considered optimal
data placements but only for shared memory on GPU. They
formulate the problem of placing scalar, data array and sec-
tions of data arrays on shared memory as an integer pro-
gramming problem, and evaluate the idea on one
benchmark. PORPLE takes all types of memory into consid-
eration and thoroughly evaluates a diverse set of bench-
marks on different machines. Wang and others [24] have
designed a heterogeneous main memory consisting of both
DRAM and phase change memory for GPU. They propose a
compiler-guided initial placement for data arrays and hard-
ware-based fine-grained data migration between the two
types of memory. PORPLE offers a portable solution for off-
the-shelf GPU cards. Agarwal and others [25] have recently

proposed some improved memory page placement policies
for future heterogeneous systems with a unified globally-
addressable memory.

Some previous work has studied data placement on CPU
systems that are equipped with heterogeneous memory
architectures. Jevdjic and others [26] have studied the
design of CPU with 3D stacked memory. Due to the various
technical constraints, especially heat dissipation, the stacked
memory has limited size and is managed by hardware like
traditional cache. Similarly, some heterogeneous memory
designs [27], [28] involving Phase Change Memory have
also resorted to hardware-managed data placement.

Several previous efforts have tried to develop some per-
formance models for GPU [5], [6]. For instance, Hong and
others [5] have proposed a sophisticated GPU analytical
performance model containing a number of parameters.
Baghsorkhi and others [14] have proposed a compiler-based
performance model, which considers detailed micro-archi-
tecture features, such as shared memory bank conflicts and
warp divergence. The designs of these models primarily
aim at accuracy of the models, suiting offline usage. The
performance model in PORPLE is designed to be fast
enough for runtime use. It considers cache contention
through the reuse distance model.

GPU memory performance has received many atten-
tions [29], [30], [31], [32]. For instance, Yang and others [33]
have designed a source-to-source compiler to enhance
memory coalescing or shared memory use. Zhang and
others [34] have focused on irregular memory references
and proposed a pipelined online data reorganization engine
to reduce memory access irregularity. Wu and others [35]
have provided a formal representation of data reorganiza-
tion for minimizing non-coalesced memory accesses, and
provided the first complexity analysis and propose several
efficient reorganization algorithms. Wu and others [36]
have recently introduced SM-centric transformation to
enable software-based spatial management of GPU threads,
and showed that it may help improve cache performance of
GPU programs. All these studies mainly focus on altering
memory access patterns. PORPLE complements them with
portable optimizations of data placements.

7 CONCLUSION

This work gives a comprehensive description of PORPLE, a
software framework for portable optimizations of data place-
ment on GPUmemory. It consists of a mini specification lan-
guage, a source-to-source compiler, and a runtime data
placer. The language allows an easy description of a memory
system; the compiler transforms a GPU program into a form

TABLE 5
Overheads of PORPLE-W/O and PORPLE

Methods PORPLE-W/O (sec) PORPLE (sec) Speedup

Benchmarks profiling engine transform profiling engine transform profiling speedup engine speedup

particlefilter 0.000043 0.0024 0 0.000024 0.000450 0 1.79 5.33
spmv 0.000055 0.00412 0 0.000037 0.00028 0 1.48 14.71
cfd 0.000146 0.00867 0.000014 0.000047 0.00075 0.000014 3.11 11.56
md 0.000193 0.05892 0 0.000054 0.00093 0 3.57 63.35
glassForce 0.00006 542.418 0.00033 0.000037 0.00036 0.00033 1.62 1506716.67
glassControl 0.000012 0.00742 0.000066 0.000003 0.000322 0.000066 4 23.04
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amenable to runtime profiling and data placement; the
placer, based on thememory description anddata access pat-
terns, computes on the fly the appropriate placement
schemes for the data and places them accordingly. PORPLE
is distinctive in being adaptive to program inputs and archi-
tecture changes, being transparent to programmers (in most
cases), and being extensible to new memory architectures.
Experiments show that PORPLE is able to consistently find
optimal or near-optimal placements despite the large differ-
ences among GPU architectures and program inputs, yield-
ing up to 2.64X (1.72X on average) speedups on a set of
regular and irregular GPU benchmarks.

Industry has been continuously inventing new types of
memory, exemplified by 3D-stacked memory and Phase
Changing Memory. The innovations are expected to lead to
even more sophisticated memory systems in future
machines. The portable approach proposed in this work has
the potential to be extended into a solution for tapping into
the power of such future heterogeneous memory systems
beyond GPU.
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