
Performance Modeling for Optimal Data Placement
on GPU with Heterogeneous Memory Systems

Yingchao Huang
University of California, Merced

yhuang46@ucmerced.edu

Dong Li
University of California, Merced

dli35@ucmerced.edu

Abstract—A heterogeneous memory system (HMS) consists of
multiple memory components with different properties. GPU is a
representative architecture with HMS. It is challenging to decide
optimal placement of data objects on HMS because of the large
exploration space and complicated memory hierarchy on HMS.
In this paper, we introduce performance modeling techniques
to predict performance of various data placements on GPU. In
essence, our models quantify and capture implicit performance
correlation between different data placements. Given the memory
access information and performance of a sample data placement,
our models predict performance for other data placements based
on the quantified correlation. We reveal critical performance
factors that cause performance variation across data placements.
Those factors include instruction replay, addressing mode, hard-
ware queuing delay of memory requests, off-chip memory access
latency, and caching effects. Those factors, which are often not
sufficiently considered in the existing performance models, can
significantly impact modeling accuracy. We introduce a series
of techniques to model those factors. We extensively evaluate
our models with a variety of benchmarks with various data
placements. Our models are able to quantitatively predict the
benefit or performance loss of data placements.

I. INTRODUCTION

A heterogeneous memory system (HMS) consists of mul-
tiple memory components with different properties (e.g.,
bandwidth, latency, memory organization, preferable access
patterns, and programming paradigms). HMS has the potential
to provide performance benefits for various workloads; it can
strike a good balance between multiple design goals (e.g.,
cost, area size, and performance). With the growing demands
for efficient data accesses, HMS is becoming more and more
common [1], [2], [3].

GPU is a representative architecture with HMS. An
NVIDIA Kepler GPU, for example, has more than eight
types of memory components (global, texture, shared, con-
stant, and various caches), with some on-chip, some off-chip,
some directly manageable by software, and some not. Recent
studies [4] reveal that many GPU kernels manifest significant
performance difference with different data placements on
HMS. The performance difference is up to 208% (159% on
average). Recent studies [5] also show that many memory-
intensive GPU applications carefully written by developers
cannot even reach half of the best performance achievable by
exhaustive searches for optimal data placement. These studies
all indicate that deciding optimal data placement on GPU with
HMS is critical for performance optimization.

However, given GPU with HMS, it is challenging to decide
optimal placement of data objects. First, a GPU kernel can
easily have many data objects, each of which can have multiple
data placement options. In theory, to decide data placement
of n data objects on m programmable memory components
(m = 4 on GPU), there are mn possible data placements,
subject to the limitation of memory capacities and read/write
properties of memory components. Exploring the optimal data

placement in such potentially large exploration space is a
challenge. Second, caching mechanisms further complicate the
data placement problem. Different memory components can
use shared or separate cache hierarchy; They can also employ
different caching policies (e.g., the 2D spacial locality for
texture memory and LRU-like policy at L2 cache for off-chip
memories). Moving data objects from one memory component
A to B have non-trivial impact on the data caching of A and B.
Third, different data placements have different implications on
instruction issues and warp interleaving (i.e., the overlapping
between computation and memory access). Quantifying and
predicting the above implications is a challenge.

In this paper, we introduce performance modeling tech-
niques to predict performance of various data placements on
GPU. We focus on the data placement problem for those
programmable memories (i.e., global, shared, texture, and con-
stant memories). Given a GPU kernel, our models predict per-
formance without the necessities of developing many versions
of a CUDA kernel to implement different data placements.
This allows programmers to easily explore the large search
space and find the optimal data placement. Hence, our models
can work as a tool to help programmers for GPU performance
optimization and improve their productivity.

In essence, our models quantify and capture implicit per-
formance correlation between various data placements. Given
the memory access information and performance of a sample
data placement, our models predict performance for other data
placements based on the quantified correlation. We model
the performance correlation between different data placements
from three perspectives: computation cost, memory cost, and
performance overlapping because of multi-threading.

First, the computation cost varies across data placements
because of addressing mode difference and instruction replay.
For each memory component, we characterize its addressing
mode, and then quantify the difference in the number of in-
structions between different memory components. The instruc-
tion replay is another important factor that causes computation
cost variation across data placements. The instruction replay
happens when specific hardware events happen, such as share
memory bank conflict and global memory address divergence.
The instruction replay occupies extra instruction issue slots
and impacts compute throughput of GPU. We reveal that the
number of issued instructions including instruction replays is
a better performance indicator to the computation cost than
the number of executed instructions commonly employed in
the existing performance models [6], [7].

Second, the memory cost varies across data placements
because of the variation of caching effects and average mem-
ory access latency. As one changes data placement from one
memory component to another, the cache interference and
cache bandwidth consumption are affected, which impact per-
formance. Furthermore, changing data placement will impact



the access latency of those off-chip memory accesses. The
existing performance models assume a constant access latency
for any off-chip memory accesses without caches [6], [7],
[8], [4]. However, our performance analysis on a real GPU
hardware reveals that the off-chip memory accesses without
caches can have up to 110% difference in the access latency,
depending on whether the memory accesses hit row buffers in
memory banks. Changing data placement has impact on row
buffer hit/miss, and hence impact the access latency of those
off-chip memory accesses. Our evaluation shows that capturing
the large variation of the off-chip memory access latency is
critical for modeling accuracy, even for those GPU kernels
with large memory-level parallelism to hide the off-chip
memory access latency. Furthermore, we introduce a queuing
model of the off-chip memories to capture memory request
delays because of shared resource contention. The queuing
model is highly composable and flexible, allowing us to model
the combination of diverse memory systems. Our queuing
model-based approach in combination with the modeling of
row buffer hit/miss provides a more accurate estimation of the
off-chip memory access latency. This effectively improves the
modeling accuracy by 13.8% on average, comparing with the
model assuming a constant off-chip memory access latency.

Third, the performance overlapping varies across data place-
ments because of the variation of memory events that cause
stall cycles. To model the overlapping time, we introduce an
empirical model based on critical memory events.

Based on the above modeling techniques, we develop a
framework that uses a sample data placement as input and
predict performance for various data placements. The major
contributions of our work are as follows.
• We develop performance models to predict performance

for various data placements. Our modeling works as a
tool for performance optimization for GPU with HMS,
and provides foundation to explore other HMS systems.

• We reveal the critical performance factors that cause
performance variation across various data placements.
Those factors include instruction replays, addressing
mode, hardware queuing delay of memory requests, off-
chip memory access latency, and caching effects. Those
factors, which are often not sufficiently considered in
the existing performance models, can significantly impact
modeling accuracy.

• We extensively evaluate our modeling with various data
placements. We demonstrate that our models are able to
quantitatively predict the benefits or performance loss of
data placements. Our models demonstrate the tangible
benefits of using a model-driven approach for perfor-
mance optimization on HMS.

II. BACKGROUND AND MOTIVATION

In this section we review the heterogeneous memory system
on GPU and motivate our model construction.

A. GPU Memory Background

A typical NVIDIA GPU has four types of programmable
memory components, including global, shared, texture, and
constant memories. Deciding data placement on them is the
focus of this paper. Global, texture, and constant memories are
off-chip, and based on GDDR DRAM (GDDR3 or GDDR5),
while shared memory is on-chip.

Texture memory and constant memory have their own
caches. Texture, constant, and global memories share a last-
level L2 cache distributed over multiple streaming multipro-
cessors (SM) on GPU.

Like regular DRAM devices, off-chip GDDR DRAM is
hierarchically organized as channels, modules, ranks, and
chips. On GPU, each channel has one memory rank that
consists of multiple DRAM chips. Each chip in a rank is
organized into a number (4, 8, or 16) of logically independent
banks. A memory bank is a 2D array of cells organized into
rows and columns. Banks can operate in parallel, providing
bank level parallelism in accessing memory. Memory reads
and writes are performed by selecting the location of a memory
bank according to the row and column addresses.

For any memory request, a row of data is first read into
a row buffer associated with each bank. If the request is to
a currently open row (i.e., a row buffer hit), then the data is
directly serviced from the row buffer. If the request is not to a
currently open row (i.e., a row buffer miss), then the memory
controller has to write back data in the open row and fetch
a new row of data into the row buffer, which causes longer
access latency.

We use a Tesla K80 (an NVIDIA’s Kepler architecture) as
an example throughout this paper, but our general modeling
methodology is applicable to other GPUs with programmable
memories. Figure 1 shows the memory system of a typical
Kepler based on the above background information. Even
though it is possible to extend our models to handle different
types of data structures, our work focuses on the placement
of data arrays, similar to [4], [9], because the data array is the
most common data structure in GPU programming.

Given a GPU kernel to optimize the placement of its arrays,
we call the kernel’s existing data placement the sample data
placement. We pick a data array as the target data object, and
then predict the kernel performance if we move the array from
the sample data placement to a new data placement. This new
data placement is the target data placement. We use the above
terms in the rest of the paper.

When we change the placement of an array, we assume that
the dimension of the array in the target data placement remains
the same as that in the sample data placement. When chang-
ing data placement, we do not consider those performance
optimizations and any algorithm optimization in the target
data placement (e.g., avoiding bank conflict and improving
memory access coalesce). Exploring those optimizations for
a specific data placement is available in the existing work
(e.g., [10] for global memory coalesce and [11] for shared
memory bank conflict). Our work aims to identify a promising
data placement out of a large search space for performance
optimization, and the existing work can be employed to further
improve the performance of this promising data placement.
Hence, our models work as a performance advising tool
for HMS. Furthermore, if we assume optimized performance
(e.g., optimized memory access patterns) in the target data
placement in our models, our models would be misleading, be-
cause there could be an unbridgeable gap between the desired
memory access patterns and GPU kernel implementation. In
fact, the existing tool [4] uses the same strategy as our models,
and has demonstrated success in performance advising.

2



Fig. 1: The heterogeneous memory system of a Kepler GPU

B. Initial Observations for Model Construction
To gain some intuitions on how to build performance models

for optimal data placement, we run six benchmarks (convo-
lution, matrixMul, md, spmv, transpose, and cfd) with six
GPU kernels, and test 34 data placements. These benchmarks
and the data placement tests are summarized in our technical
report [12]. For each data placement, we use nvprof to collect
265 performance events. Across those data placements, we
attempt to identify those performance events that are the
most sensitive to the change of data placement. Those events
provide critical indications for the model construction.

Given a large amount of performance data, identifying
meaningful performance events for performance modeling is
challenging. We use a metric, the cosine similarity [13],
to identify those sensitive performance events. The cosine
similarity is a measure of similarity between two vectors. The
cosine similarity of two vectors is bounded to [0,1]. with 1
for strong correlation and 0 for otherwise.

For a GPU kernel with N data placements, we construct a
vector with the execution times of the N data placements as
elements (i.e., the vector length is N ). We call this vector the
time vector. Furthermore, we construct 265 vectors, each of
which corresponds to a performance event; Each vector uses
the measured performance event for the N data placements
as elements (i.e., each vector length is N ). We call those
vectors the performance event vectors. We calculate the cosine
similarity between the time vector and each performance
event vector to capture the correlation between the execution
time and each performance event. A large cosine similarity
value for a performance event indicates that the variation of
the performance event closely follows the variation of the
execution time.

We use 0.94 as a cosine similarity threshold, and then select
those performance events that have cosine similarity values
larger than 0.94. 0.94 is chosen as the threshold, such that at
least two performance events are selected for each GPU kernel
to ensure that the selected performance events are common
across kernels.

After careful evaluation of alternatives, we choose 36
performance events. We further aggregate them, because
some of them have the similar indications for performance
modeling. For example, L2 L1 write transaction
and L2 L1 read transaction are aggregated as
L2 L1 transaction. We also try to capture those com-
mon performance events, and remove those events that only
appear in two kernels, because those events may not be able
to serve as a general indicator for performance modeling. The
aggregation process reduces all performance events to five
performance events, shown in Table I.

Based on Table I, we find the following events strongly cor-
related with the performance variance across data placement.

TABLE I: The cosine similarity values for five representative performance
events. “N/A” means the value smaller than 0.94.

GPU kernel issue slots inst
issued

inst integer ldst issue L2 trans

cfd 0.993 0.992 0.961 0.946 0.941
convo1 N/A N/A N/A 0.949 0.986
convo2 0.949 N/A 0.969 0.957 0.996
md 0.956 0.963 0.963 N/A 0.995
matrixMul 0.980 0.977 0.943 0.990 N/A
spmv 0.983 0.989 N/A N/A N/A
transpose 0.992 0.99 N/A 0.980 0.948

(1) The number of issued instructions including those
replayed instructions due to special hardware events (e.g.,
instruction cache misses and constant cache misses). The event
issue slots, affected by the instruction replays, also
indicates the importance of the number of issued instructions
for performance modeling.

(2) The number of integer instructions. The correlation
between this event and the performance variance is especially
pronounced in those data intensive workloads (e.g., md and
convo2). Because the computation remains constant across
different data placements, most of the variation of the number
of integer instructions comes from the addressing mode dif-
ference between memory components (See Section III-B for
a detailed discussion).

(3) The number of memory transactions seen at L2.
Different memories on GPU have different caching mecha-
nism. Placing data in different memory components impact
data caching in L2, which in turn impacts performance.

We construct performance models to capture the above crit-
ical performance events, and predict performance for different
data placements.

III. PERFORMANCE MODELS

In this section, we discuss our models in details. Some
model parameters are summarized in Table II.

A. General Description
The execution time of a GPU kernel consists of three

components, Tcomp, Tmem, and Toverlap, shown in Equation 1.
Three components capture the computation cost, the memory
cost, and the overlapping between the two costs because
of multithreading effects of GPU. Given a GPU kernel to
optimize its data placement, we measure and profile Tcomp,
Tmem, and Toverlap of the sample data placement, based on
which we predict Tcomp, Tmem, and Toverlap of target data
placements to decide the best data placement.

T = Tcomp + Tmem − Toverlap (1)

We significantly extend the existing work [7] to calculate
Tcomp and Tmem. In particular, the calculation of Tcomp is
based on the quantification of the issued instruction vari-
ation across different data placements; the calculation of
Tmem investigates the long access latency of off-chip memory
components, and introduces queuing theory-based models to
capture bank level parallelism and hardware queuing delays
in the memory system. To make the paper self-contained, we
list those models that come from the existing work [7] but
employed in this paper in Appendix. This section only contains
our models, unless we declare otherwise.
Toverlap happens when a warp doing computation overlaps

with another warp issuing a memory request and waiting for
the requested data. Toverlap is highly relevant to the memory
events that cause idling cycles in a warp. We build a model

3



TABLE II: Summary of some model parameters

Model parameter Definition Source

Tcomp Computation cost Equation 1
Tmem Memory cost Equation 1
Toverlap Overlapped cost Equation 1
Wserial Serialization overhead Equation 2 and Appendix
#inst Total issued instructions per warp Equation 2
AMAT Average memory access latency Equation 4

for Toverlap to capture the relationship between Toverlap and
those memory events.

B. The Calculation of Tcomp

Calculating Tcomp is based on Equation 2 in [7]. In the
equation, Wserial is the serialization overhead excluding the
serialization caused by memory events, such as shared memory
bank conflicts. The calculation of them can be found in
Appendix.

Tcomp =
#inst × #total warps

#active SMs
×

Effective instruction throughput +Wserial (2)

To calculate Tcomp for a target data placement, the major
challenge is to estimate #inst. Different from the existing
modeling work using the number of executed instructions [6],
[7], we estimate the number of issued instructions, because
the number of issued instructions is a strong indicator on the
performance variation across data placements, as discussed in
Section II-B. To estimate #inst, we quantify the instruction
difference between the sample and target data placements.

To study where the difference in the number of issued
instructions between data placements comes from, we use
nvprof to collect the number of issued instructions for 10
benchmarks (convolution, spmv, md, matrixMul, transpose,
bfs, triad, reduction, md5hash, and stencil2d) with 42 data
placements (see [12] for data placement details). Our study
shows that among 32 data placements (we exclude 10 default
data placements as the baseline for calculating instruction
difference), 23 of them have large variations in instruction
replays and integer instructions. These large variations ac-
count for at least 75% of the total instruction differences
between data placements. The integer instruction variation
mostly comes from the addressing mode difference between
memory components. 5 of 32 data placements have small
variation (less than 20%) in instruction replays and integer
instructions, but the implementation of these data placements
have relatively big algorithm changes upon the implementation
of the default data placement. Those changes introduce a lot
more instructions than the variation of instruction replays and
integer instructions.

In conclusion, to quantify the difference in the number
of issued instructions between data placements, we must
quantify: (1) replayed instructions; and (2) those instructions
for data addressing (those instructions do not have replays).

Quantification of the variation of executed instructions
(no replay). To investigate how the addressing mode changes
between different data placements, we examine CUDA code
and the corresponding SASS code (a native ISA for NVIDIA
GPU). Figure 2 shows an example GPU kernel doing vector
addition (single-precision floating point typed) with four data
placements for two arrays (a and b in the figure). In this ex-
ample, across the four data placements, we do not change the
vector addition algorithm, aiming to set up a straightforward
one-to-one mapping between the four data placements.

The figure reveals that the addressing mode changes be-
tween data placements. But, after data is loaded from a mem-
ory component to a register, the computation remains the same
in all data placements, and there is no instruction difference
afterwards. Also, different memory components use different
load/store instructions (e.g., LDS for shared memory and LDC
for constant memory), but those load/store instructions do
not change the number of executed instructions across the
four data placements. There is also an initialization phase for
certain memory components before the data is ready to access.
But the initialization phase happens only once. For the shared
memory, the initialization phase copies data between global
memory and shared memory. We can directly estimate the data
copy time based on memory bandwidth and data size instead
of counting instructions.

In this example, the addressing mode is particular for
referencing an array element using the element index. The
address mode includes the calculation of the effective address
of an array element by using the element index and other
information (e.g., the base address of the array) in registers
or specific memory regions. Other methods exist to reference
an array element (e.g., directly using the virtual address of
the element instead of using the element index). However,
using the element index is the most common method in GPU
code. Our investigations on 12 SHOC benchmarks [14] and
4 CUDA SDK benchmarks (62 kernels in total) reveal that
all of them use the element index to reference array elements.
This is different from regular CPU programs that often employ
flexible and complex methods to reference an array element.

We compare the addressing mode of the four memory
components. To address an array element, some instructions
have to be introduced to transform the element index into a
new index or an actual data address to reference the data,
depending on which memory component is used to place data.
Global memory uses the register indirect addressing mode,
and needs to transform the array index to the actual data
address. On a 64-bit address space of the Kepler architecture,
the actual memory address is calculated with 2 instructions
using 32-bit registers. Constant and shared memories, however,
use the indexed absolute addressing mode and only need
one instruction to calculate a new index based on the array
index and the base address of the array. Obtaining the base
address for constant and shared memories does not consume
any instruction, because the base address is pre-determined in
a fixed space of the constant or shared memory (e.g., c[0x2][0]
in the figure). Texture memory also uses the indexed absolute
addressing mode. However, the texture memory may or may
not use extra instructions to calculate a new index. For a 1D
array on 1D texture memory in this example, the element index
can be directly used as the index to reference the element
without any extra instruction.

As a summary, the numbers of instructions required to
calculate the address of a 1D-array element (single-precision
floating point) are 2, 0, 1, 1 for global, 1D texture, constant,
and shared memories, respectively. We enumerate and ana-
lyze common data types (double-precision floating point and
integer) for the four memories and use that to quantify the
variance of executed instructions because of the addressing
mode changes between data placements.

Discussion: The above example is ideal for analyzing the
addressing mode difference, because the example does not
change the vector addition algorithm across the four data

4



(a) a and b in global memory
(b) a and b in texture memory

(c) a and b in constant memory (d) a and b in shared memory
Fig. 2: CUDA code and SASS code for four data placements for vector addition (v = a + b). We change the placement of input data vectors a and b. v
is always in global memory. The red texts indicate the major difference in SASS code between data placements. Blue texts indicate the major difference in
CUDA code between data placements.

placements. However, to implement a data placement, some-
times the algorithm change is inevitable. This is especially true
when changing data placement between shared memory and
other memory components, because shared memory is scoped
to each thread block, while the other memory components
are scoped to all thread blocks. The algorithm change will
introduce new instructions and highly depend on application
details. To build a general model, we do not consider those
algorithm changes. Instead, in our models, when we change
data from shared memory to other memories, we assume that
the array index in shared memory is replaced with a global
thread ID; when we change data from other memories to
shared memory, we conservatively assume no extra instruction
change, besides the above addressing mode difference.

In general, to compute the difference in the number of exe-
cuted instructions between different data placements, we first
identify those instructions addressing elements of the target
data object in the sample data placement. Then we calculate
the instruction difference between the sample and target data
placements based on the above analysis of addressing mode.

Quantification of instruction replays. Instruction replays
consume instruction issue slots reducing the compute through-
put of SMs; instruction replays also increase the number of
issued instructions. Hence, instruction replays has strong cor-
relation to the performance variation across data placements.
Many reasons cause instruction replays. Based on [15] and
hardware counter events related to instruction replays, we
summarize the reasons for instruction replays as follows:

1) Global memory address divergence, or when total num-
ber of words accessed by all threads in a warp exceed
the number of words that can be loaded in one cycle;

2) Constant cache misses;
3) Address divergence in an indexed constant load;
4) Bank conflict in load/store for shared memory;
5) Complicated instructions issued over 2 cycles (including

DFMA, DADD, DFMA, and DMUL);
6) Address conflict in a reduction or atomic operation;
7) L1 cache misses due to local memory accesses (e.g.,

register spill and stack data);
8) Instruction cache misses;
9) Address divergence in a local memory load or store;

10) Load/store buffer (LSU) full.
The instruction replays in (1)-(4) listed as above are directly

related to memory references in the four memory components.
As we move a data object from one memory component A to
B, we reduce instruction replays for accessing A, but add
instruction replays for accessing B. So we must count the
number of instruction replays for referencing the target data
object on both A and B.

To count the number of instruction replays for accessing a
specific memory component, we collect the instruction trace
of the sample data placement. Then, when an instruction
references the target data object, we reason the instruction
replays in (1)-(4) based on the analysis of memory references
in each warp and cache models (see Section IV for details).

In particular, for (1), when analyzing a specific load or store
instruction, we count the total number of words for all threads
in a warp, and then divide the number by memory transaction
size. Then, we use the result minus 1 as the number of replayed
instructions. For (2), we count constant cache misses, and one
constant cache miss adds one instruction replay. For (3), we
count the number of constant memory address divergences
in load instructions for all threads in a warp. Each memory
divergence adds one instruction replay. For (4), we count the
number of bank conflicts in shared memory, and one bank
conflict adds one instruction replay.

For (5)-(10), we assume that the sample and target data
placements have the same number of instruction replays. For
(8), this assumption can introduce some inaccuracy when
counting instruction replays, because the sample and target
data placements have different number of executed instruc-
tions. A solution would be to build an instruction cache
simulator and estimate the instruction cache misses when
analyzing the instruction trace. However, we do not include it
in our implementation to strike a balance between the model
complexity and accuracy.

Based on the above discussion, the number of replayed
instructions is calculated in Equation 3. In the equation,
inst replaytarget and inst replaysample are the number of instruc-
tion replays per SM for the target and sample data placements,
respectively. inst replaysample 1-4 and inst replaytarget 1-4 are the
number of instruction replays due to (1)-(4) for the sample and
target data placements, respectively.

inst replaytarget = inst replaysample − inst replaysample 1-4+

inst replaytarget 1-4 (3)

C. Calculation of Tmem

The calculation of Tmem is based on Equation 4 in [7].
The calculation of effective memory requests per SM in
Equation 4 can be found in Appendix. The effective memory
requests include the memory requests to all of the four memory
components. Counting them should consider the difference in
memory request size between those memory components [15].

Tmem = Effective memory requests per SM × AMAT (4)

5



AMAT = DARMlat × miss ratio + hit lat+
shmemlat × shmemratio (5)

The calculation of AMAT (average memory access la-
tency) for Equation 4 is shown in Equation 5, which re-
quires miss ratio, hit lat, DRAMlat for off-chip memories,
and shmemlat and shmemratio for shared memory. miss ratio
accounts for the L2 cache misses for global, constant, and
texture memories. shmemratio accounts for the shared memory
requests. hit lat is the cache hit latency (constant, texture and
L2 caches). The previous work [16], [17] reveals that different
GPU caches have different access latencies. We could extend
Equation 5 to consider the latency difference. We omit the
difference and assume the same cache access latency (L2
cache latency) in our model. This has very limited impact
on modeling accuracy while simplifying the model. The same
method has been used in [7].

DRAMlat is the access latency for off-chip DRAM, and it is
the most expensive one comparing with other memory access
latencies. Previous work assumes that each memory request
has the same DRAM access latency, and measures it through
micro-benchmarks [16], [17]. However, memory requests can
be queued at memory controller in bank-specific queues until
the bank becomes available [18]. The queuing delay adds extra
latency into the memory request. For those memory intensive
workloads, GPU can especially increase the queuing delay of
those memory requests than CPU, because of massive memory
requests from massive thread-level parallelism. Furthermore,
the DRAM access latency is affected by row buffers in
memory banks. Our evaluation (see Section III-C2) reveals
that there is up to 110% variation in DRAM access latency,
depending on whether a row buffer miss/hit happens.

Altogether, the queuing delay and row buffer hit/miss cause
the variation of the DRAM access latency across memory
requests. As shown in the evaluation section, assuming a
constant DRAM access latency can result in 13.8% higher
prediction error (on average) than otherwise. To model the
effects of the queuing delay and row buffer miss/hit, we
employ a queuing model to calculate the average DRAMlat,
and do not assume a constant DRAM access latency.

1) Tmem Model Overview: Our queuing model considers
GDDR5 of GPU with M memory controllers (M = 6 for
Kepler and Fermi and six memory partitions in total) as a
set of queues, shown in Figure 3. Following the standard of
GDDR, each controller has one rank consisting of B banks.
Each memory bank works as a server (shown as a bank server
in Figure 3), and also has a specific queue (a G/G/1 queue
discussed in Section III-C3) before the server. A memory
request, after the last level cache, is distributed to a memory
bank. If the memory request cannot be serviced by the memory
bank immediately, the memory request is placed into the queue
associated with the memory bank. When the memory request
is serviced, the service time depends on whether the requested
data is in the row buffer of the memory bank (a hit) or not (a
miss). Memory banks can operate in parallel, depending on the
amount of parallelism existing in memory requests.Figure 3
shows a conceptual description of the queuing model.

For a specific memory bank i, the average memory access
latency includes the average queuing delay and the average
service time (see Equation 6). We apply the queuing theory
to calculate the average queuing latency (Section III-C3),

Fig. 3: A conceptual description of our queuing model.

and estimate the average service time based on row buffer
miss analysis. The system-wide average DRAM access latency
(DRAMlat) is calculated based on the average memory access
latency for NB memory banks, shown in Equation 7. In the
equation, λi is the memory request arrival rate for the bank
i. To calculate λi, we must know how memory requests are
distributed to memory banks. We discuss it in Section III-C2.

The queuing theory has been applied to study memory
system performance on CPU [19], [20] (Equation 7 is also
employed in [19]). However, our work is significantly different
from them from two perspectives: First, we reveal that the
queuing models based on the exponential distribution, which
have been applied on CPU, cannot be applied to GPU. We
introduce a new queuing model customized to the workload
characteristics of GPU. Second, we introduce a unique mech-
anism to detect the distribution of memory requests between
memory banks, while the existing work assumes that memory
requests have the same possibility to distribute on all memory
banks, ignoring the real distribution of memory requests. We
discuss our models in details in the following two sections.

DRAMlat banki = ave queuing delayi + ave service timei (6)

DRAMlat =

NB∑
i=1

λi∑NB
j=1 λj

× DRAMlat banki (7)

2) Memory Request Distribution: We must know how
memory requests are distributed between memory banks.
This is important to determine row buffer hit and miss for
calculating the average service time; this is also important for
calculating the inter-arrival rate (λ) of memory requests for
each memory bank (see Section III-C3).

The distribution of memory requests to memory banks is
determined by the address mapping scheme implemented in
hardware. The address mapping scheme denotes how a given
memory address is resolved into indexes in terms of channel
ID, rank ID, bank ID, row address, and column address.

The address mapping policy has been explored on CPU
based on hardware tools [21] and micro-benchmarks [22].
However, the address mapping on GPU is largely unexplored.
We introduce an algorithm to explore the address mapping
scheme. This algorithm also measures the latencies of row
buffer miss and hit on GPU.

Based on the needs of our models, our algorithm detects
the bit locations for row or column addresses in a memory
address, and does not distinguish the other bits (the address
bits for channel, rank, and bank). A combination of the other
bits identifies a unique memory bank in a specific rank and a
specific channel. Given two memory addresses, to determine if
they are mapped into the same memory bank, we only need to

6



check if the combination of the other bits in the two addresses
are the same or not. Detecting which address bits are for row or
column addresses is sufficient to determine which bits belong
to the combination of the other bits.

Algorithm 1 depicts our algorithm. The basic idea of the
algorithm is to generate two memory requests whose addresses
only differ by one bit (assuming this bit location is x). The
first memory request always has a row buffer miss, because
the requested data is never accessed before. The first memory
request latency is the row buffer miss latency. If the x bit is
neither a row bit nor a column bit, then the second memory
request will also have a row buffer miss, because the two
memory requests access two different memory banks. If the
x bit is a column bit, then the second memory request will
have a row buffer hit, because the two memory requests access
the same row. The second memory request latency is the row
buffer hit latency, the shortest access latency of all memory
requests. If the x bit is a row bit, then the first and second
memory requests go to the same bank but access different rows
(i.e. the row conflict). For the second memory request, the row
of the first memory request is written back first and then a new
row of data is fetched. Hence, the second memory request has
a row buffer miss, but its latency is the longest access latency
of all memory requests because of the row conflict.

We implement the above algorithm and run it on NVIDIA
Tesla K80 (Kepler architecture). We measure the row buffer hit
and miss latencies as 352ns and 742ns, respectively. When the
row conflict happens, the memory access latency is 1008ns.
Furthermore, for a 64-bit address, the row and column address
bits are 8th-21st bits and 30th-32nd bits. Except the last 3 bits
(the byte address bits) and the row and column address bits,
all the other bits uniquely identify memory banks.

The above algorithm uses the virtual addresses to detect
the address mapping scheme. However, the address mapping
scheme maps a physical address into a specific location in the
main memory. How a virtual address is mapping to a physical
address on GPU is unknown. We extensively test different
virtual addresses with largely different address ranges, and
find that they manifest the same row and column address bits.
We reason that the mapping between the virtual address and
the physical address on GPU do not change the positions of
row and column address bits.

In general, we use the combination of non-row/column bits
as a global memory bank ID to determine the distribution of
memory requests among all memory banks. Then we decide
the row buffer miss and hit based on the distribution of
memory requests, and calculate the average service time for
each bank (ave service time) based on Equation 8.

ave service time = row buffer miss lat × miss ratio
+ row buffer conflict lat × conflict ratio
+ row buffer hit lat × hit ratio (8)

3) Queuing Modeling: We use queuing modeling to calcu-
late ave queuing delay for each memory bank. The calcula-
tion of the average queuing delay requires the knowledge of
inter-arrival times and service times of memory requests and
the bank utilization. Depending on the statistical distribution
of inter-arrival times and service times, different queuing
models should be employed. We must examine the statistical
distribution to determine an appropriate queuing model.

The existing work shows that the inter-arrival times of mem-
ory requests on CPU approximately follow the exponential

Algorithm 1 Addresses mapping detection.
1: Launch the following GPU kernel with a single thread block with a single thread
2:
3: procedure GPU KERNEL:
4: Input: The address bits
5: Output: the positions of row and column bits
6:
7: for Each bit x in the address bits do
8: Generate 2 memory requests with one request’s x bit as

0 and the other request’s x bit as 1;
9: Access the two addresses using uncached GPU load

instructions (“ld.global.cs”) and record the latency
of the two accesses;

10:
11: Classify the address bits into three groups according to the

access latency;
12: Output the groups with the shortest and longest latency as

the column and row bits;

distribution (a Markov arrival stream) [19]. However, we find
that the inter-arrival times of memory requests of some GPU
kernels cannot be modeled like that. On a GPU platform
with massive thread-level parallelism, memory requests tend
to arrive in clumps and their inter-arrival times can have a very
higher level of variability than those on CPU. Our conclusion
is based on the following experiment.

We collect the inter-arrival times of memory requests with
GPGPUSim [23] (using the default configurations for GPU
Tesla C2050) for three benchmarks (spmv, md, and matrix-
Mul). Figure 4 shows the measured and theoretical (expo-
nential distribution) inter-arrival time distribution for those
benchmarks.The figure shows that the inter-arrival times do
not always follow an exponential distribution. In particular,
spmv approximately follows, while md and matrixMul do not.

We further calculate the coefficient of variation of inter-
arrival time (ca) to quantify arrival variability based on Equa-
tion 10 (we discuss how to calculate ca in the next paragraphs).
We find that the average ca of all memory banks (96 banks)
is 1.11, 2.22, and 1.72 (the standard deviation is 0.19, 0.35,
and 0.058) for spmv, md, matrixMul, respectively. In general,
the value of ca varies across benchmarks, but can be much
larger than 1 in some kernels (for an exponential distribution
ca should be 1). This indicates that the inter-arrival time of
GPU memory requests does not always follow an exponential
distribution. Since a higher value of ca indicates more vari-
ability or burstiness in the arrival stream, we conclude that
the inter-arrival time of memory requests in a GPU kernel can
be bursty. We attribute such bursty memory requests to the
massive thread-level parallelism and the similarity of memory
access patterns across threads.

Furthermore, the distribution of service times on GPU is
also not an exponential distribution, because the service times
are clustered into three values, corresponding to the row buffer
hit, row buffer miss without conflict, and row conflict. Such
distribution of service times is general with large variation.

In general, the inter-arrival times and the service times
are general. We should not assume they are Markov. Hence,
we use a G/G/1 queuing model to estimate the average
queuing delay (the inter-arrival time and the service time are
represented as G in G/G/1).

Since we choose G/G/1 queuing model, we use Kingman’s
equation [24] to approximate the average queuing delay, shown
in Equations 9 and 10. The model notations are summarized
in Table III.

7



Fig. 4: The measured and theoretical inter-arrival time distribution for
three GPU kernels (compute lj force for md, vector kernel for spmv,
FFT512 device for fft). We use the default data placements in these kernels.

TABLE III: Notations for our queuing modeling
Model Parameter Definition

ca, cs Coefficients of variation for interarrival time and service time
τa, τs The mean interarrival time and service time
σa, σs The standard deviation of interarrival time and service time
λ The average arrival rate λ = 1/τa
ρ Utilization of the server (memory bank), ρ = λ × τs

ave queuing delay =WG/G/1
q ≈ (

ca + cs
2

)(
ρ

1− ρ
τa) (9)

ca =
σa

τa
cs =

σs

τs
ρ = τs/τa (10)

The calculation of WG/G/1
q (average queuing delay) de-

pends on the approximation of τa, σa, τs and σs, which
is shown in Equation 10. To calculate τa and σa, we need
to know the interarrival time between any two consecutive
DRAM memory requests. We approximate the inter-arrival
time for two consecutive DRAM memory requests with the
number of instructions between them. To calculate τs and σs,
we need to know the service time for each DRAM memory
request. Given the estimation of memory request distribution
(Section III-C2), approximating the service time for each
memory request is straightforward based on the analysis on
row buffer hit and miss.

D. Calculation of Toverlap
Toverlap quantifies the overlapping between Tcomp and

Tmem. As we change data placement, the occurrences of mem-
ory events, such as cache misses and bank conflicts, change.
These memory events impact the extent of the overlapping.
Different memory events with different stall cycles can result
in different extent of overlapping.

Based on the above discussion, we build up an empirical
model for Toverlap shown in Equations 11 and 12. In Equa-
tion 12, we calculate Toverlap based on Toverlap ratio. This
makes the model based on the event ratio instead of the abso-
lute event numbers. Calculating Toverlap ratio makes models
independent of applications and results in better modeling
accuracy.

Toverlap ratio =
∑
i

gi × ei +
∑
j

cj × ej +
∑
m

tm × em+∑
n

sn × en +
∑
k

rk × ek + w × #warps + c

(11)

Toverlap = Toverlap ratio × Tmem (12)

In essence, Equation 11 captures the relationship between a
set of performance-critical memory events and Toverlap ratio.
For global memory, these memory events (ei) are L2 cache
misses plus global memory requests; For constant memory,

these memory events (ej) are constant cache misses plus
constant memory requests; For texture memory, these memory
events (em) are texture cache misses plus texture memory
requests; For shared memory, these memory events (en) are
bank conflicts plus shared memory requests. We also include
row buffer miss and conflict events (ek) and the number of
warps per SM into Equation 11. The number of warps per
SM is necessary, because it provides the information on the
availability of threads to cover the stall cycles.

There are also a set of coefficients (i.e., gi, cj , tm, sn, rk and
w) and a constant factor (c) in Equation 11. To construct the
model, those coefficients and the constant factor are derived
using linear regression with a set of benchmarks. When
making prediction for Toverlap for a target data placement,
those memory events in Equation 11 are calculated by the
instruction trace analysis and cache models (see Section IV).

E. Other Details
To predict performance for a target data placement, we

need to know the addresses of target data objects in the
target memory component. This is necessary to determine the
distribution of memory requests among memory banks and
quantify cache misses. In our model, if the location of the
target data object is changed between the off-chip memories,
the address of the target data object remains the same. If the
location of the target data object is changed between an off-
chip memory and shared memory, we assign an address range
to the target data object after the allocated largest memory
addresses on the target memory component. Also, the assigned
address range follows the requirements of memory alignment
and data object size.

To identify memory accesses to the target data object, we
need to know the addresses of the target data object in the
sample data placement. This can be done by instrumenting the
GPU kernel with SASSI [25] and output the address range of
the target data object at the beginning of the kernel call.

IV. IMPLEMENTATION

Our performance models require a variety of information
on the execution of the sample data placement. Based on the
information, our models predict performance for a target data
placement. The implementation of the models is a framework
including instruction and memory trace generation, cache
models, and trace analysis.

We develop an instruction trace generator and a memory
trace generator based on SASSI [25]. The instruction trace
generator generates an SASS instruction trace for all threads,
and the memory trace generator collects load and store in-
structions to generate a memory trace. The memory trace is
then processed to replace load and store operations of the
sample data placement with those of the target data placement
accommodating the addressing mode difference.

We further develop cache models (including the texture
cache, constant cache, and L2 cache) based on the cache
models in GPGPUSim. Our cache models take the processed
memory trace as input, and then output a new memory trace
filtered by our cache models. The memory requests in the new
memory trace include the dynamic instruction IDs that issue
memory requests. The new memory trace is fed into the Tmem

model to count inter-arrival times and row buffer misses/hits
based on the distribution of memory requests among memory
banks. Our cache models also count disruptive memory events

8



TABLE IV: Benchmarks for evaluation. We use the notation “kernel name
[data object name(mem1→mem2), ...]” to represent a specific data placement
test. “mem1” is the original data placement and “mem2” is the new data
placement. In the first column, the numbers after each benchmark name give
the number of data placement tests. Those numbers include the sample data
placements. G, T, C, S and 2T stand for global, 1Dtexture, constant, shared,
and 2Dtexture memories, respectively. Convol. stands for the benchmark
convolutionSeparable.

Benchmark Data placement test
Benchmarks for evaluation

SHOC:bfs(2) BFS kernel warp[edgeArray(G→T)]
SHOC:fft(2) FFT512 device[smem(S→G)]
SHOC:neuralnet(5) kernelFeedForward1[weights(G→C, G→S, G→T,

G→2T)]
SHOC:reduction(2) reduce[sdata(S→G)]
SHOC:scan(2) reduce[g idata(G→2T)]
SHOC:sort(2) reorderdata[sBlockOffsets(S→G)]
SHOC:stencil2d(2) StencilKernel[data(G→T)]
SHOC:md5hash(2) Find.[foundKey(G→S)]
SHOC:S3D(3) gr base[gpu p(G→T), gpu y(G→T),

gpu p,gpu y(G→T)]
Benchmarks for training Toverlap

SDK:convol.(5)

convolutionRowsKernel[(d Src(G→2T)],
convolutionRowsKernel[(d Src(G→T)],
convolutionRowsKernel[(c Kernel(C→G)],
convolutionRowsKernel[(c Kernel(C→T)]

SHOC:md(6)

compute lj force[d position(T→G), neighList(G→)T],
compute lj force[d positioin(T→G)],
compute lj force[d position(T→G)],
compute lj force[d position(T→G), neighList(G→)T],
compute lj force[neighList(G→)T]

SDK:matrixMul(8)

matrixMul[A(G→2T), B(G→2T)],
matrixMul[A(G→2T)],
matrixMul[A(G→T)], matrixMul[A(G→T), B(G→2T)],
matrixMul[B(G→2T)], matrixMul[A(G→T),B(G→T),
matrixMul[B(G→T)]

SHOC:spmv(10)

vector kernel[rowD.(G→S), d vec(T→)G],
vector kernel[rowD.(G→C), d vec(T→)G],
vector kernel[rowD.(G→T), d vec(T→)G],
vector kernel[rowD.(G→S)],
vector kernel[val(G→T), d vec(T→)G],
vector kernel[rowD.(G→T), d vec(T→)C],
vector kernel[rowD.(G→S)],
vector kernel[val(G→T), cols(G→T), rowD.(G→C),
d vec(T→)G],
vector kernel[val(G→T), cols(G→T)],

SDK:transpose(3) transposeNaiv[odata(G→2T)],
transposeNaiv[idata(G→T)]

SDK:cfd(2) cuda compute flux[variables(G→T)]
SHOC:triad (2) triad[B(G→S)]
SHOC:QTC(2) QTC device[distance matrix txt(G-¿2T)]

(e.g., the cache miss and memory bank conflict). The statistics
of those memory events is fed into the Tcomp model to estimate
instruction replays and into the Toverlap model.

V. EVALUATION

We test our performance models on an NVIDIA Tesla K80
(Kepler architecture). To test the model accuracy, we predict
performance for various data placements. Then, we implement
those data placements and measure their performance on GPU.
We compare the predicted and measured results. Table IV lists
benchmarks we use for evaluation and model training. Those
benchmarks include all of benchmarks in SHOC benchmark
suite [14] and some CUDA SDK benchmarks. To train the
Toverlap model, we use 38 data placements (see Table IV).
Those training benchmarks are selected with various memory
access patterns and data placements. We use the trained model
to make prediction for other benchmarks. Hence the training
benchmarks and evaluation benchmarks are separate.

Fig. 5: Predicted performance for various data placements based on [7]
and our models. The predicted performance is normalized by the measured
performance.

Fig. 6: Prediction accuracy comparison between PORPLE [4] and our work.
The numbers above markers in the figure are performance ranks based on
performance modeling. Performance ranking based on our model is consistent
with that based on the measured performance.

A. Model Accuracy
Figure 5 shows the prediction accuracy. We evaluate multi-

ple data placements for each benchmark (see [12]). The figure
shows the predicted performance normalized to the measured
performance. In general, the models achieve high prediction
accuracy. The arithmetic average prediction error is 9.9%.

We also compare our work with the existing work [7] (see
Figure 5). Our work is based on [7] but with significant
improvement. As a result, we improve performance prediction
accuracy by 17.6% (on average). Our models introduce the
detailed instruction counting (counting instruction replays and
addressing mode difference) and account for latency variation
of off-chip memory accesses based on the queuing model and
address mapping scheme. As a result, our models perform par-
ticularly better than [7] for benchmarks NN C and SCAN 2
(improving accuracy by 41% and 38% respectively), because
the two target kernels in the two benchmarks have a large
number of instruction replays. Our models also perform par-
ticularly better for Reduction 2 (improving accuracy by 48%),
because the target kernel in this benchmark has significant
number of row buffer misses which cause off-chip memory
access latency variation.

To further demonstrate our modeling accuracy, we compare
our model with another related work PORPLE [4]. PORPLE
uses a memory latency-oriented performance model. The
model aims to rank performance of different data placements
instead of predicting execution time. To compare with POR-
PLE, we use our models to rank performance of five data
placements of a kernel (kernelFeedForward1) in a SHOC
benchmark “neuralnet”. Figure 6 shows the results. PORPLE
cannot correctly rank different data placements, especially
because of its poor performance modeling result for a data
placement (NN S). Our models correctly rank the performance
of those data placements, because of high prediction accuracy.

B. Exploring Model Construction
To investigate the impact of various performance factors

on modeling accuracy, we remove them from our models,
and then observe how the modeling accuracy changes. This

9



evaluation provides an important indication on how and which
we should model on HMS

In this evaluation, we introduce a “baseline” model, which
is our models without the detailed instruction counting and the
queuing model, and with even memory distribution between
memory banks (no consideration of address mapping). Hence,
the baseline model does not include those critical perfor-
mance factors in our models. This baseline model is different
from [7], in that the baseline model uses Equation 11 to calcu-
late Toverlap, while [7] uses CWP and MWP formulation [6].
Without the consideration of those critical performance factors,
the baseline model performs even worse than [7], because it
incorrectly calculates the numbers of those memory events
needed by Equation 11.

Figure 7 shows the modeling results with and without the
detailed instruction counting. In our models, we consider the
difference in the number of issued instructions across data
placements in details. In particular, we count instruction re-
plays and address mode differences. We notice that introducing
the detailed instruction counting improves modeling accuracy
by 17% on average (see “Baseline” vs. “Baseline+instr re-
play&addr mode diff”). Some benchmarks are very sensitive to
accurately counting of issued instructions. For example, fft 1,
NN S, and bfs 2 have 142%, 106%, and 67% difference in
modeling accuracy between “Baseline” and “Baseline+insts
replay&addr mode diff”.

We further introduce the queuing model into “Base-
line+insts replay&addr mode diff” to study the impact of the
queuing model with the detailed instruction counting method
in place. To separate the effect of memory request distribution
from the effect of the queuing model, we do not consider
address mapping when employing the queuing model, and
assume even distribution of memory requests between memory
banks (see “Baseline+insts replay&addr mode diff+queuing
model(even mem requests)”). Figure 8 shows the result. With
the employment of the queuing model (assuming even distri-
bution of memory requests), we improve modeling accuracy
by 31%, comparing with the baseline. With the consideration
of address mapping, we further improve the modeling accu-
racy of the queuing model by 8.1% (see “Our Model” vs.
“Baseline+insts replay&addr mode diff+queuing model(even
mem requests)”). These results demonstrate that accurately
modeling off-chip memory access latency is very helpful to
improve modeling accuracy, and using queuing model we can
effectively capture the variation of off-chip memory access
latency across memory requests.

To further study the impact of the queuing model, we
apply the queuing model to the baseline without the detailed
instruction counting method. We want to separate the effect of
the queuing model from the effect of the instruction counting
method, but with the consideration of address mapping. Fig-
ure 9 shows the result. In general, the queuing model alone
improves modeling accuracy by 13.8% on average. With the
queuing model in place, applying other modeling techniques
improves modeling accuracy by 25.3% on average. Combining
the results from Figures 7 and 9, we see the necessity of using
multiple modeling techniques. Using the detailed addressing
counting method alone or using the queuing modeling alone,
we improve the baseline by 17% and 13.8% respectively, but
when employing both of them, we improve the baseline by
39.1%, larger than the combination of the improvements of
using the two techniques alone.

VI. RELATED WORK

GPU Performance Models. Hong and Kim [6] introduce
an analytical model based on the quantification of memory
warp-level and thread-level parallelism. Sim et.al [7] further
improve this model by considering cache effects and effective
instruction throughput. However, they do not model the queu-
ing delay due to resource contention in the memory system.

Baghsorkhi et al. [26] introduce a work flow graph by
extending the traditional control flow group to estimate per-
formance. However, they have limited consideration for mod-
eling the overlap between computation and memory access,
and cannot study the data placement problem. Zhang and
Owens [8] propose a performance framework to measure the
execution time spent on global and shared memories and
instruction pipeline. However, their work cannot quantify the
performance benefits of data placement optimizations. Huang
et. al [27] propose GPU performance modeling based on
interval analysis to capture the effects of multithreading and
resource contentions caused by memory divergence. Their
models can be used to study the performance effects of
different architecture design options, which is complementary
to our study. Tang et al. [28] use the reuse distance theory to
model the cache miss rate. Nugteren et al. [29] also employ
the reuse distance theory but with extra considerations of
thread block scheduling and MSHR. Choi et al. [30] introduce
automated performance tuning to optimize sparse matrix-
vector multiplication on GPU. In Sectoin V, we compare our
models with two of the state-of-the-art models [4], [7].

Data Placement Problem for Heterogeneous Memory.
Chen et al. [4] introduce a framework to enable automatic
data placement on GPU, based on a series of compiler and
runtime techniques and a performance model. However, their
performance model to direct data placement does not suffi-
ciently consider memory level parallelism and the overlapping
between computation and memory accesses. Jang et al. [5]
propose a list of rules to guide users in placing data when
writing a program. Ma et al. [31] consider the optimal data
placement on shared memory only. Wang et al. [2] study the
energy and performance tradeoff for placing data on DRAM
versus non-volatile memory on GPU. Agarwal et al. [1] study
data placement strategies for GPU with high bandwidth-based
heterogeneous memory. They introduce a bandwidth-aware
data placement strategy and profile data structure accesses to
direct data placement. Our work complements the above by
modeling performance to direct data placement.

VII. CONCLUSIONS

This paper introduces performance models to predict per-
formance for various data placements on GPU with HMS. We
reveal performance factors that are critical for performance
modeling for HMS. Our models can work as a tool to help
programmers for GPU performance optimization.

Acknowledgement. This work is partially supported by
U.S. NSF (CNS-1617967 and CCF-1553645). We thank
anonymous reviewers for their valuable feedback.

VIII. APPENDIX

We use Equation 13 to calculate effective instruction
throughput for Tcomp. Similar to [7], we use the latency
of FP operations to approximate average instruction latency
in the equation. ITILP is the inter-thread instruction-level
parallelism, which represents how much ILP (instruction-level

10



Fig. 7: The impact of instruction counting on model accuracy.

Fig. 8: The impact of the queuing modeling on model accuracy. The detailed instruction counting method (considering addressing mode and instruction replay)
is in place with the queuing model.

Fig. 9: The impact of queuing modeling on model accuracy.

parallelism among warps) is available among N warps to hide
pipeline latency (Eq. 14 and 15).

Effective instruction throughput =
avg inst lat

ITILP
(13)

ITILP = min(ILP ×N, ITILPmax) (14)

ITILPmax =
avg inst lat

warp size/SIMD width
(15)

The serialization overhead (Wserial) for computing Tcomp is mod-
eled in Equation 16. Wserial includes sync overhead (Osync), SFU
resource contention overhead (OSFU ), and control flow divergence
overhead (OCFdiv). We assume that these overhead are the same
between different data placements.

Wserial = Osync +OSFU +OCFdiv (16)

Effective memory requests per SM for computing Tmem is mod-
eled in Equation 17. ITMLP in the equation defines the number of

memory requests per SM concurrently serviced. ITMLP is calculated
in Equations 18 and 19. The calculation of ITMPL is based on [6].

Effective memory requests per SM =
#mem instrs × #total warps

active SMs × ITMLP
(17)

ITMLP = min(MLP × MWPcp,MWPpeak bw) (18)

MWPcp = min(max(1,CWP − 1),MWP) (19)

REFERENCES

[1] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keckler,
“Page Placement Strategies for GPUs Within Heterogeneous Memory Systems,”
in International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2015.

[2] B. Wang, B. Wu, D. Li, X. Shen, W. Yu, Y. Jiao, and J. S. Vetter, “Exploring Hybrid
Memory for GPU Energy Efficiency through Software-Hardware Co-Design,” in
PACT, 2013.

[3] F. X. Lin and X. Liu, “Memif: Towards Programming Heterogeneous Memory
Asynchronously,” in International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2016.

[4] G. Chen, B. Wu, D. Li, and X. Shen, “PORPLE: An Extensible Optimizer for
Portable Data Placement on GPU,” in IEEE/ACM International Symposium on
Microarchitecture, 2014.

11



[5] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting Memory Access Patterns to
Improve Memory Performance in Data-Parallel Architectures,” IEEE Transactions
on Parallel and Distributed Systems, vol. 22, no. 1, pp. 105–118, 2011.

[6] S. Hong and H. Kim, “An Analytical Model for a GPU Architecture with Memory-
level and Thread-level Parallelism Awareness,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ser. ISCA ’09, 2009.

[7] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A Performance Analysis Framework
for Identifying Potential Benefits in GPGPU Applications,” in ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), 2012.

[8] Y. Zhang and J. D. Owens, “A Quantitative Performance Analysis Model for GPU
Architectures,” in Proceedings of International Symposium on High Performance
Computer Architecture (HPCA), 2011.

[9] G. Chen and X. Shen, “Coherence-Free Multiview: Enabling Reference-Discerning
Data Placement on GPU,” in International Conference on Supercomputing (ICS),
2016.

[10] N. Fauzia, L.-N. Pouchet, and P. Sadayappan, “Characterizing and Enhancing
Global Memory Data Coalescing on GPUs,” in International Symposium on Code
Generation and Optimization (CGO), 2015.

[11] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-
m. W. Hwu, “Optimization Principles and Application Performance Evaluation of
a Multithreaded GPU Using CUDA,” in ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2008.

[12] Y. Huang and D. Li, “Performance Modeling for Optimal Data Placement on
GPU with Heterogeneous Memory Systems,” 2016, Technical Report, PASA Lab,
University of California, Merced.

[13] A. Singhal, “Modern Information Retrieval: A Brief Overview,” Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, vol. 24, no. 4,
2001.

[14] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter, “The Scalable Heterogeneous Computing (SHOC)
benchmark suite,” in GPGPU, 2010.

[15] “CUDA C Programming Guide,” http://docs.nvidia.com/cuda/cuda-c-
programming-guide.

[16] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos, “Demys-
tifying GPU Microarchitecture through Microbenchmarking,” in ISPASS. IEEE
Computer Society, 2010, pp. 235–246.

[17] X. Mei and X. Chu, “Dissecting GPU Memory Hierarchy through Microbench-
marking,” CoRR, vol. abs/1509.02308, 2015.

[18] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access
Scheduling,” in International Symposium on Computer Architecture (ISCA), 2000.

[19] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan, “ANATOMY:
An Analytical Model of Memory System Performance,” in ACM International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS),
2014.

[20] N. Gulur, M. Mehendale, and R. Govindarajan, “A Comprehensive Analytical
Performance Model of DRAM Caches,” in ACM/SPEC International Conference
on Performance Engineering (ICPE), 2015.

[21] Y. Bao, M. Chen, Y. Ruan, L. Liu, J. Fan, Q. Yuan, B. Song, and J. Xu, “HMTT:
A Platform Independent Full-system Memory Trace Monitoring System,” in ACM
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), 2008.

[22] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A Software Memory
Partition Approach for Eliminating Bank-level Interference in Multicore Systems,”
in International Conference on Parallel Architectures and Compilation Techniques
(PACT), 2012.

[23] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing
CUDA Workloads Using a Detailed GPU Simulator,” in ISPASS, 2009.

[24] J. Kingman, “On the Algebra of Queues,” Journal of Applied Probability, vol. 3,
pp. 285–326, 1996.

[25] M. Stephenson, S. K. Sastry Hari, Y. Lee, E. Ebrahimi, D. R. Johnson, D. Nellans,
M. O’Connor, and S. W. Keckler, “Flexible Software Profiling of GPU Architec-
tures,” in International Symposium on Computer Architecture (ISCA), 2015.

[26] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W. Hwu, “An
Adaptive Performance Modeling Tool for GPU Architectures,” in ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), 2010.

[27] J.-C. Huang, J. H. Lee, H. Kim, and H.-H. S. Lee, “GPUMech: GPU Performance
Modeling Technique Based on Interval Analysis,” in IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2014.

[28] T. Tang, X. Yang, and Y. Lin, “Cache Miss Analysis for GPU Programs Based
on Stack Distance Profile,” in International Conference on Distributed Computing
Systems (ICDCS), 2011.

[29] C. Nugteren, G. J. van den Braak, H. Corporaal, and H. Bal, “A Detailed GPU
Cache Model Based on Reuse Distance Theory,” in International Symposium on
High Performance Computer Architecture (HPCA), 2014.

[30] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-Driven Autotuning of Sparse
Matrix-vector Multiply on GPUs,” in ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2010.

[31] W. Ma and G. Agrawal, “An Integer Programming Framework for Optimizing
Shared Memory Use on GPUs,” in International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), 2010.

12


