
Performance Implications of Processing-in-Memory Designs
on Data-Intensive Applications

Borui Wang?

bwang27@ucsc.edu

Martin Torres†

mtorres58@ucmerced.edu

Dong Li†

dli35@ucmerced.edu

Jishen Zhao?

jishen.zhao@ucsc.edu

Florin Rusu†

frusu@ucmerced.edu

†University of California, Merced ?University of California, Santa Cruz

Abstract—The popularity of data-intensive applications
and recent hardware developments drive the re-emergence
of processing-in-memory (PIM) after earlier explorations
several decades ago. To introduce PIM into a system, we
must answer a fundamental question: what computation
logic should be included into PIM? In terms of computation
complexity, PIM can be either relatively simple, fixed-
functional, or fully programmable. The choice of fixed-
functional PIM and programmable PIM has direct impact
on performance. In this paper, we explore the performance
implications of fixed-functional PIM and programmable
PIM on three data-intensive benchmarks—including a real
data-intensive application. Our results show that – with
PIMs – we obtain 2.09x-91.4x speedup over no PIM cases.
However, the fixed-functional PIM and programmable PIM
perform differently across applications (with performance
difference up to 90%). Our results show that neither
fixed-functional PIM nor programmable PIM can perform
optimally in all cases. We must decide the usage of PIM
based on the characteristics of the workload and PIM (e.g.,
instruction-level parallelism), and the PIM overhead (e.g.,
PIM initialization and synchronization overhead).

I. INTRODUCTION

Data-intensive applications, including scientific simu-
lations and enterprise on-line services, generate massive
volumes of data and demand superior data processing
capabilities in terms of speed and automation. The
demands from in-situ data processing, such as scientific
visualization for real-time analysis and computational
finance for stock analysis, further impose heavy requests
on the efficiency of data movement and processing.

To address the above problems, processing-in-
memory (PIM) re-emerges after early explorations a
few decades ago [10], [13], [29], [23], [16], [8], [22],
[26], [28]. By adding the data processing capability
into memory, PIM can reduce the latency and energy
consumption associated with data movement through the
cache and memory hierarchy by moving computation
closer to data. Furthermore, PIM enables data processing
in parallel with the CPU, which introduces new paral-
lelism into the system.

The re-emergence of PIM is strongly driven by recent
hardware developments and applications. At the hard-
ware level, the advancement of mixed logic, memory
processes, and die stacking make the implementation of
PIM easier and cheaper. At the application level, data-
intensive applications with irregular access patterns (e.g.,
graph traversals and certain multi-phase, multi-stage sci-
entific simulations) make data movement more frequent
and expensive. PIM is well positioned to leverage new
hardware techniques to address the emerging application
problems.

To introduce PIM into the system, we must answer a
fundamental question: what computation logic should be
included into PIM? In terms of computation complexity,
PIM can be either relatively simple, fixed-functional, or
fully programmable. Fixed-functional PIMs can imple-
ment specific operations. For example, some PIMs shift
a long user-specified contiguous region along a short,
fixed distance in memory [20]; some PIMs implement
complex regular expressions [7]. Fully programmable
PIMs have fully programmable logic in memory and
have the expressiveness and flexibility of a conventional
processor (or configurable logic device). Such PIMs
include DIVA [17] and FlexRam [12].

The choice of fixed-functional PIM and pro-
grammable PIM has direct impact on performance,
power/energy, hardware area size, and the interface
with software. In particular, the fixed-functional PIM
has relatively simple logic, less power consumption
and area size than the programmable PIM, but it has
constraints on the computation capabilities and can
suffer from performance loss due to (1) CPU-PIM
or PIM-PIM synchronization; (2) data movement; (3)
task spawning overhead. Some of the performance loss
can be avoided with programmable PIMs. In contrast,
programmable PIMs can offload coarse-grained tasks
from CPU, overlapping PIM computation with CPU
tasks and reducing the performance overhead suffered in
the fixed-functional PIM. However, programmable PIMs
have large area size which makes it difficult to achieve

massive parallelism as in the fixed functional PIM; they
also have larger power consumption.

In this paper, we explore the performance implications
of the fixed-functional PIM and programmable PIM.
We use two benchmarks and one real data-intensive
application. One benchmark performs intensive sparse
linear algebra, and the other performs specific stencil
computation. These two benchmarks are representative
and can be one of the major workloads offloaded to
PIM in the future. The data-intensive application comes
from the data analytics domain and includes gradient
computation over massive datasets. We rely on a PIN-
based emulation infrastructure to study the implication
of the fixed-functional PIM and programmable PIM
on these benchmarks and the application. Our results
show that with PIMs, we have 2.09x-91.4x speedup
over no PIM cases. However, the fixed-functional PIM
and programmable PIM perform differently across ap-
plications (with performance difference up to 90%).
Our results show that neither fixed-functional PIM nor
programmable PIM can perform optimally in all cases.
We must decide the usage of PIM based on the char-
acteristics of workload and PIM (e.g., instruction-level
parallelism) and the PIM overhead (e.g., PIM initializa-
tion and synchronization overhead).

II. METHODOLOGY

We investigate the performance of various PIM de-
signs by studying the instruction traces of a set of
workloads that are likely to benefit from offloading
data-intensive operations to the memory side. We use
PIN [25], a dynamic instrumentation-based program
analysis tool to collect the traces of application execu-
tion. To generate the traces, we run our applications on
a machine configured with 8 Intel Core i7-4790 cores
running at 3.6 GHz. The machine has two 8 GB DDR3-
1600 DRAMs. Table I summarizes the key architectural
parameters of the system.

Table I: Architectural parameters of the machine
where we catch the application traces.

Processor 32nm Intel Core i7 operating at 3.6GHz
Cores 8 OoO cores operating at 3.6GHz
L1 Cache (Private) 64KB, 4-way, 64B lines
L2 Cache (Private) 256KB, 8-way, 64B lines
L3 Cache (Shared) Multi-banked, 8MB, 16-way, 64B lines
Memory DDR3-1600, 8GB, 8 banks,

Our simulation framework models the performance
of a system with fixed-functional PIMs and a pro-
grammable PIM. Figure 1 illustrates the components of
our simulation framework. We investigate the case where
the memory system can integrate many fixed-functional
PIMs (50 adders and 50 multipilers in total), whereas

it can only adopt a single programmable PIM. This
is because the programmable PIM typically requires
complex functional components and logic; with the
limited area and power budget of the memory, we cannot
integrate multiple programmable PIMs.

Our trace-based simulation framework is sufficiently
flexible to allow us to explore various performance
parameters related to PIM designs. In particular, Table II
lists the performance parameters that we employ in our
simulation. We assume that the memory clock frequency
is half of the CPU clock frequency. Therefore, operations
that typically take one CPU cycle will take two cycles
on the memory side. The programmable PIM typically
performs more complex operations with larger input and
output data structures than the fixed-functional PIM.
Therefore, we adopt a longer latency for initializing and
returning from programmable PIM operations. We also
introduce PIM synchronization latency, which is 200
CPU cycles. The PIM synchronization latency includes:
1) CPU acquisition of a PIM lock (one memory access,
i.e., 100 CPU cycles); 2) PIM releasing the lock (0 CPU
cycle); 3) CPU examining whether the lock is released
(one memory access, i.e., 100 cycles).

To specify the code regions offloaded to the PIMs,
we introduce a set of annotations shown in Figure 2.
For any annotated code regions, our PIN-based emulator
will collect traces and model their performance on PIMs
based on the performance parameters.

III. APPLICATIONS

We use two benchmarks (CG and MG) and one real
application (GLADE) to evaluate the performance of the
fixed-functional PIM and programmable PIM.

A. Conjugate Gradient (CG)

This benchmark comes from the NAS parallel bench-
mark 3.3 [4]. It uses the inverse power method to find
an estimate of the largest eigenvalue of a symmetric
positive definite sparse matrix with a random pattern of
non-zeros. Figure 3 shows the pseudocode of the major
computation loop in this benchmark.

The computation of CG is dominated by a
multiplication-addition operation represented as a =
b + c ∗ d (see lines 10, 16, 24, 25, 30, 36, and 43).
In many cases, a, b, c and/or d in the operation are the
elements of specific vectors or matrices. Furthermore,
the access to the vector p (line 10) and the vector z (line
43) come from indirect data references (e.g., p[colidx[k]]
and z[coldix[k]]). These accesses can be random and
have poor data locality. The memory access pattern
of CG with indirect data references is because of the
compressed row storage (CRS) format for storing sparse
matrices. The index array colidx indicates the positions
of non-zero elements in the sparse matrices. Using the

Core&$ …

TLBs / MMU

Last-level Cache

Processor

Programmable PIM
Parameters

Memory Controller
Memory (N GHz):
- Memory access
- PIM operations

Fixed-function PIM
Parameters

DRAM Main Memory

Core&$ Core&$

- Instruction counts of various
 operations
- Info. of memory reads
- Info. of memory writes
…

Processor (2N GHz):
-  Non-offloaded computation operations
-  PIM Offloading and return
-  PIM Synchronization

Real Machine Profiling and Trace Collection Trace-based Simulation

Applications:
HPC Workloads
Large-scale Database
…

Figure 1: Overview of our simulation framework.

Table II: PIM parameters employed in our trace-based simulation, assuming memory clock frequency is half
of the CPU clock frequency.

Parameter Description Value
tCPUcomp CPU computation instruction latency Profiled on real machine
tmem Latency of executing a memory load/store instruction on CPU 100 CPU cycles
tfixPIMcomp Fixed-function PIM computation instruction latency 2× tCPUcomp

of the same instruction
tprogPIMcomp Programmable PIM computation instruction latency 2× tCPUcomp

of the same instruction
tfixPIMoffload Latency of initializing the operations to be offloaded to a fixed-function PIM 2 CPU cycles
tfixPIMreturn Latency of returning fixed-function PIM operation results to CPU 2 CPU cycles
tprogPIMoffload Latency of initializing the operations to be offloaded to the programmable PIM 10 CPU cycles
tprogPIMreturn Latency of returning programmable PIM operation results to CPU 10 CPU cycles
tsync Latency of synchronizing multiple PIMs 200 CPU cycles

fixPIM_begin();	
Operations that are offloaded to fixed-function PIMs
fixPIM_end();	

progPIM_begin();	
Operations that are offloaded to the programmable PIM
progPIM_end();	

Figure 2: The software interface for identifying the group of operations to be offloaded to PIMs.

array colidx to reference data elements in the vectors
can avoid unnecessary computation. The memory access
pattern with indirect data references is common in sparse
linear algebra. Because of the poor data locality in
this memory access pattern, the traditional CPU-based
computation can cause lots of cache misses and frequent
data movement between CPU and main memory.

We offload the primitive multiplication-addition op-
eration into the fixed-functional PIMs. We assume that
the fixed-functional PIMs can use the index array colidx
to access data elements for the computation. For the
programmable PIM, we offload the whole computation
loop shown in Figure 3.

B. Multi-Grid (MG)

This benchmark comes from the NAS parallel bench-
mark 3.3 [4]. It approximates the solution to a three-

dimensional discrete Poisson equation using the V-cycle
multi-grid method on a rectangular domain with periodic
boundary conditions. In the V cycle, the computation
starts from the finest refinement level, going down level
by level toward the bottom, then back up to the top. The
V-cycle multi-grid method involves applying a set of
stencil operations sequentially on the grids at each level
of refinement [35]. The stencil operations happen in vari-
ous execution phases, including restriction, prolongation,
evaluation of residual, and point relaxation. Figure 4
shows the pseudocode of some stencil operations in the
evaluation of residual.

The stencil operations in MG often involve a 4-
point stencil. Figure 4 shows such typical stencil opera-
tions. For example, to calculate u1[i1], we must access
four neighbor points (u[i1][i2-1][i3], u[i1][i2+1][i3],
u[i1][i2][i3-1] and u[i1][i2][i3+1]) which form a sten-

1: z = 0
2: r = x
3: ρ = rT r
4: p = r
5: for i=0,1,. . . do
6: //computing q = Ap
7: for j=1,lastrow-firstrow+1 do
8: sum = 0.0
9: for k=rowstr[j],rowstr[j+1]-1 do

10: sum = sum+ a[k] ∗ p[colidx[k]]
11: end forq[j] = sum
12: end for
13:
14: //computing α = ρ/(pT q)
15: for j=1,lastcol-firstcol+1 do
16: d = d+ p[j] ∗ q[j]
17: end for
18: α = ρ/d
19: ρ0 = ρ
20:
21: //computing z = z + αp and r = r − αq
22: ρ = 0.0
23: for j=1,lastcol-firstcol+1 do
24: z[j] = z[j] + α ∗ p[j]
25: r[j] = r[j]− α ∗ q[i]
26: end for
27:
28: //computing ρ = rT r
29: for j=1,lastcol-firstcol+1 do
30: ρ = ρ+ r[j] ∗ r[j]
31: end for
32: β = ρ/ρ0

33:
34: //computing p = r + βp
35: for j=1,lastcol-firstcol+1 do
36: p[j] = r[j] + β ∗ p[j]
37: end for
38:
39: //computing residual norm: ||r|| = ||x−A.z||
40: for j=1,lastrow-firstrow+1 do
41: d = 0.0
42: for k=rowstr[j],rowstr[j+1]-1 do
43: d = d+ a[k] ∗ z[coldix[k]]
44: end forr[j] = d
45: end for
46: ...
47: end for

Figure 3: Pseudocode of the major computation loop
in the CG benchmark. The blue lines indicate the
computation offloaded to the fixed-functional PIM.

cil. We offload these stencil operations into the fixed-
functional PIMs. For the programmable PIM, we offload
the major computation routines (particularly mg3P and
resid, not shown in the code excerpt due to the space
limitation).

C. GLADE

GLADE [5] is a parallel data processing system for
large scale data analytics. It executes tasks specified

1: for i3=2,n3-1 do
2: for i2=2,n2-1 do
3: for i1=1,n1 do
4: u1[i1] = u[i1][i2-1][i3] + u[i1][i2+1][i3] +

u[i1][i2][i3-1] + u[i1][i2][i3+1]
5: u2[i1] = u[i1][i2-1][i3-1] + u[i1][i2+1][i3-1] +

u[i1][i2-1][i3+1] + u[i1][i2+1][i3+1]
6: end for
7: end for
8: end for

Figure 4: A code excerpt from the residual computation
(r = v − AU) in MG. The blue lines indicate the
computation offloaded to the fixed-functional PIM.

using the abstract User-Defined Aggregate (UDA) in-
terface [30]. In this application, we train a support
vector machine (SVM) model using gradient descent
optimization. We use the batch version of gradient
descent (BGD) [31].

The pseudo-code for BGD when applied to SVM
training is shown in Figure 5. The BGD algorithm takes
as input the data examples and their labels, the loss
function Λ, the gradient of the objective ∇Λ, and the
initial values for the model and step size. The optimal
model is returned as output [32].

The main stages of this algorithm are the updates of
the gradient computation, model, and step size. These
are all executed until convergence. We are able to offload
the vector multiplication seen on lines 12 and 18. Line
12 shows the dot product between the model, which is
represented by a vector, and the current example. Line
18 shows the gradient update, which needs access to
the gradient vector, model vector, and current example.
Essentially, we iterate through the examples and update
the gradient, which is minimizing our objective function
in order to provide us with a better model. Because
these methods are invoked many times while iterating
through the examples, this vector multiplication becomes
computationally expensive.

We offload the gradient computation in both the fixed-
functional and programmable PIMs. Much like in the
case with CG, we benefit from PIM because of the data
access pattern and frequent data movement.

IV. EVALUATION

We report the performance of the two NAS bench-
marks and GLADE in this section.

A. NAS Benchmarks

Figure 6 shows the performance results for the two
NAS parallel benchmarks, CG and MG. We notice that
PIMs bring significant performance improvement: for
CG there are 18.6x (fixed-functional PIMs) and 13.9x
(programmable PIM) performance improvement over the
non-PIM case; for MG there are 8.7x (fixed-functional

1: // x[i] is example i
2: // index[i] is the indexes for example i
3: // y[i] is the label for example i
4: // w is the model
5: // g is the gradient
6:
7: // iterate over all the training examples
8: for (i = 1, numExamples) do
9: // compute the dot-product between example i and

model w
10: s = 0
11: for j = 0, size(x[i]) do
12: s += x[i][j] * w[index[i][j]]
13: end for
14:
15: // finalize the gradient computation
16: if (1 - y[i] * s > 0) then
17: for j = 0, size(x[i]) do
18: g[index[i][j]] += x[i][j] * y[i]
19: end for
20: end if
21: end for

Figure 5: SVM gradient computation. The blue lines
show the operations offloaded to both fixed-functional
and fully-programmable PIM

PIMs) and 91.4x (programmable PIM) performance im-
provement over the non-PIM case.

For CG, the workloads offloaded to the fixed-
functional PIMs and programmable PIM are almost
the same. However, the fixed-functional PIMs finish
the offloaded workload in much shorter time than the
programmable PIM (see “offloading computation exe-
cution time” in Figure 6). This is because the fixed-
functional PIMs have larger number of operators (adders
and multipliers) than the programmable PIM, potentially
providing more comptuation parallelism than the pro-
grammable PIM. In general, for CG, the fixed-function
PIMs perform 90% better than the programmable PIM.

For MG, we have a different story. The workload
offloaded to the programmable PIM is larger than that
offloaded to the fixed-functional PIMs. The specialized
operations in the fixed-functional PIMs limits the of-
floadability of workloads. On the other hand, the pro-
grammable PIM has freedom to offload any workload,
providing more opportunity to accelerate performance.
Furthermore, the fixed-functional PIMs suffer from high
PIM synchronization overhead (17% of the total ex-
ecution time), while the programmable PIM has an
ignorable synchronization overhead. In general, for MG,
the programmable PIM performs 25% better than the
fixed-functional PIMs.

In conclusion, neither fixed-functional PIMs nor pro-
grammable PIM can perform best in all cases. We must
combine both of them to leverage their strength while
avoiding their limitation.

B. GLADE

Figure 7 shows the results for GLADE. We first notice
the big performance improvement brought by PIMs: we
have 2.13x and 2.09x speedup with the fixed-functional
PIMs and programmable PIM respectively. This is an-
other demonstration of how PIMs can be beneficial
for data-intensive applications. We further notice that
the fixed-functional PIMs have better performance than
the programmable PIM (2% performance improvement).
Our further investigation reveals that the workloads
offloaded to the fixed-functional PIMs and the pro-
grammable PIM are similar. The fixed-functional PIMs
perform better because of massive numbers of operators
supported in the PIMs. These operators provide larger
computation parallelism than the programmable PIM.
The programmable PIM cannot show better performance
as MG does, because there is no instruction that is
offloadable to the programmable PIM while not offload-
able to the fixed-functional PIMs, hence the benefits of
the programmable PIM can not be fully explored.

In general, the conclusion we get from the results of
GLADE is consistent with that from MG and CG. There
is no single PIM design that can stand out in all cases.

V. RELATED WORK

A growing body of work has explored PIM de-
sign from various perspectives, such as architecture
design [24], [14], [2], [3], [27], [9], [21], software
interface [2], [1], OS and runtime [14], [36], and appli-
cations [15], [3]. These works can be grouped into two
major categories – fixed-functional PIM [24], [14], [15],
[2], [3], [27] and fully-programmable PIM [9], [36], [1],
[21] – based on how the PIM computing interfaces with
the software. Previous work mostly falls in one of the
two categories. Yet, our work shows that neither fixed-
functional PIM nor programmable PIM fit all use cases.
Even with a single application, different stages can favor
different types of PIMs. In this section, we present recent
research in the two categories.

A. Fixed-Functional PIM Design and Management

This class of PIMs provides pre-defined or fixed
functions with memory-side computing. Hardware and
software can dynamically allocate or statically map
instructions to the memory-side computing units. How-
ever, they are by definition non-programmable. Because
functions are fixed, they are typically simple and general
enough such that they can be reused heavily through-
out the execution of various applications. In fact, a
recent industry proposal – the HMC 2.0 standard [18] –
supports a set of fixed-functional operations, including
addition, bitwise swap, bit write, boolean operations, and
numerical comparison. Yet, to keep the functions simple,
limitations exist. For example, to minimize the effort

36321439.68 48495319
676155677

1

100

10000

1000000

100000000

1E+10

fixPIM ProgPIM NonPIM

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

(a) CG

offloading computation execution time

PIM initialization and return time

PIM sync time

not_offloading computation execution time

not_offloading memory execution time

total

132608021.6
12580889

1150449917

1

100

10000

1000000

100000000

1E+10

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

fixPIM ProgPIM NonPIM

(b) MG

Figure 6: Preliminary results for two NPB benchmarks with emulation of fixed-function and programmable PIM.

1.64735E+11 1.68E+11 3.50968E+11

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
1.00E+08
1.00E+09
1.00E+10
1.00E+11
1.00E+12

E
xe

cu
tio

n
tim

e(
cy

cl
es

)

not_offloading memory execution time
not_offloading computation execution time
PIM sync time
PIM initialization and return time
offloading computation execution time

NoPIM FixPIM ProgPIM

Figure 7: Preliminary results for GLADE with emulation of fixed-function and programmable PIM.

of converting original program segments into HMC
operations, the target applications have to contain a sig-
nificant amount of irregular memory accesses triggered
by short code sections that can be easily spotted. As
such, it especially benefits a subset of workloads, e.g.,
graph traversal applications, which issue a large number
of irregular memory accesses mostly coming from a
few lines of code. Programming of fixed-functional
PIMs typically relies on low-level APIs [19] and data
structures [6]. For instance, Chu et al. [6] introduce a
PIM-aware data structure that uses low-level PIM APIs
to allocate memory and keeps track of data and task
mapping.

B. Programmable PIM Design and Management

Prior PIM work has focused on integrating pro-
grammable logic in memory modules [28], [8]. These
PIMs can be programmed by application or system
software in a similar way as conventional CPUs. As
such, this design offers the expressiveness and flexibility
of a CPU or configurable logic device, while reducing
the overhead of off-chip data movement. Recent studies
revisit the programmable PIM design in the context of
the new HMC technology and new requirements of data-
intensive applications. Most of these studies strive to
integrate GPU-like computing units in memory [36].
Several studies employed ARM cores as computing
units [1]. These programmable PIMs are well-suited
for intrinsically parallel tasks like traversing large data
structures by supporting many threads in flight simulta-
neously.

The programming model of the programmable PIM
evolves from parallel programming models, such as

OpenMP. For example, Fraguela et al. [11] and Solihin
et al. [33] propose a series of directives and clauses that
enrich the semantics of OpenMP directives. These direc-
tives provide great flexibility for task partitioning. Hall et
al. [17] introduce a primitive host-to-memory interface
that uses an event based mechanism to communicate
computation to memory. Tseng et al. [34] introduce a
data-triggered multithreading programming model that
enables flexible expression of data-computation associ-
ations. As a result, their runtime triggers PIM computa-
tion upon update to the associated data. Ahn et al. [1]
triggers computation in PIM as a (non-)blocking remote
function call via message passing.

VI. CONCLUSIONS

This paper is a preliminary study on the performance
implications of fixed-functional and programming PIM
on data intensive applications. The paper reviews the
limitations and strengths of the two PIMS from mul-
tiple perspectives. The fixed-functional PIM has more
computation operators (e.g., adders and multipliers) than
the prorammable PIM, hence can potentially provide
more computation parallelism for specific operations;
the programmable PIM provides greater flexibility to
offload workloads than the fixed-functional PIM hence
can provide better performance when there are no
sufficient operations to offload to the fixed-functional
PIM. The fixed-functional PIM also suffers from the
synchronization overhead more frequently, because it
provides workload offloading at finer granularity than
the programmable PIM. We reveal that neither the fixed-
functional PIM nor programmable PIM can perform
optimally, and we must combine the two PIMs to achieve

best performance in all cases.

REFERENCES

[1] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A
scalable processing-in-memory accelerator for parallel
graph processing. In Proceedings of the 42nd Annual In-
ternational Symposium on Computer Architecture, pages
105–117, 2015.

[2] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. Pim-enabled
instructions: A low-overhead, locality-aware processing-
in-memory architecture. In Proceedings of the 42Nd An-
nual International Symposium on Computer Architecture,
pages 336–348, 2015.

[3] B. Akin, F. Franchetti, and J. C. Hoe. Data reorganization
in memory using 3d-stacked dram. In Proceedings of
the 42Nd Annual International Symposium on Computer
Architecture, pages 131–143, 2015.

[4] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS
parallel benchmarks. Technical Report 103863, NASA,
July 1993.

[5] Y. Cheng, C. Qin, and F. Rusu. GLADE: Big Data
Analytics Made Easy. In SIGMOD 2012.

[6] M. L. Chu, N. Jayasena, D. P. Zhang, and M. Ignatowski.
High-level programming model abstractions for process-
ing in memory. Workshop on Near-Data Processing,
2013.

[7] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal,
and H. Noyes. Architecture for Parallel Automata Pro-
cessing. IEEE Transaction on Parallel and Distributed
Systems, (12), 2014.

[8] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett,
J. LaCoss, J. Granacki, J. Shin, C. Chen, C. W. Kang,
I. Kim, and G. Daglikoca. The architecture of the DIVA
processing-in-memory chip. In Proceedings of the 16th
International Conference on Supercomputing, pages 14–
25, 2002.

[9] Y. Eckert, N. Jayasena, and G. H. Loh. Thermal feasi-
bility of die-stacked processing in memory. In WoNDP,
pages 1–6, 2014.

[10] D. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru,
and R. McKenzie. Computational RAM: Implementing
processors in memory. IEEE Des. Test, 16(1):32–41, Jan.
1999.

[11] B. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and
J. Torrellas. Programming the flexram parallel intelligent
memory system. In Proceedings of Principles and
Practice of Parallel Programming (PPoPP), 1999.

[12] B. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and
J. Torrellas. Programming the flexram parallel intelligent
memory system. In Proceedings of the 9th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2003.

[13] M. Gokhale, B. Holmes, and K. Iobst. Processing
in memory: The terasys massively parallel PIM array.
Computer, 28(4):23–31, Apr. 1995.

[14] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T. M.
Low, L. Pileggi, J. C. Hoe, and F. Franchetti. 3D-stacked
memory-side acceleration: Accelerator and system de-
sign. In WoNDP, pages 1–6, 20se14.

[15] Z. Guz, M. Awasthi, V. Balakrishnan, M. Ghosh,
A. Shayesteh, and T. Suri. Real-time analytics as the
killer application for processing-in-memory. In WoNDP,
pages 1–3, 2014.

[16] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame,
J. Draper, J. LaCoss, J. Granacki, J. Brockman, A. Srivas-
tava, W. Athas, V. Freeh, J. Shin, and J. Park. Mapping ir-
regular applications to DIVA, a PIM-based data-intensive
architecture. In Proceedings of the 1999 ACM/IEEE
Conference on Supercomputing, 1999.

[17] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame,
J. Draper, J. LaCoss, J. Granacki, J. Brockman, A. Srivas-
tava, W. Athas, V. Freeh, J. Shin, and J. Park. Mapping
irregular applications to diva, a pim-based data-intensive
architecture. In International Conference on High Per-
formance Computing, Networking, Storage and Analysis
(SC), 1999.

[18] HMCC. Hybrid memory cube specification 2.0. http:
//http://www.hybridmemorycube.org/.

[19] T. Kelly, H. Kuno, M. Pickett, H. Boehm, A. Davis,
W. Golab, G. Graefe, S. Harizopoulos, P. Joisha, A. Karp,
N. Muralimanohar, F. Perner, G. Medeiros-Ribeiro,
G. Seroussi, A. Simitsis, R. Tarjan, and S. Williams.
Sidestep: Co-designed shiftable memory and software.
Technical report, HP Labs, 2012.

[20] T. Kelly, H. Kuno, M. D. Pickett, H. Boehm, A. Davis,
W. Golab, G. Graefe, S. Harizopulos, P. Joisha, A. Karp,
N. Muralimanohar, F. Perner, G. Seroussi, A. Simitsis,
R. Tarjan, and R. S. Williams. Sidestep: Co-designed
shiftable memory and software. In HP Technical Report,
2012.

[21] C. D. Kersey, S. Yalamanchili, and H. Kim. Simt-based
logic layers for stacked dram architectures: A prototype.
In Proceedings of the 2015 International Symposium on
Memory Systems, pages 29–30, 2015.

[22] Y. Kim, T.-D. Han, S.-D. Kim, and S.-B. Yang. An
effective memory–processor integrated architecture for
computer vision. In Proceedings of the International
Conference on Parallel Processing, pages 266–, 1997.

[23] P. M. Kogge. EXECUBE-a new architecture for scaleable
MPPs. In Proceedings of the 1994 International Confer-
ence on Parallel Processing - Volume 01, pages 77–84,
1994.

[24] G. H. Loh, N. Jayasena, M. H. Oskin, M. Nutter,
D. Roberts, M. Meswani, D. Zhang, and M. Ignatowski.
A processing-in-memory taxonomy and a case for study-
ing fixed-function PIM. In WoNDP, pages 1–6, 2013.

[25] C.-K. Luk et al. Pin: Building customized program
analysis tools with dynamic instrumentation. In Proceed-
ings of the ACM SIGPLAN conference on Programming
language design and implementation, pages 190–200,
Chicago, Illinois, June 2005.

[26] R. C. Murphy, P. M. Kogge, and A. Rodrigues. The
characterization of data intensive memory workloads on
distributed PIM systems. In Revised Papers from the
Second International Workshop on Intelligent Memory
Systems, pages 85–103, 2001.

[27] L. Nai and H. Kim. Instruction offloading with hmc
2.0 standard: A case study for graph traversals. In
Proceedings of the 2015 International Symposium on
Memory Systems, pages 258–261, 2015.

[28] M. Oskin, F. T. Chong, and T. Sherwood. Active
pages: A computation model for intelligent memory. In
Proceedings of the 25th Annual International Symposium
on Computer Architecture, pages 192–203, 1998.

[29] D. Patterson, T. Anderson, N. Cardwell, R. Fromm,
K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick. A
case for intelligent RAM. IEEE Micro, 17(2):34–44, Mar.
1997.

[30] F. Rusu and A. Dobra. GLADE: A Scalable Framework
for Efficient Analytics. OS Review, 46(1), 2012.

[31] F. Rusu and C. Qin. Speculative Approximations for
Terascale Analytics. CoRR 1501.00255, 2014.

[32] F. Rusu, C. Qin, and M. Torres. Scalable Analytics
Model Calibration with Online Aggregation. IEEE Data
Engineering Bulletin, 38(3), 2015.

[33] Y. Solihin, J. Lee, and J. Torrellas. Automatic code
mapping on an intelligent memory architecture. IEEE
Transactions on Computers, 2001.

[34] H.-W. Tseng and D. M. Tullsen. Data-triggered mul-
tithreading for near data processing. In Workshop on
Near-Data Processing, 2013.

[35] T. Wen. Introduction to the x10 implementation of npb
mg. In IBM Technical Report, 2006.

[36] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse,
L. Xu, and M. Ignatowski. TOP-PIM: Throughput-
oriented programmable processing in memory. In Pro-
ceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing, pages
85–98, 2014.

