Algorithm-Directed Data Placement in Explicitly Managed
Non-Volatile Memory

Panruo Wu
U. of California, Riverside

pwu011@ucr.edu

Jeffrey S. Vetter
Oak Ridge National Lab
vetter@computer.org

ABSTRACT

The emergence of many non-volatile memory (NVM) tech-
niques is poised to revolutionize main memory systems be-
cause of the relatively high capacity and low lifetime power
consumption of NVM. However, to avoid the typical limita-
tion of NVM as the main memory, NVM is usually combined
with DRAM to form a hybrid NVM/DRAM system to gain
the benefits of each. However, this integrated memory sys-
tem raises a question on how to manage data placement
and movement across NVM and DRAM, which is critical
for maximizing the benefits of this integration. The existing
solutions have several limitations, which obstruct adoption
of these solutions in the high performance computing (HPC)
domain. In particular, they cannot take advantage of appli-
cation semantics, thus losing critical optimization opportu-
nities and demanding extensive hardware extensions; they
implement persistent semantics for resilience purpose while
suffering large performance and energy overhead. In this pa-
per, we re-examine the current hybrid memory designs from
the HPC perspective, and aim to leverage the knowledge
of numerical algorithms to direct data placement. With ex-
plicit algorithm management and limited hardware support,
we optimize data movement between NVM and DRAM, im-
prove data locality, and implement a relaxed memory per-
sistency scheme in NVM. Our work demonstrates significant
benefits of integrating algorithm knowledge into the hybrid
memory design to achieve multi-dimensional optimization
(performance, energy, and resilience) in HPC.

1. INTRODUCTION

Extreme scale HPC systems are characterized by power
constraints, massive parallelism, and large working set size.
As a result, the DRAM-based main memory has remained a
crucial bottleneck because of its relatively low capacity and
large power consumption. Non-volatile memories (NVM),
such as resistive RAM (ReRAM), spin-transfer torque RAM

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
HPDC’16, May 31-June 04, 2016, Kyoto, Japan

© 2016 ACM. ISBN 978-1-4503-4314-5/16/05. .. $15.00

DOL: http://dx.doi.org/10.1145,/2907294.2907321

Dong Li
U. of California, Merced

dli35@ucmerced.edu

Zizhong Chen
U. of California, Riverside
chen@cs.ucr.edu

Sparsh Mittal
Oak Ridge National Lab
mittals@ornl.gov

(STT-RAM), and phase change memory (PCM), is expected
to be able to revolutionize memory systems. They can have
either better density (i.e., larger capacity per unit area) or
lower stand-by power than DRAM, while being much faster
than the traditional back-end storage. NVMs, however,
have their own limitations: their write energy and access
latency are typically larger than those of DRAM. Hence,
NVM is usually combined with DRAM, forming a hybrid
NVM/DRAM system to leverage the best characteristics of
the two types of memories [15, 29, 32, 33, 34, 40, 37].

The hybrid main memory system, however, presents a
challenge of effective data placement and movement across
NVM and DRAM. Addressing this challenge is critical to op-
timize performance and energy efficiency of NVM. To exploit
the persistence of NVM for resilience purpose, it is also desir-
able to manage data in NVM to support crash consistency,
such that the application is resumable and re-computation
is minimized after a system failure and reboot.

Most existing methods introduce hardware and software
extensions to manage data placement in the hybrid main
memory system. The hardware-based extensions treat DRAM
as a transparent cache with customized caching policies to
copy and migrate data [33, 32], or place DRAM and NVM
side-by-side with the hardware-based monitoring mechanisms
to capture memory access patterns and trigger data migra-
tion [40, 37, 34, 29, 15]. These hardware-based solutions,
however, completely ignore application semantics. Due to
the heuristic-based and reactive nature of their data move-
ment algorithms, data migration in these works may trigger
inefficient data movement with poor performance and low
energy efficiency, and result in local optimum trap in adap-
tation.

On the other hand, the software-based extensions focus
on implementing persistent semantics [30] for specific appli-
cation domains, such as file systems [12], database [36], and
key-value stores [11]. These designs, however, incur signifi-
cant performance cost (120% increase in memory traffic and
only 53% of the throughout of the pure DRAM-based sys-
tem [41]) due to expensive logging [11, 36] or copy-on-write
(COW) mechanisms [12, 35]. Although a recent work im-
proves the performance [41], it cannot accommodate large-
granularity persistent updates which are common in the
HPC field. In general, most existing methods cannot work
well for the HPC domain, because of the high-performance
demands imposed in this domain.

In this paper, we re-examine the current hybrid mem-
ory designs from the HPC perspective, and aim to lever-

age the knowledge of numerical algorithms to direct data
placement. Compared to other domains, the numerical al-
gorithms in HPC are highly structured and formalizable.
Hence, many research efforts have focused on using numer-
ical algorithm knowledge to address the problems of fault
tolerance [14, 18, 9], performance optimization [23, 38], and
energy efficiency [20, 17]. In this paper, we extend the usage
of numerical algorithm knowledge into a new territory: by
introducing algorithm semantics into data management, we
identify three opportunities to improve performance, energy,
and resilience (PER) of the hybrid memory.

First, algorithm-directed data placement (ADDP) enables
optimization for specific numerical operations, commonly
found in computational kernels of HPC applications. These
operations include matrix transpose, regular scatter/gather
using an indirection vector, and strided memory accesses.
The current common practice to implement these operations
can cause expensive data copy or low cache utilization be-
cause of data over-fetching for sparse data items. ADDP
avoids those problems by explicitly controlling how data are
accessed and cached in hybrid memory systems. This data
control happens as a side effect of data movement in the hy-
brid memory system which avoids the data copy overhead.

Second, ADDP results in more aggressive data manage-
ment than the existing solutions. Guided by the algorithm
structure and bounded algorithm performance, ADDP is
able to prefetch data from NVM to DRAM. Coupled with
a direct memory access (DMA) mechanism for bulk data
copy, data prefetching can be overlapped with computation,
minimizing the negative impact of data management on per-
formance. Furthermore, ADDP can trigger data migration
from DRAM to NVM proactively to save limited DRAM
space and save DRAM static energy.

Third, ADDP enables a relaxed memory persistency scheme
to implement system resilience on NVM. The strict per-
sistency approach, implemented by recent works [26, 30],
maintains the program order of every write request. This,
however, is also one of the fundamental reasons for its poor
performance. By leveraging the algorithm knowledge, we
demonstrate that the data persistency on NVM is only needed
to be guaranteed at certain algorithm phases with the quan-
tifiable cost of recomputation at system crashes. Hence,
the relaxed persistency approach brings performance ben-
efits manifested by high instruction execution performance
and memory level parallelism. Also, the recomputation cost
of ADDP is much smaller than that of a common HPC re-
silience technique (i.e., the checkpoint/restart).

We demonstrate the effectiveness of ADDP using three
representative computational algorithms (conjugate gradi-
ent, fast Fourier transform, and LU decomposition). In this
paper, we use PCM as an example of NVM, although our
methodology is applicable to other hybrid NVM/DRAM sys-
tems also. In summary, this work makes the following con-
tributions.

e We provide an algorithm-managed hybrid NVM/DRAM
system to optimize across multiple dimensions (per-
formance, energy, and resilience). We show that al-
gorithm features, common numerical operations, and
algorithm structures can be leveraged to direct data
placement without extensive hardware changes. This
result is important for building next-generation extreme-
scale HPC systems where one often needs to strike
a balance between performance target and ownership

cost.

e We propose a new relaxed memory persistence execu-
tion scheme on NVM. We reveal the correlation be-
tween data persistency and recomputation, and pro-
vide a new angle to examine the emerging memory
persistency model [30] for NVM.

We identify the necessary hardware support to imple-
ment ADDP. This hardware support includes a cus-
tomized DMA mechanism for bulk data movement. In
combination with the aggressive data management at
the software level, the hardware support enables flexi-
ble algorithm control and productive programming ex-
perience.

Our detailed evaluations show that ADDP provides
higher performance (up to 49%) and energy efficiency
of main memory (up to 25%), compared to a common
data placement scheme without algorithm semantics.
Further, write operations to PCM are significantly re-
duced (by up to 13x). Our approach incurs less than
2% performance overhead while achieving the same re-
silience as the checkpoint technique.

2. SYSTEM DESIGN

To enable algorithm-directed data placement, hardware
and software must work in concert to support algorithm-
specific optimizations. To avoid performance loss while im-
proving energy efficiency, we must place write-intensive, fre-
quently accessed data in the volatile memory (DRAM). Fur-
ther, given the limited capacity of the volatile memory and
large working set size of HPC applications, data in the volatile
memory should be properly managed and timely migrated to
the persistent memory (NVM) to save space and maximize
the benefits of the volatile memory.

2.1 Hardware Design

The hardware design must accommodate three require-
ments to facilitate algorithm-directed data placement. First,
the hardware design must support efficient, massive data
movement. The massive data sets represented as data struc-
tures in a numerical algorithm often display uniform access
pattern. For example, in the LU factorization algorithm,
as the input matrix is iteratively decomposed, specific rows
and columns of the input matrix can experience the same
intensive update operations. These rows and columns can
take 20% memory footprint of the algorithm. If they are
identified as the candidates to migrate, massive data move-
ment can occur. Similar examples can also be found in
a large range of algorithm implementations based on well-
structured stencils. Second, while the algorithm can direct
critical data placement at the application level, we must re-
lieve programmer from the burden of handling all data place-
ment. Hardware is a solution to automatically direct data
that cannot be guided by the algorithm. Third, to enable
algorithm-directed data placement, hardware working with
software must provide easy and direct access to the volatile
memory and persistent memory. We organize DRAM and
PCM to meet the second and third requirements, and intro-
duce a DMA mechanism to meet the first requirement.

2.1.1 Main Memory Organization

Main Memory Memory

V
PCM

v
PCM P DRAM

a b c

Figure 1: A logical view of main memory organizations

Figure 1.c logically shows the memory organization in our
hybrid memory system. This is in contrast to the convention
memory organizations shown in Figure 1.a [33, 32] and Fig-
ure 1.b [40, 37, 34, 29, 15]. In Figure 1.a, DRAM is organized
similar to an inclusive hardware cache invisible to the OS.
The limitation of this approach is that DRAM space does
not add to the overall memory capacity. Also, the hardware-
managed DRAM cache is generally applied to all workloads,
even those with poor locality (e.g., the sparse matrix vector
multiplication), potentially losing performance and energy
efficiency. In Figure 1.b, DRAM and PCM are combined
into a large flat memory. To optimize performance and en-
ergy efficiency, the data placement in DRAM and PCM is de-
termined by hardware or OS. Hardware or OS continuously
monitors temporal memory access patterns to direct data
placement. Notice that the architecture shown in Figure 1.a
loses application semantics, and does not meet the third re-
quirement to facilitate algorithm-directed data placement.
Also, the architecture shown in Figure 1.b imposes signifi-
cant burden of data management at the software side, and
does not meet the second requirement.

Figure 1.c logically displays our design. With this de-
sign, DRAM is divided into two parts separately managed by
software and hardware. In particular, one part of DRAM is
used as an exclusive software-managed memory (SMM), and
shares the same physical address space as PCM (but with
different addresses). With the support of system software
(Section 2.2), the application can explicitly direct which
data blocks should be copied from PCM to SMM where
the PCM-unfriendly computation will occur, or which data
blocks should be migrated from SMM to PCM when the
computation finishes or the SMM runs out of space. The
other part of DRAM is used as an inclusive hardware LRU
cache for PCM, similar to Figure 1.a. This hardware-managed
DRAM cache is inevitable, because some data cannot be
controlled by the application or is difficult to control by the
application (e.g., stack frames and a third party library).

The placement of these data must rely on conventional hardware-

based solutions without the need of application intervention.

To implement the hardware-managed DRAM cache in the
above memory organization, we use a hardware design sim-
ilar to [29, 33, 32]. In particular, the hardware-managed
DRAM cache is organized similar to a traditional hardware
cache. The hardware-managed DRAM cache is managed
by an on-chip memory controller (MC) [29]. MC tracks
whether data are located in the hardware-managed DRAM
cache based on metadata (including tag, LRU, valid, and
dirty bits). Each hardware-managed DRAM cache block
has metadata. All metadata are stored in DRAM along-
side data, but cached in MC to minimize metadata lookup
latency [29]. Based on the retrieved metadata, a memory
request is placed in either a DRAM scheduler or a PCM
scheduler in MC. After data arrive at MC, if they should be
cached into (or evicted from) the hardware-managed DRAM

Bank pcm PCM

PCM

Scheduler
DRAM ‘
Scheduler|Channel

Last Level Mem
Cache Miss Controller

Metadata Storage
DRAM Cache Management

DMA B DRAM

Implemen-]
tation B T L

SMM | DRAM Cache

Figure 2: Our hybrid memory organization

cache, a migration request is inserted into the destination
scheduler (either the DRAM scheduler or the PCM sched-
uler). The scheduler then writes data into the destination
device.

Different from the existing hardware-based work, we treat
SMM and PCM equally as the regular main memory. We
use separate memory schedulers (one for PCM and the other
for SMM and hardware-managed DRAM cache), because
of the difference of memory timing constraints in DRAM
and PCM. The hardware-managed DRAM cache and SMM
are still composed of multiple banks organized as rows and
columns of memory cells in the traditional manner, but they
are separated at the granularity of memory bank. Figure 2
depicts important implementation details.

2.1.2 Massive Data Copy and Migration

To support algorithm-directed data placement and meet
the first requirement, we introduce a DMA mechanism into
MC to facilitate massive data copy and migration while min-
imizing data management overhead. We call data copy and
migration collectively as data management in the later dis-
cussion.

DMA has been traditionally used to transfer data directly
from the host memory to any input/output device without
the host CPU intervention. We introduce DMA here to
enable asynchronous data management between PCM and
SMM. Asynchronous data management is a crucial perfor-
mance optimization, especially when massive and frequent
data management is desired in hybrid memory systems. In
combination with algorithm direction at the user level, data
management can overlap with computation, removing the
data management overhead from the critical path.

An alternative for asynchronous data movement between
memory devices without a dedicated DMA mechanism is to
use helper threads. Although using helper threads for data
movement is more flexible, we prefer the in-memory DMA
for the following reasons. First, DMA frees CPU cores from
moving the data by loading and storing, thereby increasing
the system concurrency and possibly the performance. To
use the DMA to move and transform data, CPU first ini-
tiates operations (in table 1) in the DMA and later checks
the status of the operations. The DMA subsequently fulfills
the data movements by scheduling memory access requests
to MC. In contrast, the helper thread moves data by a se-
ries of load and store instructions executed by a CPU core.
Those loads and stores go through the cache hierarchy, and
the cache misses would result in memory access requests
to MC. With bulk, non-sequential data movement, a high
cache miss rate is expected. Whether DMA or a helper
thread will perform better depends on the performance bot-
tleneck of the application. For computation-intensive ap-
plications such as dense matrix operations and FFT where

the computations are likely to be the performance bottle-
neck, offloading data movements to DMA would minimize
the negative performance impact of using the helper thread.
For other less computation-intensive applications where the
bottleneck would likely be memory latency or bandwidth,
the available cores may not be fully utilized, and the perfor-
mance between DMA and the helper thread may not be sig-
nificantly different. Second, using the helper thread, there
are some negative side effects of moving data by loading
into the processor and then storing into the memory. Both
loads and stores may pollute the caches, and the stores may
incur unnecessary fetches of cache lines from the memory.
Non-temporal store with write-combining and non-temporal
load with load buffer mitigates the problem, but can only
work effectively when reads and writes are sequential. For
non-sequential memory accesses, the useless bytes in a cache
line would have negative performance and energy impacts.
Third, the DMA within MC can be specialized to schedule
memory accesses better using dynamic request information.
For example, a larger internal buffer can be employed to sup-
port data transformations in the memory. In [7], the mem-
ory copy by DMA is demonstrated to be 20% faster than the
best copy algorithm using CPU cores. In summary, we use
in-memory data movement based on DMA rather than the
helper thread for performance and energy optimization.

To implement the DMA operations, a set of registers are
introduced into MC, similar to existing designs [21, 7]. In
particular, we add a set of DMA control registers to record
memory address, byte count, operation type (e.g., scatter
and gather), and operation specific parameters (e.g., data
distribution for scatter and gather) for data management.
We also introduce status registers to track data manage-
ment status for the DMA controller. The DMA controller
performs data management. After being configured with the
control registers, the DMA controller fetches a block of data
from the source device to a copy/migration buffer, and then
inserts a copy request into the destination scheduler which
writes data from the copy/migration buffer into the destina-
tion device. The above process is repeated until the entire
transfer is completed. Afterwards, the scheduler notifies the
DMA controller of the completion of data management. The
DMA controller then updates the control registers to indi-
cate the DMA completion.

Different from the existing designs [21, 7], all DMA related
registers are mapped into memory address space to fully en-
able DMA programmability at the application level (with
the assistance of OS for virtual memory management). In
particular, before triggering data management with DMA,
the application initializes the control registers and launches
DMA operations. The data involved in the DMA transfer is
not available to use until the DMA completion notification
is provided by the status register and read by the applica-
tion. This application-managed DMA mechanism is criti-
cal for algorithm-directed data placement. Different from
prior hardware-based data management in conventional hy-
brid memory systems, the statuses of massive data manage-
ment (e.g., start and completion) are exposed, opening new
opportunities for performance optimization at the applica-
tion level. These opportunities include prefetching (from
PCM to SMM) and proactive eviction (from SMM to PCM)
to overlap data movement and computation. To implement
these two optimizations without DMA, one has to introduce
thread-level parallelism (e.g., using a helper thread to man-

age data) and maintain thread synchronization.

Furthermore, motivated by vectored I/O DMA in net-
works, we introduce specific operations in DMA, includ-
ing matrix transpose, strided memory accesses, and scat-
ter/gather. These numerical operations are extremely com-
mon in HPC applications. For matrix transpose, the trans-
pose happens as data are copied/migrated to the destina-
tion device, hence the transpose is treated as a side effect of
data management, avoiding memory copy overhead in the
traditional transpose implementation. For strided memory
accesses, when sparse data items in PCM are copied from
PCM to SMM, they can be collectively copied and packed in
SMM. This improves on-chip cache utilization and improves
performance. For scatter/gather operations, data copy from
multiple memory areas can occur in a single DMA trans-
action, improving performance of data copy by leveraging
memory level parallelism. These operations are initiated by
specifying operation type in the DMA control registers.

Hardware Cost. The primary hardware cost includes
the metadata storage for the implementation of the hardware-
managed DRAM cache, and the DMA implementation (e.g.,
the DMA controller and registers). The metadata storage
cost is the same as that in the existing hardware-based ap-
proach [29] (e.g., 8KB SRAM in MC), which is acceptable.
For the DMA implementation, many previous works have
proposed DMA with similar levels of complexity and so-
phistication [22, 3, 21, 7] with manageable area size. Our
hardware cost is comparable to them.

2.2 Software Design

At the system software level, the DRAM cache is invisible
and does not need any software support. PCM is treated as
the main memory and managed by the traditional virtual
memory management (VMM) in OS. SMM shares the same
physical memory space with PCM, and is managed by VMM
without paging. Paging is not supported by SMM, because
the capacity-limited SMM tends to hold performance criti-
cal data and paging could significantly impact performance.
From the programmer’s view, SMM is just a pre-allocated
memory space. The virtual address of the SMM space is
mapped to the physical address of SMM by OS. In common
programming practices, a global pointer can be employed to
track the boundary of free SMM memory.

We also introduce a set of nonblocking memory opera-
tion APIs to enable algorithm direction and leverage DMA.
These APIs are shown in Table 1. Here, dma_memcpy launches
regular memory copy operations with DMA; dma_stride,
dma_gather, dma_scatter, dma_transpose, and dma_lacpy per-
form optimized DMA operations as discussed in Section 2.1.
Each of these DMA operations returns an ID. The request
ID is used later to query the status of DMA or wait for its
completion with dma_wait or dma_test. In addition, these
DMA operations allow the programmer to customize data
type with dma_datatype, especially for non-contiguous data
in memory. The DMA primitives can be implemented in an
operating system as system calls to read/write DMA reg-
isters. In general, we introduce limited extensions to the
system software while introducing rich DMA semantics to
enable algorithm directed data placement.

3. ALGORITHM-DIRECTED DATA PLACE-
MENT

Table 1: APIs for managing and operating on SMM

API Description

int dma memcpy (void *src, void *dest, int couni, DMA Datatype datatype) dest[i]=srcli] (i=0:count-1)

int dma stride(void *src, void *dest, int count, int stride, DMA Datatype datatype) dest[i]=src[stride*i] (i=0:count-1)

int dma gather(void *src, void *dest, int count, int *ids, DMA Datatype datatype dest[i]=srclidx[i]] (i=0:count-1)

int dma scatter(void *src, void *dest, int count, int *ide, DMA Datatype datatype) dest[idx[i]]=src[i] (i=0:count-1)

int dma transpose(void *src, void *dest, int diml, int dim2, int m, int n, DMA Datatype datalype) | dest|jfdimi*i]=src[itdim2¥j] (i=0:m-1,j=0:n-1)
int dma lacpy (void *src, void *dest, int diml, int dim2, int m, int n, DMA Datatype datatype) destlitdim1¥j]=srclitdim2%j] (i=0:m-1,j=0: n-1)

int dma_wait(int request, DM A_Status *status)

‘Wait for a DMA request to complete |

int dma_test(int request, DMA_Status *status)

Test if a DMA request is completed |

In this section, we discuss details of the algorithms. While
the algorithm details can vary from one algorithm to an-
other, there are several common approaches for using algo-
rithm knowledge to direct data placement. In this section,
we first provide a general description of these approaches,
and then show three case studies to explain how these ap-
proaches can be utilized in specific algorithms.

3.1 General Description

To improve performance and energy efficiency of
the hybrid memory system, we rely on effective use of three
techniques: (1) strategically placing data structures in SMM

and PCM to avoid unnecessary thrashing in hardware-managed

DRAM cache and expensive write in PCM; (2) using the
asynchronous data movement primitives between SMM and
PCM to overlap data movement and computation; (3) us-
ing hardware supported special data movement primitives
(transpose, gather and scatter, etc) to efficiently move and
transform data.

To implement (1), we leverage algorithm knowledge to
determine the dynamic behavior of program based on the
analysis of algorithm complexity and data criticality. Us-
ing algorithm knowledge, we always place performance- and
algorithm-critical data into SMM. This is different from the
existing approaches that direct data placement largely based
on temporal access patterns. The direction of data place-
ment based on the temporal access pattern can result in
hardware-managed DRAM cache thrashing when the data
access pattern changes across the execution of algorithm.
Although the compiler-based data flow analysis and liveness
analysis can also provide hints to implement (1), the com-
plexity of inter-procedure analysis and alias analysis often
underestimate data usage and skew the decision. As we show
later, the effectiveness of (1) is especially pronounced in the
first case study (i.e., the conjugate gradient algorithm).

To implement (2), we leverage algorithm knowledge to de-
termine the best point to trigger proactive data movement.
Using algorithm knowledge, we maximize the overlap be-
tween computation and data movement without impacting
execution correctness. The effectiveness of (2) is especially
pronounced in the second case study (i.e., the Fast Fourier
Transform). To implement (2), we can also use general com-
piler and runtime techniques to direct data placement. For
example, using a task-based programming model, we encap-
sulate computation and data movement into different tasks,
and rely on runtime to determine the task scheduling and
rely on task-level parallelism to improve performance. How-
ever, this method has two limitations. First, to ensure execu-
tion correctness, the task scheduling largely depends on data
dependency analysis. However, a coarse-grained data depen-
dency analysis (e.g., at the level of data array) can serialize
task execution and reduce concurrency, while a fine-grained
data dependency analysis can bring large runtime overhead
to track data dependency. Second, an algorithm implemen-
tation based on a task-based programming model sometimes

requires restructuring of applications to address synchro-
nization and consistency issues. By comparison, working at
the algorithm level of abstraction provides succinct knowl-
edge of data dependency at fine granularity. Further, it
does not incur runtime overhead, and the cost of algorithm
optimization can be easily amortized over frequent use of al-
gorithm in large-scale applications. Note that the feasibility
of the algorithm-level optimization is already demonstrated
by well-known algorithm-level work (e.g, ScalLAPack [2] and
PLASMA [1)).

To implement (3), we locate appropriate data movements
in an algorithm, and then replace them with special hard-
ware supported data movement primitives. While the com-
piler, with the assistance of user-annotation, may also im-
plement (3), the identification of numerical operations and
their optimization on a hybrid memory system still requires
sufficient algorithm knowledge.

Implementation of persistency semantics for NVM
implies that we exploit the non-volatility property of NVM
to resume computation after system crashes. The key chal-
lenge in doing so is that after failure, the data state in PCM
must be guaranteed to be consistent. Consistency means
that the data in PCM represents a valid state in the fault
free program execution. The data in PCM do not always
constitute a consistent state due to the out-of-order proces-
sor and memory system and data buffering in volatile caches.
Upon failure, the data in PCM could be in an invalid state.
Implementing the persistency semantics for the HPC domain
must meet two requirements: minimizing recomputation af-
ter application restarts and minimizing runtime overhead
during fault free execution.

To meet the above requirements, we introduce a relaxed
persistency scheme. We maintain the data consistency only
at algorithm well-defined points. Hence, the persistency is
not guaranteed between those points, forming the relaxed
persistency [30]. In particular, as many numerical algo-
rithms follow an iterative structure, we choose the end of
each iteration to maintain persistency. This method avoids
extensive logging or COW in the existing approaches [11,
36, 12, 35], and greatly reduces the runtime overhead. Fur-
thermore, recomputation is bounded by only one iteration
of the algorithm, much smaller than that of existing check-
point/restart techniques that have recomputation at the gran-
ularity of a whole algorithm or a complete application phase
with multiple algorithms.

Maintaining persistency at the end of each iteration means
we ensure that the critical algorithm data is consistent in
PCM at the end of each iteration. Furthermore, there should
be one resumable state available at any time (not just at
the end of each iteration), in case of application failures.
To implement the above goal, we can simply employ a local
checkpoint to create a persistent data copy in PCM. How-
ever, this will create significant performance overhead due
to frequent checkpoint in the critical path of computation.

Different from checkpointing techniques, we leverage al-
gorithm knowledge to implement data persistency as the
algorithm updates the data. Using this method, we achieve
the same resilience as provided by checkpoint, albeit with
much smaller overhead.

To further explain our methodology, we categorize com-
mon numerical methods into three classes based on their
iterative structure.

1. In-place streaming: data are processed in a streaming
manner and transformed in-place and there is no de-
pendency between iterations. Examples include 2D /3D
FFT, and some structured grids.

2. Iterative without history: one iteration only depends
on its last iteration, and the output of the iteration
is overwritten by its next iteration (i.e., history is not
preserved). This class includes most iterative solvers
(CG, GMRES, MultiGrid) and time-step solvers.

3. Iterative with history: one iteration only depends on
its last iteration, but different from the iterative with-
out history, a part of the output of the iteration must
be preserved across iterations. Many dense linear alge-
bra methods fall into this class, such as right-looking
LU decomposition.

For the first class of algorithms, since there is no inter-
iteration dependency, as long as data is committed into PCM
to ensure persistence at the end of iteration, the application
is resumable from the data in the last iteration.

For the second class of algorithms, at each iteration we em-
ploy two versions of the data for read-write data structures':
one version is read-only and represents the most recent re-
sumable state from the last iteration; the other version (also
named as the working version) is read and written, and used
for the computation of the current iteration. Once the cur-
rent iteration is done, the working version is committed into
PCM to ensure persistency, and then becomes the read-only
version for the next iteration, while the other version be-
comes the working version. For this algorithm class, since
history is not preserved across iterations, we can switch the
two versions across iterations. This method is fundamen-
tally different from checkpointing, since checkpointed data
are never involved in computation and the application has
to suffer from data copy overhead. In contrast, our method
integrates the maintenance of data persistency into compu-
tation, and completely removes explicit data copy. We name
our method, the twin data technique in the rest of the paper.

For the third class of algorithms, a similar two version
scheme can be devised, but we must avoid overwriting the
history when switching the two versions in PCM. We use
algorithm knowledge to ensure that the essential data in the
current working version has committed into PCM without
overwriting the history data.

To implement the above relaxed persistency scheme, we
must commit appropriate data to PCM. The data commit
operation includes writing back dirty, on-chip cached data to
PCM and writing dirty SMM data into PCM. This creates
runtime overhead, but the overhead is bounded and limited,
given the small cache size and SMM size. Furthermore, as

'Read-only data always has persistency in NVM, and write-
only data can leverage the method for the first algorithm
class to maintain persistency.

ConjGrad

Input: The sparse matrix A, right hand side b, and initial
guess x

Output: The solution to Az =b

Initialization: ¢ < 0,z < 0,7 < b — Ax,p < r,p < r.r,
where z is some initial guess

Data placement: p, q,r, z are placed in SMM.

for i=0,1,... do

(commit q,r, «, po, p,p, 2)
(¢') g« Ap

()a + p/(p-q)

(Pp)po < p
(
(
(

,i

11:)z z+ap

12: r)r<r—agq

13: pp < rr

14: (p)p 7+ (p/po)p

15: Check convergence: r = A.27

16: (switch q,7, o, po, p,p, 2)

17: end for

Figure 3: Conjugate gradient algorithm. Capital letters

such as A represent matrices; lowercase letters such as z, y, z
represents vectors; Greek letters a, p represent scalar num-
bers. The purple operations inside parentheses are what
happen in a version switching iteration. Blue text is the
data placement optimization for performance and energy.

we switch the two versions, we pollute the on-chip caches,
which creates further overhead. However, comparing with
intensive computation within each iteration, the overhead
at the end of each iteration can be easily amortized. We
quantify the overhead in Section 5.

Discussion: The algorithm knowledge can estimate dy-
namic behaviors, identify data criticality, ensure execution
correctness, and model performance. Based on the algo-
rithm knowledge, we can perform optimizations that can-
not be achieved by compiler and runtime. This has been
demonstrated by the success of several highly optimized lin-
ear algebra packages [1, 2]. In fact, we expect compiler and
runtime can help even further in identifying opportunities
(e.g., read/write patterns and data dependency across iter-
ations) to efficiently apply algorithm knowledge.

3.2 Case studies

In this section, we present cases studies on three repre-
sentative numerical applications: conjugate gradient, fast
Fourier transform, and LU decomposition for a matrix.

3.2.1 Conjugate Gradient

The conjugate gradient (CG) is one of the most commonly
used iterative methods to solve the sparse linear system
Ax = b when the coefficient matrix A is symmetric posi-
tive definite. Figure 3 lists the algorithm pseudocode.

CG involves two sparse matrix vector multiplication (SpMV,
lines 8 and 15), three vector updates (lines 11,12, and 14)
and two vector inner products (lines 9 and 13) in every it-
eration of the method. In general, the algorithm computes
successive approximation to the solution, computes residuals
corresponding to the approximate solutions, and determines
search directions to update both the approximate solutions
and the residuals. Vector updates and vector inner products
are lightweight, cache friendly and fast. The dominant ker-
nel of CG is SpMV, which is also the kernel of many other
iterative Krylov solvers. SpMV usually involves indirect in-
dexing of an array. The access pattern of indirect indexing of
an array exhibits very limited spatial and temporal locality.

To optimize performance and energy consumption, we
note that in every iteration, the entire matrix A, which con-
sumes the major memory footprint, can be read into the

hardware-managed DRAM cache. As a result, the performance-
critical vectors p, q, r, z will be evicted out of hardware-managed

DRAM cache and written back to PCM. This unexpected
data eviction can be triggered by the prior hardware-based
data placement solutions based on temporal locality analy-
sis, which causes performance loss. To prevent this undesir-
able effect, we pin the frequently updated vectors into SMM
so that they will never be evicted to PCM and benefit from
the fast read/write speed of DRAM.

To implement the relaxed persistency without checkpoint-
ing, we examine the read-write data structures within each
iteration (i.e., the vectors ¢, p,r, z), and implement the twin
data technique. As shown in Figure 3, in the original algo-
rithm these vectors are updated at each iteration, and they
are only dependent on the output from the last iteration.
Hence CG is the second class of algorithm discussed in Sec-
tion 3.1.

With the twin data technique, we create two sets of the
vectors, and alternate between them when updating them
within the iteration. In particular, in each iteration we read
from one set of the vectors and write the other set; in the
next iteration we read from the other set and write the first
set. By doing so, at any given time, there is always a set
of consistent vectors available, i.e., the read-only set of the
vectors. Using these consistent vectors and the read-only
data structure (i.e., the sparse matrix A), the CG imple-
mentation is always resumable with the recomputation less
than one iteration.

As a further optimization, we could switch the two ver-
sions every multiple iterations instead of every iteration to
reduce runtime overhead. Also, using algorithm knowledge
we notice that the vectors ¢, r can be re-generated from p, z.
Hence we can exclude ¢,r from the implementation of the
two versions to further reduce runtime overhead. However,
the above optimization will result in larger recomputation
after application failures.

3.2.2 Fast Fourier Transform

Fast Fourier Transform (FFT) is one of the most popular
and widely used spectral methods [5]. It is used to com-
pute the Discrete Fourier Transform (DFT) and its inverse.
Given an input data grid X (nl,n2,n3), a typical 3D FFT
performs transformation and outputs the transformed X.
In general, 3D FFT performs 1D FFT transformation on
each of the three dimensions of the 3D data grid and 2D
transpose. 2D transpose aims to transpose non-consecutive
dimensions into consecutive dimensions to improve data lo-
cality. The pseudocode of 3D FFT is shown in Figure 4.

To improve performance and energy efficiency of 3D FFT,
we optimize it using aggressive data management and the
transpose DMA. In particular, the basic operations for 3D
FFT are 2D transpose and 1D FFT, each of which has inten-
sive write operations on the input data grid. Hence, the data
grid must be copied into SMM for performance and energy
efficiency reasons. When copying data from PCM to SMM,
we leverage transpose DMA to implement data transpose as
a side effect of data copy.

Furthermore, we overlap data copy (i.e., transpose) with
computation (1D FFT). Specifically, there are three loops
in 3D FFT shown in Figure 4. According to the algorithm

FFT3D
Input: a 3-D array X (n1,nz2,n3), column major
Output: 3D DFT’ed X (n1,n2,n3)
FFT along the z-axis:
for k=1,...,n3 do
FFT along 1st dimension on plane X (:,:, k)
end for
FFT along the y-axis:
for k=1,...,n3 do
Transpose the plane X (:,:, k) into P
FFT along 1st dimension on plane P
Transpose the plane P back to X(:,:, k)
: end for
: FFT along the z-axis:
:forj=1,...,n2 do
Transpose the plane X (:, j,:) into plane P
FFT along 1st dimension on plane P
Transpose plane P back to X(, j,:)
: end for

= e e e e

Figure 4: 3D Fast Fourier Transform

knowledge, within the second loop, the 1D FFT can start
to work on the transposed data, even before the first 2D
transpose is completed; the second 2D transpose can start
to transpose the data processed by 1D FFT, even before the
1D FFT is completed. Hence, we can implement a pipeline
of the two transposes and 1D FFT by partitioning SMM into
three parts. Each part is in charge of either transpose or 1D
FFT operation in a round-robin manner. Figure 5 generally
depicts this execution paradigm for the second and third
loops.

v

P2S:
Transpose plane
from PCM to SMM

S2P:
Transpose plane
from SMM to PCM

FFT:
1D FFT on the plane

3 stage pipeline to FFT along non-contiguous dimension

plane 1 P2S FFT S2P

plane 2 P2S FFT S2P

plane 3 P2s FFT S2pP
v time

Figure 5: Optimizing 3D FFT with transpose DMA and
aggressive data management

To implement the relaxed persistency without checkpoint-
ing, we examine the read-write data structure, the data grid
X. Since the data planes in X are processed one by one,
FFT falls into the first algorithm class discussed in Section
3.1. At the end of each iteration in the three loops, we
maintain persistency of X as a data plane is moved or trans-
posed (using transpose DMA) from SMM to PCM. We also
use a single variable to bookkeep the data plane position
within X. Upon failure and reboot, the computation will
be resumed based on the bookkeeping variable and persis-
tent data planes. Note that implementing the above relaxed
persistency does not increase data movement and compu-
tation, and does not alter the overlap between computation
and data movement, therefore the run time overhead is min-

1: while A is not empty do

2 Factorize the left NB columns A, B and update the top
NB rows (C).

3: Use updated panels from the previous step to update the
trailing (right-bottom) matrix D «— D — BC.

4 Move to work on the trailing matrix: A < D

5: end while

Figure 6: Blocked right-looking LU factorization without
partial pivoting

imized.

3.2.3 LU Decomposition

The LU decomposition is the standard algorithm to solve
a general dense linear system. LU decomposition factors
a general matrix A into the product of a lower triangular
matrix (L) and upper triangular matrix (U) such that A =
LU. To improve numerical stability, some LU algorithms
employ partial pivoting. In the discussion below we do not
consider partial pivoting because of page limitation, but our
method is applicable to partial pivoting. Figure 6 generally
describes the popular blocked right-looking LU algorithm.

For the right-looking LU algorithm, we do not have op-
portunities to improve performance and energy efficiency,
however we can employ the twin data technique to achieve
resilience improvement. Figure 7 depicts the memory snap-
shots when applying the twin data technique. Each memory
snapshot corresponds to one step (i.e., one iteration) of LU.
For the LU algorithm, the matrix A is a read-write data
structure, and falls into the third algorithm class discussed
in Section 3.1. At the beginning, we create a copy of the ma-
trix A (see the memory snapshot 0), creating two instances
of A (the new copy and the original one). Then the panel
update is performed in one instance of the matrix A (the left
one), and the updated area is highlighted in the figure (see
the version 1 in the memory snapshot 1). If a failure hap-
pens during the transition from the memory snapshot 0 to
1, we can safely rollback to the version 0 (see Figure 7) from
one instance of the matrix A (the right one particularly).
After the step 1 is finished, the left matrix is committed
to PCM to maintain persistency, and the right matrix be-
comes the working version. Afterwards, in the step 2 we
read the panel from the left matrix but write to the right
matrix shown in the snapshot 2. The algorithm continues
the above process by alternating matrix update between the
left and right instances.

With the above implementation, at any moment there is a
resumable state existing in one of the two matrix instances.
The recomputation after the system crashes is limited to one
iteration. Note that we achieve the above resilience without
intensive copying operations and with minimal changes to
the original algorithm. In addition, at the end of LU, the

Vo Vo
snapshot 0
Vi Vo
\4Y
1
snapshot 1
Vi Vo
Vo \al
1
snapshot 2 snapshot 4

Figure 7: The implementation of the twin data technique for
LU factorization. The updated areas are highlighted with
yellow color.

final result is scattered between the two instances of the
matrix. We must merge the two instances, but the merging
operation is simple and the overhead is marginal comparing
to the whole LU factorization.

4. EXPERIMENTAL METHODOLOGY

Our experiments are based on McSim [4], a PIN [27] based
multi- and many-core cycle accurate simulation infrastruc-
ture. McSim provides event-driven timing simulation and
models cores, caches, directories, on-chip networks and mem-
ory channels. We enhance the main memory model in Mc-
Sim to support the hybrid DRAM/PCM simulation. The
implementation of the new memory model allows config-
urable PCM/DRAM ratio and configurable memory orga-
nization. The new memory model also accounts for the mi-
croarchitecture of the DRAM and PCM devices. We further
extend the implementation of the memory controller in Mc-
Sim to implement DMA functionality.

Table 2 lists the detailed parameters and architecture con-
figurations for the processor and memory system in our sim-
ulation. DRAM timing parameters are based on the Micron
specification [28]; PCM timing parameters are based on [31,
10]. We calculate DRAM and NVM energy consumption
based on the number of memory accesses broken down into
row buffer hits, misses and the memory energy parameters
listed in 2. This method is also utilized in [24, 41]. The
memory energy parameters are listed in Table 2, and these
parameters are based on [25, 8]. We collect performance
and energy consumption results of the running phase of the
numerical kernels, skipping the initialization phase.

To compare with the existing hardware-based solutions for
data placement, we implement a hardware-managed DRAM
cache in [33] as our baseline machine. This hardware-managed
DRAM cache mechanism is one of the most common hardware-
based data placement solutions. To distinguish this hardware-
managed DRAM cache mechanism with the DRAM cache
employed in our system, we name the DRAM cache mech-
anism in [33] as the pure DRAM cache. Note that while

Table 2: Simulation parameters

Processor 8-way super scalar, ROB size 64, instruction queue size 128

Memory 2 memory channels, 1 (DRAM) or 4 (PCM) ranks per channel, 8 banks per rank
organization PCM 1GB, DRAM 32MB, SMM:DRAM cache=1:1 by default,

L1 Cache split I/D caches, each 16KB, 4 ways, 64B block, private cache

L2 Cache a unified 4MB cache, 16 ways, 64B block, shared cache

Memory Controller

64-entry Transaction Queue, 16-entry Command Queue, FR-FCF'S, closed-page

Timing (cycles) [31, 1D]

DRAM - tRCD: 14, tRAS: 34, tRP: 14, tRR: 1, tCL: 14, tBL: 4 tRRDact: 5
PCM - tRCD: 37, tRAS: 50, tRP: 14, tRR: 1, tCL: 10, tBL: 14, tRRDact: 3

Energy (pJ/bit) [40]

DRAM - Array read: 1.17, Array write: 0.39, row buffer read: 0.93, row buffer write: 1.02, background power: 0.08
PCM - Array read: 2.47, Array write: 16.82, row buffer read: 0.93, row buffer write: 1.02, background power: 0.08

the DRAM cache studied in [33] is abstract and geared to-
wards exploiting the high density of PCM to reduce page
faults, we are more interested in evaluating the hardware-
managed DRAM cache idea in an HPC environment where
the page fault is not a significant issue but the concurrency
and latency of the hardware-managed DRAM cache are criti-
cal. Thus, we employ a highly optimized hardware-managed
DRAM cache as our baseline. This DRAM cache has high
hit concurrency (up to 64 concurrent requests), high asso-
ciativity (32 way) without extended latency for tag match-
ing, high miss concurrency (up to 64 concurrent requests).
The implementation of such cache could be expensive but
achieves excellent performance for HPC applications which
are sensitive to the concurrency and latency of the cache.
Hence, our hardware-managed DRAM cache is a high bar
for evaluation, representing the best we can obtain from a
transparent cache.

5. EVALUATION

We use CG (class B, CG.B) and FT (class A, FT.A) from
NAS Parallel Benchmark (NPB3.3) suite, and LU from LA-
PACK [2] (the DGETRF input with a square matrix of size
1000) as algorithm implementation. Table 3 shows the mem-
ory system configurations for evaluation. Besides the base-
line cache and ADDP, we also evaluate pure DRAM and
pure PCM to reveal the implication of our designs and al-
gorithm characteristics. All results are normalized to those
of the baseline hardware-managed DRAM cache.

Table 3: Configurations of the memory system

Name hardware-managed DRAM cache | DRAM SMM | Main memory | DMA
Baseline Yes No PCM No
ADDP Yes Yes PCM Yes
Pure DRAM No No DRAM No
Pure PCM No No PCM No
ADDP DRAM | Yes Yes DRAM Yes

Performance: Figure 8 shows the execution time of CG.B
and FT.A. The figure does not show the results for LU, be-
cause its implementation is highly optimized and bounded
by computation, and can achieve 90% of the peak perfor-
mance. The main memory system plays little role in deter-
mining the performance and hence, we do not optimize it.
However, we will discuss the ADDP runtime overhead of LU
in Figure 11.

Figure 8 shows that for CG our optimization scheme (i.e.,
placing the frequently updated vectors in DRAM SMM) re-
duces run time by 9% compared against the baseline. The

performance improvement comes from eliminating the hardware-

managed DRAM cache thrashing problem analyzed in Sec-
tion 3.2.1. . The performance of ADDP is very close to that
of the pure DRAM system, and is much better than that of
the pure PCM system. This demonstrates the effectiveness

1.8 1.8
Baseline 1
1.6 ADDP XXX - 16
Pure DRAM 22%2%%
1.4 Pure PCM S _ 4 4
ADDP DRAM =1
12 q 1.2
1k 11
L 8% 4
0.8 §§ 0.8
s
0.6 - 88 - 06
]
290058
0.4 - 33 - 04
]
5]
0.2 I :ig -1 0.2
o3

Figure 8: Execution time

of ADDP for performance optimization.

For FT, we notice 49% performance improvement with
ADDP over the baseline pure hardware-managed DRAM
cache system. The significant performance improvement
comes from successfully exploiting parallelism between pro-
cessor and memory system with the DMA engine. ADDP
in this case performs even better than a pure DRAM main
memory system without DMA. To investigate the reason,
we compare the performance of ADDP in the hybrid mem-
ory with that of ADDP in the pure DRAM system (labeled
as ADDP DRAM in Figure 8 and Table 3). We found
that the performance of these two approaches is very close.
This result suggests that ADDP effectively removes the high
latency of PCM access from the critical path by overlap-
ping computation and data movement. Also, given the bet-
ter performance of ADDP DRAM over the pure hardware-
managed DRAM cache, we infer that there is significant
parallelism untapped by the pure DRAM memory system.
Hence, using DMA, we open new opportunities to improve
performance.

To further understand the reasons why ADDP performs
better than the baseline, we profile the data migration vol-
ume and hardware-managed DRAM cache miss rate. For
ADDP, the hardware-managed DRAM cache miss refers to
the cache miss happening in the inclusive hardware DRAM
cache. From the figure 9, we notice that for CG the data
migration volume reduces by 90%, which explains the per-
formance benefit of CG. However, we do not see a significant
difference between the baseline and ADDP for the cache miss
rate. This is because the memory references to the read-only,
input matrix A of CG (see the pseudocode in Figure 3) with
a large memory footprint account for the major cache misses,
while ADDP for CG does not optimize the data placement of
A. For FT, we notice the significant reduction in both data
migration and cache misses, which explains the big perfor-

Data migration volume Cache miss rate

T T 1.4 T T 1.4
12 Baseline i 12 Baseline i
ADDP TX X ADDP 2<%
14 1.2 14 1.2
1h — — . 1r M 8
11 11
0.8 - B 0.8 | B
-4 08 -4 0.8
o6 7 06 06 q 06
04 r = 04 4 04
02 402 02 4 02
0 20 0 0 0
CG FT CG FT

Figure 9: Data migration from DRAM to PCM and DRAM
cache miss rate

mance benefits of ADDP. The reduction in data migration
and cache misses comes from our pipelined data manage-
ment and optimized data transpose operations that avoid
unnecessary data movement.

For both CG and FT, the performance difference between
ADDP and pure DRAM is less than 12%. This performance
gap is smaller than that achieved by the existing work [11,
36], demonstrating the feasibility of using ADDP for HPC.

CG FT
T 3 3

T T T T 3
DRAM energy C——1
PCM energy DX X2

T T T
DRAM energy 1
| PCM energy X2CX

1 25 25

KKK
OO0
2620202022 %%

&
o

X
X XX
KRS

1

Figure 10: Dynamic energy of memory system

Energy: Figure 10 shows energy consumption of the main
memory including both DRAM and PCM. For CG, we no-
tice that in terms of energy consumption, the pure PCM is
close to ADDP and the baseline cache, and is only second
to the pure DRAM. In combination with the performance
results, we conclude that for CG, we improve performance
at the cost of slightly increased energy consumption on a
hybrid memory system. However, comparing with the base-
line, ADDP still successfully reduces energy consumption by
9.2%.

For FT, ADDP consumes the least energy, comparing with
other three cases using PCM (25% energy saving comparing
with the baseline case). With ADDP, we also have a high
ratio of DRAM energy to PCM energy. This result is an
indication of good caching effects—most memory accesses
are served by DRAM. In contrast to CG, the pure PCM
memory in FT consumes much more energy than the other
cases, because FT is a write intensive application and writ-
ing PCM consumes much more energy than reading. In this
case, a hybrid DRAM/PCM system is beneficial for energy
saving.

Resilience: To quantify the overhead of the relaxed per-
sistency scheme, we compare the performance with and with-
out the twin data technique. Figure 11 shows the results. As
discussed in Section 3.1, the twin data technique can incur
overhead when switching the two versions. In particular, the
program must wait for the data in various volatile buffers to
commit and become persistent in PCM; switching versions
may also change the caching behavior because of the tem-
porary expansion of working set. Note that employing the
two versions does not change the locality property of the
algorithm.

Figure 11 shows that the version switching overhead for
the three algorithms is negligible (~1%), even if we switch
the two versions at every iteration. This low overhead is due
to the limited cache size and infrequent version switching. In
the following analysis we assume there is negligible overhead
in version switching, with up to one iteration re-computation
when recovering from failures.

11 T 1.1
Single version]

Double version >XX%

1.05 -1 1.05

R

0

XKLL
L5

X
QR

0.95 [

—
55

XA
2

<>

<%
2038

0.9

0.9
CG FT LU

Figure 11: Version switching overhead of CG.B and FT.A

based on ADDP

To further evaluate the effectiveness of our approach, we
compare the twin data technique with a checkpointing tech-
nique. Given the lack of simulation capabilities for HPC
checkpointing, we build an analytic model to make the com-
parison. The state-of-art checkpointing technique [16] em-
ploys PCM to implement a two level scheme. The first level
is a global synchronous checkpoint that saves a consistent
global state into stable global storage such as disks or neigh-
boring PCM. The second level is a local synchronous check-
point that saves the local state into local PCM. The paper
leverages 3D stacking between DRAM and PCM to acceler-
ate the local checkpointing while avoiding expensive global
checkpoint with overhead around 6% [16].

The effective use of the twin data technique can serve the
functionality of the local checkpointing, while avoiding the
checkpointing overhead or the requirement of 3D stacking
technology. Hence, we expect to see a dramatic reduction in
checkpointing overhead.

To make the comparison relevant to HPC, we use the op-
timal checkpoint interval in [13]. The expected execution
time of an application with checkpoint/restart can be de-
composed into the following components:

TC/R(T) = solve time + dump time + rework time + recovery time

= M oprmrrorpm gy Te

V4 T
(1)
where the solve time (T%) is the original execution time of
the computation, the dump time is the time to perform pe-

riodical dumping the state of the program to stable storage,
the rework time is the work lost since the latest checkpoint,
equivalent to the time elapsed when failure happens since
last checkpoint, and the recovery time is the time required
to be able to recompute from the latest checkpoint includ-
ing reading the stored checkpoint data back, rebooting, re-
initialization, etc. In the quantitative representation, M is
the mean time to interrupt (MTTI) of a system component,
p is the number of components, 7 is the optimal checkpoint
interval, o is the time to do one dumping, and R is the
time for one restart. The optimal checkpoint interval 7 that
minimizes T/ can be found in [13].

With the twin data technique, since there is no check-
pointing overhead, the execution time will consist of only
the original solve time (7%) and the recovery time (R). Us-
ing the same fault probability model as the checkpointing
scheme, we calculate the expected execution time with the
twin data technique as

Tiwin = solve time + recovery time
- T epR/]M (2)
- S

Based on the above modeling, we compare the expected exe-
cution time of the state of the art checkpointing mechanism
and the twin data technique. The ratio of the expected ex-
ecution time is as follows, assuming the recovery times are
the same for both techniques.

T,
C/R _ M(e(7+a)p/1W —
Tiwin 7P

®3)

Note that the ratio is always larger than 1, as e(7to)?/M _

1> %. As the scale (p) continues increasing exponen-
tially, the ratio will grow very fast, even if we assume the
optimal checkpoint interval 7 for C/R. The above analysis
demonstrates the performance benefits of introducing algo-
rithm knowledge into the resilience design.

The above analysis assumes that the recomputation time
is the same for ADDP and checkpointing. This is very con-
servative, because the recomputation with ADDP is bounded
by one iteration, much smaller than that of checkpointing.

We further quantify and compare the performance of ADDP

and the checkpointing mechanism with an example. We
assume that a single dump (including the necessary coor-
dination) is 0.5 minute, the MTTI of a single component
(processor or socket) is 10 years, and the recovery time (in-
cluding rebooting, re-initialization) is 1 minute. We use
the model (1) to calculate the normalized execution time
of C/R using the optimal checkpoint interval from [13], and
model (2) to calculate the normalized execution time with
the twin data technique. Figure 12 shows the performance.
The figure reveals the lower execution time with the twin
data technique and the rapidly increasing performance gap
between the twin data and the checkpointing mechanism as
the system scale becomes larger.

6. RELATED WORK

Some studies have considered hardware-based data place-
ment for the hybrid memory system. Ramos et al. [34] rely
on MC to monitor write intensity and popularity of mem-
ory pages, which is used to migrate pages between DRAM
and PCM. Bivens et al. [6] and Qureshi et al. [33, 32] use
DRAM as a set-associative cache that is logically placed be-

1.8 Ncheckpoint-based resilience
1.6

1.4
1.2

B twin data mechanism

0.8
0.6

Normalized execution time
N

0.4 :
2 A N A\
1000 10000 100000 1000000

Number of processors

Figure 12: Overheads comparison: twin data vs. checkpoint

tween processor and PCM. Yoon et al. [40] place data based
on row buffer locality in memory devices. Wang et al. [37]
rely on static analysis and MC runtime monitoring to de-
termine data placement on GPU. A key limitation of these
approaches is that they rely heavily on hardware-based mon-
itoring mechanisms and caching policies to direct data place-
ment without awareness of application semantics. Hence,
they can result in inefficient data copy/migration with poor
performance and low energy efficiency, because the data
management algorithms are generally based on memory ac-
cess patterns monitored within a user-defined time period.
Depending on the duration of the time period and other
heuristic parameters to trigger data movement, these algo-
rithms may not work well for a range of workloads and need
to be disabled to avoid performance loss. By contrast, our
technique takes a holistic view of algorithm structure and ap-
plication data-access pattern and hence, it avoids the above
problems in the traditional solutions. A few other works
use software-based extensions to implement persistency se-
mantics [12, 36, 11, 35]. However, these techniques cannot
work well for HPC domain, due to their large overhead and
limited support for massive data movement.

Numerical algorithms play crucial role in HPC and hence,
several researchers have explored techniques for utilizing al-
gorithm knowledge to improve application fault tolerance
(e.g., [39, 9, 14, 18)]), performance [23, 38, 19], and energy
efficiency [20, 17]. Different from previous efforts, this pa-
per demonstrates the significant benefits of using algorithm
knowledge to direct data placement in the future hybrid
memory system.

7. CONCLUSIONS

In this paper, we demonstrate that using algorithm knowl-
edge, the data placement for hybrid memory can be opti-
mized. Our approach provides valuable insights for using
NVM for the future HPC systems. Based on algorithm di-
rection, we reveal many opportunities to improve perfor-
mance, energy efficiency, and implement a relaxed persis-
tency scheme. The benefits are significant, demonstrating
the feasibility to introduce algorithm semantics to address
critical challenges of using the future hybrid memory sys-
tems.

Acknowledgement

The authors would like to thank the anonymous review-
ers for their insightful comments and valuable suggestions.
This work is partially supported by the U.S. Department

of Energy, Office of Science, Advanced Scientific Comput-
ing Research, the NSF grants CCF-1553645, CCF-1305622,
ACI-1305624, CCF-1513201, the SZSTI basic research pro-
gram JCYJ20150630114942313, and the Special Program
for Applied Research on Super Computation of the NSFC-
Guangdong Joint Fund (the second phase).

8.
1]

[17]

[18]

[19]

REFERENCES

The parallel linear algebra for scalable multi-core
architectures (plasma).
http://icl.cs.utk.edu/plasma/overview/index.html/.
Scalable linear algebra package.
http://www.netlib.org/scalapack/.

Intel quickdata technology software guide for linux.
http:

/ /www.intel.com/content/dam/doc/white-paper/
quickdata-technology-software-guide-for-linux-paper.
pdf, 2008.

J. Ahn et al. McSimA+: A Manycore Simulator with
Application-level4+ Simulation and Detailed
Microarchitecture Modeling. In ISPASS, 2013.

K. Asanovic et al. The Landscape of Parallel
Computing Research: A View from Berkeley.
Technical Report EECS-2006-183, UC, Berkeley, 2006.
A. Bivens et al. Architectural Design for Next
Generation Heterogeneous Memory Systems. In Int.
Memory Workshop, 2010.

M. Calhoun. Characterization of Block Memory
Operations. Master Thesis, Rice University, 2006.

J. Chen et al. Energy-Aware Writes to Non-Volatile
Main Memory. In Workshop on Power-Aware
Computing and Systems, 2011.

Z. Chen. Online-ABFT: An Online Algorithm Based
Fault Tolerance Scheme for Soft Error Detection in
Iterative Methods. PPoPP, 2013.

Y. Choi et al. A 20nm 1.8V 8Gb PRAM with 40MB/s
program bandwidth. In ISSCC, 2012.

J. Coburn et al. NV-Heaps: making persistent objects
fast and safe with next-generation, non-volatile
memories. In ASPLOS, 2011.

J. Condit et al. Better I/O Through
Byte-Addressable, Persistent Memory. In SOSP, 2009.
J. T. Daly. A higher order estimate of the optimum
checkpoint interval for restart dumps. Future Gen.
Comp. Syst., 22(3):303-312, 2006.

T. Davies and Z. Chen. Correcting Soft Errors Online
in LU Factorization. In HPDC, 2013.

G. Dhiman, R. Ayoub, and T. Rosing. PDRAM: A
Hybrid PRAM and DRAM Main Memory System. In
DAC, 2009.

X. Dong et al. Leveraging 3D PCRAM Technologies
to Reduce Checkpoint Overhead for Future Exascale
Systems. In SC, 2009.

R. Dorrance et al. A Scalable Sparse Matrix-Vector
Multiplication Kernel for Energy-Efficient Sparse-Blas
on FPGAs. In FPGA, 2014.

P. Du et al. Algorithm-based Fault Tolerance for
Dense Matrix Factorizations. In PPoPP, 2012.

M. Faverge, J. Herrmann, J. Langou, B. R. Lowery,
Y. Robert, and J. Dongarra. Designing LU-QR hybrid
solvers for performance and stability. In IPDPS, 2014.

20]

(21]

(22]

23]

24]

(25]

(26]

27]

(28]

29]

(30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

(41]

E. Garcia et al. Optimizing the LU Factorization for
Energy Efficiency on a Many-Core Architecture. In
LCPC, 2013.

R. Huggahalli, R. Iyer, and S. Tetrick. Direct Cache
Access for High Bandwidth Network I/0. In ISCA,
2005.

IBM. Cell broadband engine processor dma engines,
part 1: The little engines that move data. http:
//www.ibm.com/developerworks/library/pa-celldmas.
M. S. Lam, E. E. Rothberg, and M. E. Wolf. The
Cache Performance and Optimizations of Blocked
Algorithms. In ASPLOS, 1991.

B. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecturing Phase Change Mmemorhy as a
Scalable DRAM Architecture. In ISCA, 2009.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting phase change memory as a scalable
DRAM alternative. In ISCA, 2009.

Y. Lu, J. Shu, L. Sun, and O. Mutlu. Loose-Ordering
Consistency for Persistent Memory. In ICCD, 2014.
C.-K. Luk et al. Pin: building customized program
analysis tools with dynamic instrumentation. Acm
Sigplan Notices, pages 190-200, 2005.

Micron Technology. Calculating memory system
power for ddr3. Technical Report TN-41-01, 2007.

J. Meza et al. Enabling Efficient and Scalable Hybrid
Memories Using Fine-Granularity DRAM Cache
Management. In IEEE CAL, 2012.

S. Pelley, P. M. Chen, and T. F. Wenisch. Memory
Persistency. In ISCA, 2014.

M. Poremba et al. NVMain: An Architectural-Level
Main Memory Simulator for Emerging Non-volatile
Memories. In ISVLSI, 2012.

M. K. Qureshi et al. Enhancing Lifetime and Security
of PCM-Based Main Memory with Start-Gap Wear
Leveling. In MICRO, 2009.

M. K. Qureshi et al. Scalable High-Performance Main
Memory System Using Phase-Change Memory
Technology. In ISCA, 2009.

L. Ramos, E. Gorbatov, and R. Bianchini. Page
Placement in Hybrid Memory Systems. In ICS, 2011.
S. Venkataraman et al. Consistent and Durable Data
Structures for Non-volatile Byte-addressable Memory.
In FAST, 2011.

H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight Persistent Memory. In ASPLOS, 2011.
B. Wang et al. Exploring Hybrid Memory for GPU
Energy Efficiency through Software-Hardware
Co-Design. In PACT, 2013.

S. Williams et al. Optimization of Sparse
Matrix-Vector Multiplication on Emerging Multicore
Platforms. In SC, 2007.

P. Wu et al. Fault Tolerant Matrix-Matrix
Multiplication: Correcting Soft Errors On-line.
Scalable Algorithms for Large-Scale Syst., 2011.

H. Yoon et al. Row Buffer Locality Aware Caching
Policies for Hybrid Memories. In ICCD, 2012.

J. Zhao et al. Kiln: Closing the Performance Gap
Between Systems With and Without Persistence
Support. In MICRO, 2013.

