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Abstract—Intel Xeon Phi is a many-core architecture, featuring
more than 50 cores and 200 hardware threads. Given this scale
and its other distinctive architectural features, highly-concurrent
applications on Xeon Phi may behave differently than on tradi-
tional multi-core systems. Yet, concurrency issues especially for
synchronization intensive applications on this platform have not
been thoroughly analyzed. In this paper, we conduct an extensive
analysis at multiple layers, from the underlying hardware cache-
coherence protocol up to the user-level applications, aiming to
present the most exhaustive study of synchronization on Xeon
Phi. Through a range of benchmarks, we testify the feasibility
and advantage of accelerating concurrent applications with Xeon
Phi. Meanwhile, we identify severe scalability issues relevant to
synchronization, and solutions to these issues are discussed. We
believe this work can be used as guidelines both for designing
better synchronization mechanisms and in optimizing concurrent
applications in order to fully exploit the capability of Xeon Phi.

Index Terms—Intel Xeon Phi; Many-core; Synchronization;
Scalability; Concurrent applications

I. INTRODUCTION

Intel Xeon Phi is based on the Intel Many Integrated Core

(MIC) architecture. It has over 60 cores, 30M of on-chip

caches and a very fast interconnection, delivering a peak per-

formance of 2.38 teraFLOP/s (obtained with Xeon Phi 7120P).

It has been playing an significant role in supercomputers,such

as STAMPEDE [1] and Tianhe-2 [2]. Despite the features

it shares with many-core GPGPUs such as SIMD/SIMT,

high-throughput, and high-bandwidth, the prominent advan-

tage compared to GPGPUs is the ability of expressing algo-

rithms with fine-grained concurrent control. Thus, leveraging

xeon phi to accelerate complex concurrent applications has a

promising prospect. However, in our efforts of porting highly

concurrent applications to Xeon Phi, we observed scalability

issues once intensive synchronization is involved even with

hardware-specific optimizations. We recognize the difference

of the issues relevant to synchronization between Xeon Phi

and multi-core processors. Moreover, unawareness of these

differences would definitely become a major impediment to

the exploitation of Xeon Phi in HPC systems.

Over the last few years, a lot of research endeavors has

been devoted to this new architecture. Some aim to benchmark

the capability of its hardware components [3], [4], while

others focus on demonstrating its performance advantages [5],

[6], [1]. A portion of studies mainly regards porting and

∗ The first two authors contributed equally to this work.

optimizing individual applications to fully utilize its hardware

features [7], [8], [9]. However, existing studies do not cover

synchronization issues and yet show little indication of why

a given synchronization scheme scales well on a multi-core

architecture but faces new challenges on Xeon Phi. Recent

works [10] have conducted detailed analysis about synchro-

nization spanning multiple layers on modern multi-processor

architectures, revealing that the scalability of synchronization

schemes is mainly a property of hardware. We firmly agree

on this view that synchronization is exceedingly related to the

low-level details of the underlying hardware. Therefore, we

believe a thorough analysis of synchronization on Xeon Phi

combining the underlying hardware architecture and upper-

level algorithms is highly demanded.

In this paper, we perform a comprehensive study of synchro-

nization on Xeon Phi, which ranges from the basic hardware

architecture to complicated concurrent software. We design a

set of micro-benchmarks targeting cache-coherence protocol,

atomic primitives and locks (part of the micro-benchmarks are

redesigned for Xeon Phi based on [10]. We port three represen-

tative concurrent hash tables (CHTs) [11], [12], [13] to this

platform in order to dissect their synchronization behaviors.

In order for comparison with traditional multi-core processor,

experiments about CHTs are also performed on a two-socket

Intel SandyBridge EP machine. To the best of our knowl-

edge, this is the most thorough study of synchronization on

Xeon Phi. Our results unveil some undocumented architectural

features closely related to synchronization and identify sev-

eral performance issues caused by improper synchronization

schemes on Xeon Phi. We discuss solutions to alleviate these

problems. The systematic investigation of synchronization on

Xeon Phi induces the following observations.

Cross-core communication is harmful to efficient synchro-
nization. Cross-core communication causes higher overhead

than intra-core (usually by an order of magnitude) on Xeon

Phi.

Access latency is dependent on the distributed tag directory
but not the core distance. On Xeon Phi, a distributed tag

directory system (DTD) is employed to keep all the L2 caches

coherent, and a hash function based on the address of the cache

line is used to determine the line-to-DTD mapping. Plus the

impact of the ring bus, the distance between the core and

DTD can cause variations in access latency, which renders the

distance between cores less relevant to latency.
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CAS and FAI are more efficient on Xeon Phi. System

designers should exploit the best performing atomic operations

like CAS and FAI on Xeon Phi to implement locks and other

synchronization schemes.

Locks should be chosen based on the degree of contention.
While complex locks are generally more suitable for extreme

contention scenarios, simple locks are preferable under low

contention.

Fine-grained concurrency control is more preferable on
Xeon Phi. Given the scale of this new architecture as well as its

low CPU frequency, in-order execution, and other architectural

features, our study reveals that fine-grained synchronization

benefits scalability on Xeon Phi.

Explicit thread pinning may hurt performance on Xeon Phi.
It may not be beneficial to manually place threads for con-

current applications that have random memory access pattern

as on NUMA systems. Instead, the default thread scheduler

provided by the operating system can often achieve better

performance.

II. RELATED WORK

In this section, we briefly discuss the work most related to

our study.

Studies on Xeon Phi. A large body of work has been devoted

to the study and benchmark of Xeon Phi since Intel released its

first generation product in 2012 [3], [4], [8], [9]. These efforts

usually focus on either evaluating the capabilities of Xeon

Phi’s hardware components, such as the cores, memory, on-

chip and off-chip (PCIe) interconnect, or optimizing specific

application on Xeon Phi to fully utilize its powerful hardware

capabilities. In addition, in [14], the authors investigate the

cache-coherent architecture of Xeon Phi by developing an

intuitive performance model. However, existing studies on

Xeon Phi have not yet mentioned synchronization issues.

Synchronization. In a recent work [10], the authors con-

ducted a detailed analysis on a broad range of synchro-

nization schemes, and the evaluation was performed on four

mainstream representative multi-core platforms (Xeon Phi not

included). One of the conclusions made in this work is that

synchronization is mainly a property of the hardware. Part

of our study is based on their approaches (focus on Xeon

Phi). We confirm some of their observations such as that

synchronization is more relevant to the underlying hardware.

Moreover, we identify distinctive synchronization issues on

Xeon Phi from its unique hardware architecture. Another

work [15] presents an in-depth benchmarking of the impact

of synchronization on concurrent algorithms. Nevertheless,

they mainly focus on synchronization algorithms, and the

evaluations have not been conducted on Xeon Phi. The paper

[16] covers the synchronization issue of Xeon Phi by only fo-

cusing on analysis and optimization of barrier synchronization

mechanism. In [17], the authors analyzed both the latency and

bandwidth of atomic operations on Xeon Phi. Our work differs

in that we provide a holistic view about synchronization from

low-lever primitives to upper-level algorithms, which can help

clarify confusing factors in designing practical systems.

Concurrent Hash Tables. Considering the widespread use of

concurrent hash tables in software systems, and our intension

to explore synchronization on Xeon Phi using real concurrent

applications, we select three state-of-the-art concurrent hash

tables including CLHT [11], Hopscotch hash [13], and concur-

rent Cuckoo hash [12]. All the chosen CHTs have been shown

to be scalable in their original work. We port these CHTs to

Xeon Phi as native applications. This is also the first work to

benchmark CHTs on Xeon Phi. At the same time, we have

identified severe scalability issues related to synchronization

when running these CHTs on Xeon Phi, and the root causes

are addressed with platform specific features.

III. BACKGROUND

Designing synchronization schemes for concurrent applica-

tions on a specific platform is closely related to both hardware-

level mechanisms and software-level algorithms. The cache-

coherence protocol is one of such hardware-level mechanisms

that can maintain the consistency when accessing shared data

stored in multiple local caches. The cache-coherence protocol

implements load and store operations that are fundamental for

a hardware architecture. Besides, more advanced operations

like atomic primitives are also provided, such as compare-

and-swap and fetch-and-increment, which can be leveraged to

implement locks and other synchronization mechanisms (lock-

free and wait-free algorithms).

The Xeon Phi’s cache-coherence protocol is implemented

using a directory protocol based on MESI that uses GOLS

(Globally Owned Locally Shared) to simulate an Owned state.

Thus, sharing a modified line among cores is allowed. The

primary goal is to avoid write-back to the main memory when

another core tries to read a modified cache-line. Therefore, the

shared state does not mean that the line has not been modified.

Each core’s cache maintains MESI states of its cache lines and

the Distributed Tag Directories (DTDs) hold the global GOLS

coherency state of each line. Cache lines are assigned to each

DTD according to the line address instead of the core that is

holding or requesting the cache line.

Software-level synchronization algorithms are typically built

on top of hardware-level primitives. For instance, locks, as

the most widely-used synchronization technique, are used to

protect critical sections.

IV. MOTIVATION

Considering the widespread use of concurrent hash ta-

bles and the compute capability of Xeon Phi, we ported

three state-of-the-art concurrent hash tables (i.e. CLHT [11],

Hopscotch [13], and Cuckoo [12]) to Xeon Phi as native

applications to explore the potential performance acceleration.

We employed some essential optimizations such as thread

affinity control strategy in our experiments, expecting decent

performance speedup.

Beyond our positive expectation, both Hopscotch and

Cuckoo encounter severe performance issues (executing in

native mode) especially when update operations are in-

volved. Hopscotch scales poorly as more hardware threads are
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spawned, and exhibits a huge performance degradation with

read-write workload. We did not observe similar behaviors on

another two-socket Xeon machine. However, under read-only

workload, Hopscotch shows excellent scalability and reaches

peak performance (1.210 billion ops/s) when 244 hardware

threads are exploited. CLHT is the only one that always

exhibits perfect scalability regardless of the types of workloads

on Xeon Phi. It achieves maximized throughput of 2.2 billion

ops/s with read-only workload, approximately 2 billion ops/s

with 20% updates, and surprisingly more than 1.8 billion ops/s

with update-only workload.

As a result, we believe that the performance issues en-

countered are more relevant to the underlying synchronization

mechanisms. The differences in hardware architecture between

the two platforms may result in different synchronization be-

havior and consequently performance variations, which can be

explained from three aspects. First, many more cores usually

encourage higher concurrency, which would incur more con-

tentions. Second, guaranteeing cache-coherence in large scale

may demand extra hardware complexities. Third, underlying

synchronization instructions may not perform portably well

across platforms due to different design requirements. Having

a holistic view on these issues can help system designers

understand pitfalls and alternatives in developing or optimizing

parallel applications for Xeon Phi.

V. EXPERIMENTAL ENVIRONMENTS AND

CONFIGURATIONS

In this section, we first introduce our experimental plat-

forms. Then, the benchmarking programs used in our experi-

ments are detailed.

A. Platforms

In order to obtain comparable results in the evaluation of

concurrent hash tables, we also conduct experiments on an

Intel SandyBridge EP machine.

Intel Xeon Phi 7120P. Our experiment platform is Xeon

Phi 7120P that integrates 64 in-order cores on the same chip.

Each core is clocked at 1.238 GHz and supports 4 hardware

threads, thus having 244 hardware threads in total. All cores

are connected by a high-speed on-die bidirectional bus. The

main memory is 16 GB in size. Each core has a 32 KB L1

data cache and 32 KB L1 instruction cache, and a private 512

KB L2 cache, thus presenting a total 31MB of L2 cache on

the chip.

Intel SandyBridge EP. The Intel SandyBridge EP machine

consists of two sockets each with 8 out-of-order cores (totaling

32 hardware threads) and 16GB memory. It operates at 1.8GHz

and offers 32KB L1 cache, 256KB L2 cache, and 20MB LLC.

It has 4 memory channels and 2 QPIs.

B. Design of Benchmarks

We port and redesign three benchmarks for Xeon Phi. We

take advantage of the benchmark suite introduced in SSYNC

[10] that was used to study synchronization on four multi-

core platforms. The benchmarks can measure the cost of

operations on a single cache line according to a certain line’s

MESI state and location in the system. Measuring the cost of

individual atomic operations and several representative lock

algorithms is also implemented in the benchmarks. As the

binary architecture (k1om) of Xeon Phi is not completely

compatible with x86 64, we rewrite some in-line assembly to

make it compatible with the MIC instruction set. For instance,

memory fences like mfence are not supported by Xeon Phi,

so we use the alternative like lock; addl $0,(%%rsp) instead.

The instruction clfush is also not supported and it had to be

replaced by clevict for manually controlling both L1 and L2

caches. As for the pause instruction, we replace it with the

delay instruction. In addition, because Xeon Phi 7120P is not

a NUMA architecture, we exclude some benchmarking cases

that are specifically designed for NUMA systems, and adopt

new thread-to-core mappings to our benchmarks according to

the topology of Xeon Phi.

For concurrent applications, we select three state-of-the-

art concurrent hash tables (CHTs), namely CLHT [11], Hop-

scotch [13], and Cuckoo [12]. The three CHTs are ported

to Xeon Phi with platform-specific optimizations, and tested

under a unified framework that provides flexible parameter

configuration and the collection of a wide range of perfor-

mance metrics.

VI. EVALUATION RESULTS AND ANALYSIS

In this section, we first describe the impact of cache-

coherence protocol on synchronization on Xeon Phi using a

set of micro-benchmarks, mainly focusing on the latency of

load, store operations and atomic primitives. Then, we present

the evaluation on the scalability of atomic primitives supported

by Xeon Phi in terms of throughput and latency. Finally, we

present application-level analysis including lock algorithms,

and concurrent hash tables.

A. Hardware Protocol Analysis

In order to better understand the following analysis, we

briefly describe the testing logic. This micro-benchmark is

mainly used to measure the cost of operations on a cache

line according to the line’s MESI state and location. It keeps

a cache line in a specified state and then performs a access

by either a local or a remote core. More than 30 cases are

supported, such as load from modified state and compare-

and-swap on shared lines. Note that at least three processes

are required in all the test cases designed for the shared and

owned state (others do not have this restriction).

The latency metric can be used to estimate the overhead

of sharing a cache line on a shared-memory system. We

collect latency values for basic operations such as load and

store, as well as atomic primitives including compare-and-

swap (CAS), fetch-and-increment (FAI), test-and-set (TAS),

and swap (SWAP).

Local Accesses. L1 cache is directly integrated into the

core to facilitate low-latency and high-speed access to the

main memory. The L1 cache can hold 32KB data and its

access time is 1 cycles. A cache miss in L1 would necessitate
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TABLE I
LATENCIES (CYCLES) OF THE CACHE COHERENCE TO

LOAD/STORE/CAS/FAI/TAS/SWAP A CACHE LINE DEPENDING ON THE

MESI STATE AND THE DISTANCE. THE VALUES ARE THE AVERAGE OF

10000 REPETITIONS WITH 3% STANDARD DEVIATION.

System Intel Xeon Phi
Hops same-core other-core

loads
Modified 25 269

Owned (GOLS) 315 26
Exclusive 25 233

Shared 30 38
stores

Modified 37 268
Shared 250 347

Exclusive 34 244
Owned (GOLS) 37 220
atomic operations: CAS (C), FAI (F), TAS (T), SWAP (S)

Operation C/F/T/S C/F/T/S
Modified 39/38/34/41 287/298/296/260
Shared 301/386/269/318 330/363/370/321

another access to the local L2 cache or the ones on remote

cores via the ring interconnect. Each core’s local L2 cache

has the capacity of 512KB. Cache coherence is automatically

maintained among the L2 caches of all the cores, effectively

creating a virtual cache of 31MB. L2 cache is composed of

64-byte cache lines with 8-way associativity, and its access

time is approximately 11 cycles. Accessing the L2 cache of

a remote core takes longer, though Xeon Phi has no cross-

socket communication overhead as in multi-socket architec-

tures. Main memory access typically consumes hundreds of

cycles.

Table I shows the results of performing load, store, and

atomic operations on a cache line based on its previous

state and location. Because accessing an invalid cache line

is equivalent to accessing the main memory, in the following

discussion, we do not consider the invalid state.

Loads. When processes are within the same core, except for

the Owned state, the load operation performed on a local cache

line has similar (low) latency regardless of its current state.

As for the Owned state in the two scenarios (same-core and

other-core), the counter-intuitive variations in latency might

be caused by the interaction with DTDs [14], which usually

occurs with the extended shared state (the Owned state). On

the contrary, for both the Modified and Exclusive state, if the

target cache line resides in a remote core (other-core), the

access latency increases dramatically by more than 10-fold

as compared to the same-core situation. This is due to the

remote cache latency and off-chip memory access. For the

Shared state, the latency remains approximately the same in

both cases, because the process can get the shared cache line

from another process that happens to be in the same core as

the former even in the other-core scenario, avoiding remote

cache access.

Stores. In the same-core scenario, a store has similar latency

for the three states (Modified, Exclusive, and Owned) without

being affected by the previous state of a cache line. For

instance, the latency for the Modified, Exclusive, and Owned

state is 37, 34, and 37 cycles respectively. However, a store

operation on a shared cache line incurs much longer latency

(250 cycles), which is induced by the invalidation of the cache

line shared by a remote core. When processes are spread

among different cores, much larger latency (by an order of

magnitude) can be observed regardless of the cache line state.

This is because the store operation introduces remote access

latency for the Modified and Exclusive state, and extra cache-

coherence traffic especially for the Owned and Shared state

due to the maintenance of consistency for individual copies of

the cache line among many cores. In addition, even with the

high speed ring interconnect, communication with a remote

core definitely have to pay extra overhead.

Atomic operations. Like contemporary multi-core proces-

sors, Xeon Phi also supports atomic primitives, such as CAS,

FAI, TAS, and SWAP. In the same-core case, the four atomic

operations have nearly the same latency with the Modified

state. But the latency on the Shared state increases by a factor

of 10 because of the same reason as discussed for stores. When

cross-core communication is involved, we can observe similar

variations for atomic primitives at the Modified state as in

the load/store case. While for the Shared state, there is no

noticeable difference between intra-core and inter-core latency.

The invalidation traffic across sharers should be responsible for

this phenomenon. Accessing remote cache lines (other-core)

with the Shared state consumes a little bit more cycles than

with the Modified state.

Discussion. The investigation on latency discloses some

important issues that should be noticed to avoid inefficiencies

in synchronization. First, because of the design of supporting

four simultaneous hardware threads per physical core, the

single-chip many-core architecture of Xeon Phi shares some

resemblances with multi-chip systems. For instance, inter-

core communication is almost 10 times expensive than intra-

core. Second, within the same core, the inclusive L1 and

L2 cache makes the intra-core synchronization more efficient.

Third, as all the cores connected with the ring interconnect

can be regarded as symmetrical peers, the distance between

communicating cores has little effect on the access latency.

On the contrary, the distance between the core and the DTD

can cause variations in access latency. Remote access latency

is not dependent on the cache line state except loading

from a shared or owned state. Fourth, due to the fact that

memory requests from threads residing in the same core are

serialized, running threads on separate cores can help improve

the utilization of memory bandwidth [3]. In addition, Xeon

Phi schedules threads running on the same core in a round-

robin fashion, which indicates that issuing instructions from

the same thread context in back-to-back cycles is impossible.

In summary, taking these factors into account, spawning two

or three threads on the same core is preferred to obtain desired

synchronization performance.

B. Stressing Atomic Operations

In this test, the logic is to let each thread try to perform an

atomic operation on a single shared location repeatedly. For
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Fig. 1. Throughput and latency of different atomic operations on a single
memory location on Xeon Phi.

FAI, SWAP, and CAS FAI, these calls are always eventually

successful (write to the target memory), whereas it is not

the case for TAS and CAS. CAS FAI implements an FAI

operation based on CAS. This enables us to highlight both

the costs of spinning until the CAS succeeds and the benefits

of having an FAI instruction supported by the hardware.

We sequentially place threads onto cores. In order to

reduce deviation, each experiment is repeated five times to

compute the average. Figure 1(a) and Figure 1(b) present the

performance results of this experiment. On the one hand, a

fast increase in throughput within the same core (the first

4 threads as shown in Figure 1(a)) can be observed (see

the steep slop that is almost parallel to the y axis). On the

other hand, the fast increase in throughput slows down or

decrease when the shared location begins to be accessed by

threads from a different core (see the changing point where

thread counts exceed 4). CAS based FAI exhibits dramatic

decrease in performance in this stage. With more participating

threads, the throughput reaches a maximum and then plateaus

or declines due to increasing contentions. An appealing point

worth highlighting is that both CAS and FAI (two widely used

atomic operations) outperform other atomic operations. The

worst performing atomic operation, CAS based FAI, illustrates

the importance of having a FAI instruction supported by the

hardware. TAS shows better performance in throughput and

latency than SWAP, but still largely lags behind CAS and FAI.

Discussion. Xeon Phi is designed with lower CPU fre-

quency, which results in lower single-thread performance.

Furthermore, it is inevitable to suffer performance penalty

from cross-core communication. However, even with these

constrains, atomic operations can scale to a large number of

contending threads. System designers should leverage perfor-

mant atomic operations (CAS and FAI) to implement scalable

and effective synchronization schemes.

C. Analysis of Locks

In this section, we explore the behaviors of several represen-

tative locking algorithms under different levels of contention.

Before moving onto the details of experimental results, we first

make a brief introduction to the characteristics of the selected

locks except MUTEX (provided by POSIX pthread). These

locks can be divided into two categories, namely simple locks

and complex locks, all of which employ a busy-waiting (or

called spinning) technique. Simple locks include TAS, TTAS,
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Fig. 2. Throughput of different locking algorithms using a single lock and
512 locks.

and TICKET, whose main advantage is small memory foot-

print. The disadvantage is that more cache-coherence traffic

is generated with all threads spinning on the same location

[18]. On the contrary, MCS and CLH are queue based locks

that are more complicated and produce less cache-coherence

traffic by having each thread spin on different locations, but

with a larger memory footprint.

The behaviors of Locking algorithms. We study the

performance of locks under extreme and very low contention

because two situations are commonly met in practice. First,

highly-contended locks are usually the main impediment to

the scalability of lock-based synchronization. Second, many

concurrent applications employ fine-grained locks in designing

synchronization mechanisms, which induces low contention.

We measure the throughput of lock acquisitions that is ex-

ecuted by each lock. Each thread randomly acquires a lock,

then performs read and write operations on one corresponding

cache line of data, and finally releases the lock. In the

extreme contention experiment (one lock), a thread pauses

after releasing the lock to guarantee that the released lock

can be seen by other cores before it retries to acquire the

lock. Considering that Xeon Phi is a single-socket architecture,

we exclude hierarchical locks that are tailored for NUMA

architectures from the evaluation.

Extreme contention. The results for the extreme contention

experiment are illustrated in Figure 2(a). One core evaluation

(thread count is less than 4) achieves the fastest growth in

throughput (not clearly observable from the figure because of

the scale). As expected, CLH and MCS outperform others un-

der highly-contended environment where the spawned threads

are up to 200+. When the number of threads ranges from 1

to 65, CLH and MCS show a linear increase in throughput,

because both locking algorithms have each thread spin on a

distinct location. Once a thread releases a lock, it only needs to

invalidate its successor’s cache, thus reducing the invalidation

traffic to a minimum. As for the TAS and TTAS lock, they

are not as resilient to contention as the CLH and MCS lock,

a turning point can be seen when the thread count reaches 33.

Even worse, we can see a steep declining trend when more

threads are joined. Compared to the TAS and TTAS lock, the

MUTEX and TICKET lock achieve lower peak performance.

However, they are more resilient to high contentions (reach a

plateau eventually), and both retain higher performance over

TAS and TTAS when the thread count exceeds 100.
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Very low contention. The results for low-contention ex-

periment are shown in Figure 2(b). In general, given the

complexity of queue locks, simple locks are more competitive

than complicated ones when the synchronization contention is

low. We can see that the differences between locks is nearly

negligible except for MUTEX. The MUTEX lock performs

poorly on this platform especially when the number of threads

increases.

Discussion. No lock consistently outperforms the others

in all cases. While complex locks are more suitable for

extreme contention, simple locks often do better under low

contention, especially within the same core. On Xeon Phi,

optimal synchronization performance is often gained when

threads are confined to a single core for both high and low

contention.

D. Case Study: Concurrent Hash Tables

In this section, we evaluate three state-of-the-art concur-

rent hash tables (CHTs): CLHT [11], Hopscotch [13] and

Cuckoo [12], with read-only and mixed workloads. The syn-

thesized workloads with configurable update intensity can help

identify insights in different synchronization mechanisms. The

mixed workload contains 90% get, 5% put, and 5% remove
operations. Note that the scalability trend remains the same

with other configurations that include update operations. The

initial size of CHTs is set to 1024 (1024 key/value pairs).

In order to distinguish different synchronization issues from

multi-core processors and underline the energy efficiency of

Xeon Phi, we also benchmark the CHTs on a two-socket 16-

core Intel SandyBridge EP machine. On Xeon Phi, the cores

and memory controllers are connected by a bi-directional ring.

Shared components like the ring stop and DTDs would be

bottlenecked when multiple threads are requesting data simul-

taneously. Thus, employing different thread pinning strategies

certainly can help to reason the impact of system components

on the performance as discussed in [3].

There are four kinds of thread-to-core mapping strategies

on Xeon Phi. (a) Compact - the cores are placed close to

each other. (b) Scattered - the cores are divided evenly among

the 61 physical cores. (c) Balanced - it is similar to scattered
but threads with adjacent numbers are placed on the same

core. (d) Default - threads are scheduled by the OS without

explicit thread pinning. We use the compact, balanced and

default strategy for cross-platform comparison and analysis.

On Xeon Phi, the four mapping strategies are all evaluated.

The following analysis is conducted from three aspects. First,

we investigate the impact of different pinning strategies on the

performance of CHTs on Xeon Phi. Second, a cross-platform

comparison is presented. Third, we introspect the observed

behaviors of CHTs relevant to synchronization on Xeon Phi,

and give our explanations from the perspective of hardware

architecture and algorithmic designs.

1) Thread Pinning: Figure 3 depicts the results of lock-

based CLHT with an update ratio 10% and corresponding

pinning strategies on the two platforms. Similar results for

other CHTs are also observed, and not shown in the paper
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Fig. 3. Running CLHT-lb on Intel SandyBridge EP and Xeon Phi 7120P with
different thread pinning strategies (90% get, 5% put, and 5% remove)

due to space constrains. On the SandyBridge machine, the

throughput exhibits wide fluctuations with different strategies.

The lock-based CLHT with the compact strategy achieves peak

performance when the thread count is 16, and sharp declina-

tion occurs subsequently due to the cross-socket communi-

cation overhead. In comparison, the outcome is completely

different on Xeon Phi. The default strategy beats all other

competitors, and no noticeable difference can be observed

for the explicit thread pinning strategies (see the overlapping

throughput curves). Furthermore, the gap between the default

strategy and others widens with the increasing number of

threads. This particular phenomenon on CHTs also differs

from scientific computing applications that usually benefit

more from a scattered thread pinning. We explain the reasons

for these discrepancies as follows.

As the SandyBridge machine is a typical NUMA system,

remote access overhead is larger than local access. Applica-

tions using the compact thread pinning can benefit more from

data locality if threads are located in the same socket. Xeon

Phi acts like a symmetric multiprocessing (SMP) system, and

the cores have the same distance to the main memory. Placing

threads in different physical cores incurs similar communica-

tion overhead as the cross-socket overhead on NUMA systems,

but the cross-core overhead is much lower, thanks to the fast

bidirectional ring interconnect. In addition, given that CHTs

are typical memory-bound applications with random memory

access, in contrast to explicit strategy that would cause more

cache misses and higher average latency of memory access due

to the small per-core L2 cache, the default strategy that relies

on the OS scheduler to dynamically migrate threads across

cores, can alleviate resource contentions and better utilize the

cache subsystem of Xeon Phi, which is the rationale behind

its sustained performance superiority.

2) Cross-Platform Behaviors of CHTs: In order to have

a straightforward comparison between Xeon Phi and Sandy-

Bridge EP, we study the behaviors of CHTs under different

levels of synchronization intensity. We only report experi-

mental results with optimal pinning strategies (the default

and compact strategy for Xeon Phi and SandyBridge EP

respectively). Experiments are run with update ratios 0% and

10%, as illustrated in Figure 4.

In all cases, the differences between Xeon Phi and Sandy-

Bridge are prominent. Under the read-only workload, CHTs

exhibit outstanding scalability on both platforms except for
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Fig. 4. Running CLHT on SandyBridge EP and Xeon Phi with optimal thread pinning strategies.
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Fig. 5. Comparison of power efficiency of the best performing CHT (CLHT-
lb) on two platforms.

Cuckoo whose performance is even worse on Xeon Phi. While

for workloads containing update operations, there are two

striking phenomenons worth mentioning. First, two versions

of CLHT (lock-free and lock-based) both scale linearly even

with 10% update operations, and reach the peak performance

(about 2 billion ops/s and 1.25 billion ops/s respectively) with

the maximum hardware threads spawned. Second, Hopscotch

scales well and peaks with 244 threads fully functioning (1.2

billion ops/s) under read-only workload. But its performance

degrades significantly (nearly by three orders of magnitude)

even with a small portion of update operations compared to

the read-only case, and appending more threads contributes

little to the performance. However, Hopscotch does not suffer

such severe performance deterioration on the SandyBridge

machine in the presence of updates. This observation pinpoints

that weak synchronization mechanisms would exacerbate the

scalability on Xeon Phi. We have also identified similar issues

for other CHTs such as TBB-base and RCU-based hash tables

that are not discussed in this paper.

As power efficiency has become increasingly important, we

additionally present a comparison of power efficiency in terms

of performance per watt. The results depicted in Figure 5 are

calculated based on the peak throughput of the best performing

CHT (CLHT-lb) and the corresponding power consumption.

We can observe that a scalable concurrent application run-

ning on Xeon Phi is much more energy-efficient than on a

multi-core platform. The advantages in high performance and

power efficiency demonstrate the superiority of accelerating

traditional concurrent applications with Xeon Phi.

TABLE II
ESTIMATED LATENCY IMPACT (ELI) OF CHTS MEASURED WITH INTEL

VTUNE.

CLHT-lb CLHT-lf Hopscotch Cuckoo

ELI 236.5 499.5 741.9 11695.5

TABLE III
ESTIMATED LATENCY IMPACT (ELI) OF CLHT-LB WITH DIFFERENT

THREAD PINNING STRATEGIES MEASURED WITH INTEL VTUNE.

default compact scattered balanced

ELI 236.5 298.0 294.3 2685.7

3) Synchronization Analysis of CHTs: Next, we present a

detailed analysis about the aforementioned phenomena from

the perspective of hardware architectures and synchronization

designs of the evaluated CHTs, based on the tool Intel VTune

Amplifier. For instance, many-core systems possess the ability

to reach a high concurrency level, but we can not solely depend

on the hardware to mitigate contentions without consider-

ing algorithmic optimizations on synchronization. Additional

complexity in enabling coherence to handle high memory

bandwidth would also cause large synchronization overhead

on Xeon Phi.

As pointed out in [11], the cache-coherence traffic produced

by stores on shared data is the biggest impediment to the

scalability of concurrent applications on multi-core systems.

The situation becomes even worse on Xeon Phi given the

scale of hundreds of hardware threads sharing a cache line.

In addition, because Xeon Phi employs an extended MESI

cache-coherence protocol that uses GOLS (Globally Owned

Locally Shared) to simulate an owned state to permit sharing

a modified line, a store to a cache line in GOLS state (besides

the share state) also induces invalidation traffic, which in turn

produces cache misses of future accesses. Worse, the high

volume coherence traffic can easily saturate the ring intercon-

nect, resulting in higher latency. We find that the remove call

in Hopscotch is the most time-consuming operation (nearly

occupy over 90% execution time) when we run it on Xeon

Phi with 10% update and 244 threads. We attribute this to

a shared timestamp field in Hopscotch that is modified in

the remove operation to guarantee concurrent get calls to be

failed. The functionality of timestamp is similar to the atomic
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snapshot in CLHT. The only distinction is that CLHT does not

require to store on a share variable in the remove method. This

particular design in Hopscotch causes non-trivial coherence

traffic. Turning the remove operation into other operations (get
or put) can yield a significant increase in throughput.

We analyze how CLHT achieves near-linear scalability on

Xeon Phi in the following. For CLHT, the key to its remarkable

performance is that each bucket is aligned to a single cache

line and the update is in-place, which greatly reduces cache-

line transfers. Another benefit of aligned data is that it can

avoid false sharing that is critical to the performance on

Xeon Phi. Furthermore, its per-bucket lock scheme incurs low

contention, and a simple spinlock implemented using FAI that

has been shown to be well supported by Xeon Phi in Section

VI-B, is also beneficial for its performance. On the contrary,

Hopscotch uses a TTAS lock that is not scalable on Xeon Phi,

and its coarse-grained locking scheme (the number of locks is

equal to thread counts) generates more contentions at runtime,

which together deteriorates the performance.

We can further demonstrate these issues through a metric

named Estimated Latency Impact (ELI provided in VTune).

ELI indicates that the majority of L1 data cache misses are

not being serviced by the L2 cache. As reported in Table II,

CLHT-lb has the lowest score, which means CLHT can largely

benefit from the unified L2 cache without too much penalty

of accessing the main memory compared to the others. Base

on this metric, we can also infer that the default thread

pinning strategy (in contrast to explicit thread pinning) is

more preferable to CHTs featuring random memory access.

As shown in Table III, the ELI value obtained when using the

default strategy is much lower.

VII. CONCLUSION AND FUTURE WORK

In this paper, we perform an extensive analysis on Xeon

Phi from basic hardware cache-coherence protocol and prim-

itives all the way up to user-level concurrent applications. By

evaluating micro-benchmarks and real-world concurrent hash

tables, we induce a set of key insights as follows.

In order to achieve high scalability on Xeon Phi, concurrent

applications should avoid remote cache access as much as

possible. The access latency is not determined by the distance

between cores but the DTDs. Atomic operations CAS and FAI

are more scalable and recommended to use in implementing

synchronization mechanisms on Xeon Phi. Locks algorithms

should be adopted according to the degree of contention.

Moreover, fine-grained concurrency control is preferable, and

explicitly pinning threads may hurt performance on Xeon Phi

for concurrent applications that exhibit random memory access

pattern.

We believe that our analysis can be used to develop better

synchronization schemes or tune concurrent applications on

Xeon Phi. In terms of future work, we plan to study other

hardware features of Xeon Phi such as vectorization.
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