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ABSTRACT
Understanding how the application is resilient to hardware and
software errors is critical to high-performance computing. To eval-
uate application resilience, the application level fault injection is
the most common method. However, the application level fault
injection can be very expensive when running the application in
parallel in large scales due to the high requirement for hardware
resource during fault injection.

In this paper, we introduce a new methodology to evaluate the
resilience of the application running in large scales. Instead of
injecting errors into the application in large-scale execution, we
inject errors into the application in small-scale execution and serial
execution to model and predict the fault injection result for the
application running in large scales. Our models are based on a
series of empirical observations. Those observations characterize
error occurrences and propagation across MPI processes in small-
scale execution (including serial execution) and large-scale one.
Our models achieve high prediction accuracy. Evaluating with four
NAS parallel benchmarks and two proxy scientific applications, we
demonstrate that using the fault injection result to predict for 64
MPI processes, the average prediction error is 8%. While using the
fault injection result to make the same prediction for eight MPI
processes, the average prediction error decreases to 7%.

ACM Reference Format:
Kai Wu, Wenqian Dong, Qiang Guan, Nathan DeBardeleben, and Dong Li.
2018. Modeling Application Resilience in Large-scale Parallel Execution. In
Proceedings of 47th International Conference on Parallel Processing (ICPP 2018).
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3225058.3225119

1 INTRODUCTION
High-performance computing (HPC) applications are at a signif-
icant risk of being hit by hardware and software errors in the
future extreme-scale systems. Understanding how the application
is resilient to those errors is critical to ensure computation result
correctness and design efficient fault tolerance mechanisms. The
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challenge of application resilience is one of the grand challenges
facing the future extreme-scale systems.

To evaluate application resilience, fault injection at the appli-
cation level is the most common method. The application level
fault injection usually triggers random bit-flip in an input or output
operand of a random instruction as a fault injection test. Typically,
the statistical result of many fault injection tests is used to evalu-
ate application resilience. It has been shown that HPC application
resilience could vary in different execution modes. In particular,
given a fixed input problem for an application, application resilience
can be different from the execution in a small scale with less MPI
processes (small-scale execution) to the execution in a large scale
with more MPI processes (large scale execution) [37].

In addition, the application level fault injection can be expensive:
one has to perform a large number of fault injection tests to ensure
statistical significance, hence consuming a lot of hardware resource.
This is particularly problematic for evaluating the resilience of the
application running in large scales. In a large-scale execution of the
application, one has to ask for many nodes to deploy application
execution and perform fault injection. However, given the limited
hardware resource in a supercomputer, a job using many nodes to
deploy a large-scale execution of the application is usually assigned
with low priority by the scheduler system in HPC. It is therefore dif-
ficult to obtain enough hardware resource to evaluate the resilience
of the application running in large scales.

Furthermore, to study the resilience of a given application, the
large-scale execution can significantly increase fault injection time,
(compared with the case in small-scale execution), making it in-
tractable to perform a comprehensive analysis. In particular, some
fault injection tools, such as F-SEFI [13], BIFIT [21] and pinFI [36],
are based on binary instrumentation. The overhead of those tools
is directly related to the number of instructions. A large-scale exe-
cution can increase the number of instructions, hence increasing
the overhead of those fault injection tools. Our study on one NAS
parallel benchmark [3] CG reveals that the execution with just
four MPI processes increases the number of instructions by 74.5%
than serial execution. Using F-SEFI as our fault injection tool, the
fault injection time with four MPI processes increases by 58% than
with serial execution, although the serial execution and parallel
execution use the same number of fault injection tests and the two
executions without F-SEFI only differ by 15% in execution time.
Such execution time overhead will even grow drastically as we use
a larger number of MPI processes for fault injection.
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In this paper, we introduce a new methodology to evaluate the
resilience of the application running in large scales. Instead of
injecting errors into the application in large-scale execution, we
inject errors into the application in small-scale execution and serial
execution to model and predict the fault injection results for the
application running in large scales.

Ourmodels are based on a series of empirical observations. These
observations reveal that there exists a correlation between small-
scale execution (including serial execution) and large-scale one.
Such correlation provides a foundation to construct our models.
In particular, we observe that without the consideration of MPI
communication in parallel execution, the computation difference
(in terms of code structures) between small scale and large scale
executions are often small. For the common computation in serial
and parallel executions, injecting multiple errors into serial execu-
tion can be used to emulate error contamination in multiple MPI
processes in a larger scale. Furthermore, we observe that error prop-
agation acrossMPI processes on a small scale often gives indications
on how error propagation across MPI processes happens on a larger
scale. Based on the above observations, we introduce models that
use serial execution to capture the effects of error contamination on
multiple MPI processes and use a small scale execution to capture
error propagation across MPI processes, for modeling the resilience
of the application running in larger scales.

The future HPC applications are expected to be deployed in
larger system scales to improve simulation speed and accuracy. We
vision that evaluating application resilience in large-scale execu-
tion with fault injection will become more and more challenging.
Our modeling methodology avoids high requirement on hardware
resource to evaluate application resilience in large-scale execution.
Hence our modeling methodology makes the evaluation more fea-
sible and helps future HPC applications survive ever-increasing
threats from the future HPC resilience challenge.

Furthermore, our work introduces a fundamentally new method-
ology to study application resilience. For the first time, we reveal
that application resilience in different execution modes is corre-
lated. Such correlation allows us to do fault injection and study
application resilience in an easy and controllable environment.

The contributions of this paper are summarized as follows.

• A new methodology to model and predict the resilience of
the application running in large scales;
• The characterization of error occurrences and propagation
across MPI processes in small and large scales;
• The evaluation of the modeling methodology and demon-
strating high modeling accuracy.

The remainder of the paper is organized as follows. Section 2 pro-
vides background information on fault models, fault injection and
our assumptions on common HPC applications. Section 3 character-
izes application resilience in small scale and large scale executions,
and examine application resilience difference in the two scales from
the perspective of error occurrences and propagation. Section 4
explains our models in details. Section 5 evaluates our modeling
accuracy and further studies the correlation between the modeling
accuracy, sampling granularity and fault injection execution time
overhead. Section 6 gives detailed descriptions of prior work, and
Section 7 summarizes the contribution of this work.

2 BACKGROUND AND EXPERIMENT
DEPLOYMENT

In this section, we introduce fault models used for modeling and
fault injection. We explain how to deploy fault injection tests and
what kind of HPC applications we are addressing.

Fault models and fault injection. The fault injection is the
most common methodology to study application resilience. In our
fault injection tests, we randomly choose an instruction during
application execution and then randomly trigger a bit flip in one
of the instruction operand(s) as an error. We use single-bit flip for
fault injection tests in this paper, similar to the existing work [6, 7,
15, 21, 30]. The single-bit flip is also the most common fault pattern
in large-scale HPC data centers [32, 33]. However, our modeling
methodology is general and does not make any assumption that
the injected error must be single-bit flip.

When doing fault injection, we distinguish instructions by in-
struction type (e.g., floating point instructions, memory load/store
instructions) to characterize application resilience. This is based on
our observations that the fault injection result is sensitive to what
type of instruction is randomly selected for fault injection [12].
In this paper, we always choose floating point instructions (float-
ing point addition and multiplication) for fault injection, because
those instructions are very common in HPC and errors in them are
among the most difficult errors to detect in HPC. Errors in other
common instructions, such as integer instructions, are often related
to memory pointers, loop iterator and array index in HPC applica-
tions. Such errors are relatively easy to identify because of their big
impact on the application (e.g., application crash). However, our
modeling methodology is general and does not make any assump-
tion on which specific instruction type should be considered for
modeling.

For each fault injection deployment, we perform a large number
of fault injection tests to establish the statistical significance of the
fault injection result. A fault injection deployment uses a specific
fault injection configuration. Such configuration includes a specific
number of MPI processes to run the application and a specific fault
pattern for fault injection (e.g., how many errors are injected? what
type of instruction is selected for fault injection? Are we using a
single-bit flip or multiple-bit flip?).

Each fault injection deployment, after a large number of fault
injection tests are done, will generate a fault injection result. The
fault injection result is a statistical summary of all fault injection
tests. Each fault injection test can have at least three outcomes. The
three outcomes are described as follows.

• Silent Data Corruption (SDC): The application output under
a fault injection test is different from the fault-free run.
• Success: Two cases are considered “success”. 1). The applica-
tion output under a fault injection test is different from the
fault-free run, but the output successfully passes the applica-
tion “checkers” and shows valid. 2). The application output
under a fault injection test is exactly same as the fault-free
run.
• Failure: The application crashes or hangs.

The fault injection result for a specific outcome (SDC, success,
or failure) is the percentage of fault injection tests that have the
outcome. For example, given a fault injection deployment, the fault
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injection result for the “success” outcome is 20%, which means 20%
of all fault injection tests have “success” outcome. We also use the
word, success rate, to refer to the success outcome.

To ensure statistic significance of the fault injection result, we
must perform a sufficiently large number of fault injection tests [19].
The previous study has shown that the fault injection result without
sufficient fault injection tests will be different from otherwise [14].
In our fault injection study, we perform a large number of fault
injection tests (4000 tests) for each fault injection deployment, such
that further increasing the number of fault injection tests does not
cause big variation (less than 10%) in the fault injection result. This
method ensures that our fault injection is sufficient and our fault
injection result is statistically correct.

For a fault injection test in parallel execution, we inject an error
into application computation, not MPI communication. Studying
the impact of communication corruption is out of the scope of this
paper, but the injected error in the computation of one MPI process
may propagate to other MPI processes throughMPI communication.
Ourmodels capture error propagation acrossMPI processes through
MPI communication.

Fault injection tool.We use Fine-grained Soft Error Fault In-
jector (F-SEFI) [13] as our fault injection tool. F-SEFI is a software
fault injection tool developed by Los Alamos National Laboratory.
F-SEFI capitalizes on the open source QEMU virtual machine hyper-
visor and works as a pluggable module. F-SEFI utilizes the QEMU
virtual machine hypercalls to inter-communicate with the guest
virtual machines (VMs). QEMU is widely used for emulating guest
architectures which are different from the host physical architec-
ture. F-SEFI inherits this feature and allows fault injections into
architectures that are prototypes or are physically unavailable.

F-SEFI supports serial execution of the application. We use an
enhanced version of F-SEFI [12] that supports parallel execution
of the application based on MPI. Furthermore, F-SEFI and its new
version allow us to map the selected instructions for fault injection
into the application, such that we can knowwhere the error happens
at the application level [4]. The new version of F-SEFI also allows us
to track which MPI processes are contaminated during application
execution after an error is injected into one MPI process.

HPC applications and their executions. Our study in this
paper involves application execution at different scales: serial ex-
ecution, small-scale execution, and large-scale execution. Given
an HPC application, we assume that those executions at different
scales use the same input problem size. This means that we consider
the strong scaling execution in this paper.

Our model targets a set of common HPC applications. Those HPC
applications have the following characteristics.

(1) Serial execution, small-scale parallel execution, and large-
scale parallel execution must perform similarly in terms of com-
putation (i.e., they must use the same numerical algorithms). If
the three executions have very different computation, then using
serial and small-scale parallel executions cannot predict application
resilience in large-scale parallel execution.

(2) We assume that all MPI processes within the application
are doing the same computation. We make such assumption be-
cause our fault injection tests randomly choose one MPI process
for fault injection. If there is a difference between MPI processes,
then depending on which MPI process is chosen for fault injection,

we could have different fault injection result. We do not consider
the difference between MPI processes to enforce full randomness
in fault injection. However, if there is a difference between MPI
processes, then the fault injection tests must consider which MPI
process should have errors injected.

3 CHARACTERIZATION OF EXECUTION
DIFFERENCE BETWEEN SMALL AND
LARGE SCALE EXECUTIONS

In this section, we study execution difference between small-scale
(including serial execution) and large-scale executions. Such ex-
ecution difference includes computation, error propagation, and
application resilience. The study in this section motivates our model
construction in the next section.

3.1 Characterizing Computation Difference
between Serial and Parallel Executions

Comparedwith serial execution, parallel execution can have slightly
different computation, even though both executions use the same
numerical algorithms.Without the consideration of MPI communi-
cation in parallel execution, computation difference between the
two executions manifests as executing different code structures.
Understanding such computation difference is important for our
model construction. If there is a big difference in the computation
between the two executions, then using serial execution to make
the prediction on parallel execution may not be possible.

We study four benchmarks (CG, FT, MG, and LU) from NAS
parallel benchmark suite (NPB) [3] and two proxy scientific appli-
cations MiniFE [17] and PENNANT [18]. We focus on the main
computation loop in those benchmarks because the main compu-
tation loop dominates computation time and is highly possible to
have errors injected. We have two observations on the computation
difference.

Observation 1: All computation that happens in serial execution
also happens in parallel execution. We call such computation common
computation. Some computation that happens in parallel execution
does not happen in serial execution. We call such computation parallel-
unique computation.

The parallel-unique computation is typically used for prepar-
ing boundary data in the computation domain or preparing inter-
mediate results before exchanging them between MPI processes.
Fault injection that happens in the parallel-unique computation
will not be able to be captured by serial execution. However, the
parallel-unique computation usually takes a small portion of the
total execution time in parallel execution, shown in Table 1. Table 1
shows the percentage of the parallel-unique computation in the
total execution time of parallel execution (four MPI processes).

Table 1 reveals that except FT, all benchmarks have very small
parallel-unique computation time (less than 2%). FT has relatively
large parallel-unique computation time because of the computation
in the transpose operation. The above observation lays the founda-
tion for us to use serial execution to estimate application resilience
of parallel execution.

Observation 2: The parallel-unique computation usually takes a
small portion of total execution time.
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(a) The profiling result for the small scale (b) The profiling result for the large scale (c) Splitting 64 error propagation cases in the
figure (b) into eight groups

Figure 1: The profiling results for error propagation across MPI processes in a small scale (8 MPI processes) and a larger scale executions (64
MPI processes) for CG.

(a) The profiling result for the small scale (b) The profiling result for the large scale (c) Splitting 64 error propagation cases in the
figure (b) into eight groups

Figure 2: The profiling results for error propagation across MPI processes in a small scale (8 MPI processes) and a larger scale executions (64
MPI processes) for FT.

Table 1: Percentage of the parallel-unique computation in the total
execution time of parallel execution

Benchmarks Percentage of the parallel-
unique computation

CG (Class S) 1.6%
CG (Class B) 0.27%
FT (Class S) 10.4%
FT (Class B) 17.7%
MG No parallel-unique comp
LU No parallel-unique comp
MiniFE (nx=30 ny=30 nz=30) 1.54%
MiniFE (nx=300 ny=300
nz=300)

0.68%

PENNANT No parallel-unique comp

3.2 Characterizing Difference in Error
Propagation

Once an error is injected into one MPI process, the error can prop-
agate to other MPI processes through MPI communication. Serial
execution cannot capture how the error propagates to other MPI
processes. We study error propagation across MPI processes in a
small scale execution and study how it is correlated to error propa-
gation across MPI processes in a larger scale execution.

We run all benchmarks with four or eight MPI processes as a
small scale execution and with 64 MPI processes as a large-scale
execution. We perform a large number of fault injection tests as
described in Section 2, for both scales. In each fault injection test,
we inject one error into one MPI process. We profile that how many
MPI processes are contaminated in each fault injection test.

Figure 1.a shows the profiling result for CG in the small-scale
execution (eight MPI processes). Among fault injection tests, 22%

of fault injection tests has eight MPI processes contaminated; 77%
of fault injection tests have only one MPI processes contaminated;
the other error propagation cases with different numbers of con-
taminated MPI processes are rare. We have the similar observation
for FT, shown in Figure 2.a.

Figure 1.b shows the profiling result for CG in the large scale
(64 MPI processes). To reveal the similarity of error propagation
between the small scale and large scale executions, we evenly split
the 64 error propagation cases shown in Figure 1.b into eight groups
(i.e., eight error propagation cases per group). Within each group,
the percentages of eight error propagation cases are aggregated,
shown in Figure 1.c. We find that Figure 1.a and Figure 1.c are quite
similar. We perform the same analysis for FT and have the same
observation, shown in Figure 2.a and c.

To quantify the similarity of Figure 1.a and Figure 1.c, we use
a metric, the cosine similarity [31]. This metric is a measure of
similarity between two vectors. The cosine similarity of two vectors
is bounded to [0,1], with 1 for strong correlation and 0 for otherwise.
We represent eight bars shown in Figure 1.a as a vector with eight
elements, and represent eight bars shown in Figure 1.c as the other
vector with eight elements. We calculate the cosine similarity of
the two vectors. The cosine similarity value is 0.999, which is very
close to 1.

We perform the same analysis for all benchmarks and calculate
the cosine similarity values. Due to the space limitation, we cannot
show the profiling results for all benchmarks, but we summarize the
cosine similarity results in Table 2. The table shows that except CG
and LU (particularly, in the case of comparing four MPI processes
and 64 MPI processes), all cases have the cosine similarity value
close to 1. For the special cases of CG and LU (comparing four
MPI processes and 64 MPI processes), the cosine similarity value
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Table 2: Cosine similarity values to quantify the similarity of er-
ror propagation across MPI processes between small scale and large
scale executions. “4V64” means using four MPI processes as the
small scale execution and 64 MPI processes as the large scale exe-
cution; “8V64” means using eight MPI processes as the small scale
execution and 64 MPI processes as the large scale executions.

Benchmarks Cosine similarity value
CG (Class S, 4V64) 0.122
CG (Class S, 8V64) 0.999
FT (Class S, 4V64) 0.905
FT (Class S, 8V64) 0.999
MG (Class S, 4V64) 0.999
MG (Class S, 8V64) 1.000
LU (Class W, 4V64) 0.638
LU (Class W, 8V64) 1.000
MiniFE (nx=30 ny=30 nz=30, 4V64) 0.981
MiniFE (nx=30 ny=30 nz=30, 8V64) 1.000
PENNANT (leblanc, 4V64) 0.979
PENNANT (leblanc, 8V64) 0.999

is not close to 1, because the execution of four MPI processes (the
small-scale execution) has error propagation across MPI processes
in almost every fault injection test, while the execution of 64 MPI
processes (the large-scale execution) has many fault injection tests
without error propagation (i.e., the error is limited to only one MPI
process).

Observation 3: The error propagation across MPI processes in a
small scale execution can often serve as a strong indication to the error
propagation across MPI processes in a large-scale execution.

3.3 Characterizing Difference in Application
Resilience

In parallel execution, once an error is injected into one MPI process,
the error may propagate into multiple MPI processes. Afterward,
multiple MPI processes are contaminated. We collect the fault in-
jection results for cases of n MPI processes being contaminated
(1 ≤ n ≤ p and p is the number of MPI processes in total). In addi-
tion, we collect the fault injection results for cases of injecting n
errors into serial execution, and the n errors are injected into the
common computation. We want to compare fault injection results
between the above parallel and serial executions. Such comparison
motivates the construction of our models.

Figure 3 shows the fault injection results for “success” outcome.
Note that in the figure, some fault injection results for the parallel
execution (e.g., the cases of 2-6 errors in LU) are missing, because
we do not observe the injected error contaminates those numbers
of MPI processes. Figure 3 reveals the following observation.

Observation 4: In some of the cases (e.g., CG, MiniFE, and PEN-
NANT), the fault injection result for serial execution with multiple
errors injected is quite similar to the one for parallel execution with
multiple MPI processes contaminated. In some cases (e.g., MG), the
fault injection results of serial execution and parallel execution are
different, but the variances of success rate are quite similar. In the rest
of cases (e.g., FT and LU), serial and parallel executions are different
in both fault injection results and the variance of success rate.

The reasons that account for the difference in fault injection re-
sults between serial and parallel executions are two-fold. First, fault
injection in serial execution is unable to capture at what time error
propagates across MPI processes. Error propagation across MPI
processes only happens after certain MPI communication phases.
However, fault injection in serial execution injects errors completely
randomly. Second, when injecting multiple errors into serial execu-
tion, those errors may be injected into the computation that only
happens in one MPI process of parallel execution, while we expect
those errors to be injected into the computation that happens in
multiple processes of parallel execution. The above-unexpected
error occurrence in serial execution is different from the execution
where multiple MPI processes have errors in parallel.

4 RESILIENCE MODELING
Our models are based on the observations in Section 3. We explain
our modeling in this section. We first give a general description of
the models and then explain it in details.

4.1 General Description
Our models aim at predicting fault injection results for large-scale
parallel execution, using fault injection results for serial execution
(based on Observation 4) and using limited profiling of smaller scale
parallel execution (based on Observation 3). In essence, our models
empirically quantify the correlation between the fault injection
results of small-scale execution (including serial execution) and
large-scale execution. We generally describe our models as follows.

Given an error that happens in an MPI process in parallel ex-
ecution, the error can happen in the common computation and
propagate to other MPI processes (or no propagation at all). If the
error propagates to other nMPI processes, then n+1MPI processes
will have errors concurrently propagating. We model such error
propagation behavior with a serial execution with n + 1 errors
injected into the common computation. Those n + 1 errors occur
in the serial execution, emulating the scenario where n + 1 MPI
processes are contaminated in the parallel execution.

To further explain the idea, we use an example shown in Figure 4.
In the figure, we have a parallel execution of four MPI processes and
a serial execution. During the parallel execution, an error occurs in
one MPI process and propagates to other two processes through
MPI communication and synchronization. Afterward, three MPI
processes have errors. To emulate the impact of three contaminated
MPI processes on the application in the parallel execution, we inject
three errors in the serial execution. The three errors co-exist and
propagate.

The above emulation approach is based on Observation 4. (i.e.,
using the serial execution with errors injected can give an indi-
cation of application resilience of a parallel execution). However,
Observation 4 also reveals that sometimes the serial execution can-
not provide good emulation. To decide that if the serial execution
can provide good emulation or not, we perform fault injection in a
small scale execution, and compare its fault injection result with
the fault injection result of the serial execution. If the two results
are quite different, then the serial execution cannot provide good
emulation. For such case, we fine-tune the fault injection result of
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(a) CG (b) FT (c) MG

(d) LU (e) MiniFE (f) PENNANT
Figure 3: Characterization of application resilience difference between serial and parallel executions (eight MPI processes). The x axis is the
number of errors injected into the serial execution or the number of contaminated MPI processes in the parallel execution. The y axis is the
fault injection result for success outcome (i.e., success rate).

Figure 4: An example to explain the basic idea of using serial execu-
tion to emulate error effects in parallel execution.

the serial execution, using the fault injection result in the small-
scale execution, to approximate application resilience in large-scale
execution.

Besides the above discussion on the error occurrence in the
common computation, it is possible that an error is injected into
the parallel-unique computation. However, Observation 2 reveals
that the parallel-unique computation is often small. Hence the
chance to inject an error into it is small, and its contribution to the
fault injection result is small. In the case that the parallel-unique
computation is relatively large (e.g., FT), we model the impact
of the parallel-unique computation on the application in a large
scale execution by using the fault injection result for a small scale
execution.

To use the models, we must know how many other MPI pro-
cesses are contaminated after an error is injected into one MPI

process, during parallel execution. We estimate the probability of
error propagation across MPI processes using a small scale parallel
execution. Such estimation is based on Observation 3. In particular,
we perform fault inject tests in a small scale execution, and profile
how often the error propagates across MPI processes. We call such
profiling approach the sampling-based approach, because we use the
error propagation probability collected in a small scale as samples
to project the error propagation probability in a large scale.

To use the models, we must also perform fault injection in the
serial execution to generate p fault injection results (p is the number
of MPI processes in the large-scale execution for which we want to
make the prediction). Each fault injection result corresponds to fault
injection tests with x errors injected (1 ≤ x ≤ p). To avoid extensive
fault injection, we only collect a sample set of fault injection results
in the serial execution and use the sampling fault injection results
to project the other fault injection results. Such sampling-based
approach makes our modeling method more easily to be deployed,
especially when p is large.

4.2 Model Details
We explain the models in details in this section. The model notation
is summarized in Table 3.

Model formulation. Given a parallel execution, an error in-
jected into oneMPI process can happen in the common computation
or parallel-unique computation. The fault injection results in a par-
allel execution is a weighted sum of the fault injection results in the
common computation and parallel-unique computation, shown in
Equation 1. We use the notation, FIpar_common and FIpar_unique ,
to represent the fault injection results for the common computation
and parallel-unique computation respectively. The notation, prob1
and prob2, represents the probability of error injected into the com-
mon computation and parallel-unique computation, respectively.
They are the weights of the weighted sum in the equation. prob1
and prob2 are calculated based on the execution time spent in the
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common computation and parallel-unique code. For example, if
a large scale parallel execution spends 90% of its execution time
in the common computation and 10% of its execution time in the
parallel-unique computation, then prob1 and prob2 are 90% and 10%
respectively. The execution time of a large scale parallel execution
can be predicted based on the execution time of a smaller scale
execution [9]. Predicting the execution time of parallel execution is
out of the scope of this paper.

FIpar = prob1 × FIpar_common + prob2 × FIpar_unique (1)

To calculate FIpar_common , we use the fault injection results for
serial execution. The general idea is discussed in Section 4.1 and
shown in Figure 4. Equation 2 formalizes the idea.

FIpar_common =

n1 × FIser1 + n2 × FIser2 + · · · + np × FIserp
n1 + n2 + · · · + np

(2)

In Equation 2, the denominator (n1 + n2 + · · · + np ) is the total
number of fault injection tests to calculate FIpar_common . Among
those tests, n1 of them have one MPI process contaminated; or
more generally speaking, nx (1 ≤ x ≤ p, where p is the number
of MPI processes) of them have x MPI processes contaminated.
Fser1 is the fault injection result for serial execution with one error
injected; or more generally speaking, Fserx (1 ≤ x ≤ p) is the fault
injection result for serial execution with x errors injected. Hence,
FIpar_common is a weighted sum of the fault injection results for
serial execution with a different number of errors injected. The
weight for serial execution with x errors injected is nx /(n1 + n2 +
· · · + np ). We use notation rx to represent such weight, shown
in Equation 3. rx is, in fact, the probability of x MPI processes
contaminated after an error is injected into one MPI process. Based
on rx , Equation 2 is transformed into Equation 4.

rx =
nx

n1 + n2 + · · · + np
(1 ≤ x ≤ p) (3)

FIpar_common =r1 × FIser1+

r2 × FIser2 + · · · + rp × FIserp
(4)

Equation 4 is constructed based on Observation 4 (i.e., serial
execution with x errors injected can emulate parallel execution
with x MPI processes contaminated). However, Observation 4 also
reveals that there are some cases (e.g., LU and MG) where serial
execution cannot provide good emulation for parallel execution. To
identify those cases, we perform fault injection tests in a small scale
(e.g., four MPI processes). We compare the fault injection result of
the small scale execution with the one for serial execution. If the
two results are quite different (larger than 20% difference), then we
claim that serial execution with fault injection cannot provide good
emulation to study application resilience in parallel execution.

To handle the case that serial execution cannot provide good
emulation, we introduce a set of parameters αx (1 ≤ x ≤ p). Those
parameters are used to fine-tune FIserx , such that FIserx can better
approximate fault injection results in parallel execution. In par-
ticular, FI ′serx = FIserx × αx , where FI ′serx is the fault injection
result in serial execution after fine-tuning. αx are obtained from

Table 3: Model notation

Variable Definition
F Ipar Fault injection result for a parallel execution

p The number of MPI processes in large scale parallel
execution

S The number of MPI processes in small scale
parallel execution

F Iserx (1 ≤ x ≤ p) Fault injection result for a serial execution
with x errors injected

nx (1 ≤ x ≤ p) The number of fault injection tests with x
MPI processes contaminated

n1 + n2 + · · · + np
The total number of fault injection tests for large scale
parallel execution

rx (1 ≤ x ≤ p) The probability of x MPI processes contaminated
after an error is injected into one MPI process.

the fault injection in a small scale execution. For any x (1 ≤ x ≤ S ,
S is the number of MPI processes in the small scale execution),
αx = FIsmall_parx /FIserx , where FIsmall_parx is the fault injec-
tion result for the small scale execution with x MPI processes con-
taminated. For any x (x > S), αx = αS .

For FIpar_unique , we use our Observation 2 in Section 3. The
observation suggests that in most cases, the parallel-unique com-
putation is a small portion of total execution time. Hence, prob2
in Equation 1 is small and FIpar_unique can be ignored. For the
cases when the parallel-unique computation takes a relatively large
portion of total execution time, we calculate FIpar_unique using
the fault injection result in a small scale parallel execution. In par-
ticular, we perform fault injection tests in a small scale parallel
execution, and each test has one error injected into the parallel-
unique computation in one MPI process. We use the fault inject
result as FIpar_unique .

Model usage. To use the models, we need to calculate FIserx
and rx (1 ≤ x ≤ p). When p is very large, we have to perform fault
injection tests in serial execution for each case of x to get FIserx ,
which is time-consuming. We introduce a sampling-based approach
to approximate FIserx and rx using a few sample cases of x .

In particular, to calculate FIserx (1 ≤ x ≤ p), we do not perform
fault injection tests for every case of x . Instead, we choose a few
sample cases and use the fault injection results of those sample
cases for the other cases. Suppose we use S sample cases. Those
S cases are selected to evenly sample the whole space of x . The
sample cases will be x1 = 1,x2 = 2p/S ,x3 = 3p/S , · · · ,xS = p.
Given any x , FIserx is equal to the fault injection result of one of
the sample cases, x ⌈x/S ⌉ .

To calculate rx (1 ≤ x ≤ p), we use a small scale parallel exe-
cution with S MPI processes based on Observation 3. Observation
3 suggests that using small-scale parallel execution can capture
the trend of error propagation across MPI processes in large-scale
parallel execution. Hence, we perform fault injection tests in a small
scale, each of which has one error injected. With those fault injec-
tion tests, we calculate rx (1 ≤ x ≤ S) in the small scale. We use the
notation r ′x ′ (1 ≤ x ′ ≤ S) in the small scale to distinguish it with rx
(1 ≤ x ≤ p) in the large scale. We map rx to r ′x ′ , simply based on
the following equation.

rx = r
′
x ′ , where x ′ = ⌈x/S⌉ (5)

An example to use the models. To further explain how the
models work, we use an example. Suppose that we want to predict
the fault injection result (e.g., success rate) for a parallel execution
of 64 MPI processes (i.e., p = 64). We use a small scale execution
(four MPI processes) and serial execution to make the prediction.
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FIpar_common =

r1 × FIser1 + · · · + r64 × FIser64
(6)

To approximate FIserx (1 ≤ x ≤ 64), we use a sample size S =
4. In other words, we only measure FIser1 ,FIser32 ,FIser48 ,FIser64 .
Other cases are approximated with the four cases. For example,
FIser2 ,FIser3 , · · · ,FIser16 are approximatedwith FIser1 , and FIser17 ,
FIser18 , · · · ,FIser31 are approximated with FIser32 . Based on the
above approximation, Equation 6 becomes the following Equation 7.

FIpar_common =

FIser1 × (r1 + r2 + · · · + r16)+

FIser32 × (r17 + r18 + · · · + r32)+

FIser48 × (r33 + r33 + · · · + r48)+

FIser64 × (r49 + r50 + · · · + r64)

(7)

Note that if serial execution with fault injection cannot pro-
vide good emulation for application resilience in parallel execu-
tion, FIserx (x = 1,32,48, and 64) should be fine-tuned based on
the fault injection results in the small scale execution. FIserx in
Equation 7 should be replaced with the fine-tuning result FI ′serx ,
where FI ′ser1 = FIsmall_par1,FI

′
ser32 = FIsmall_par2,FI

′
ser48 =

FIsmall_par3,FI
′
ser64 = FIsmall_par4

To approximate rx (1 ≤ x ≤ 64), we use the small-scale execu-
tion with four MPI processes (i.e., S = 4). In particular, we perform a
sufficiently large number of fault injection tests with the small-scale
execution. Each test has one error injected into one MPI process.
We calculate among those tests, what are the percentages of fault
injection tests that have one, two, three and four MPI processes
contaminated. Those percentage numbers are r ′1, r

′
2, r
′
3, and r

′
4. Us-

ing them, Equation 7 becomes the following Equation 8. We use
Equation 8 to make the prediction.

FIpar_common =

FIser1 × r
′
1 + FIser16 × r

′
2+

FIser32 × r
′
3 + FIser64 × r

′
4

(8)

5 EVALUATION
We evaluate our modeling accuracy in this section. Besides this
section, Section 3 also has some evaluation results to characterize
application execution in small and large scales.

5.1 Experiment Setup
We use four benchmarks (CG, FT, MG and LU) from NAS parallel
benchmark suite (the version 3.3) [3] and two proxy scientific ap-
plications, MiniFE [17] and PENNANT [18]. For CG, FT and MG,
we use CLASS S as input problem; for LU, we use CLASS W. For
MiniFE, we use the default input (nx=30, ny=20, nz=30). For PEN-
NANT, we use the leblanc input problem. We run the evaluation on
Chameleon [23], which is an NSF funded HPC and Cloud testbed
with more than 492 nodes.

As discussed in Section 2, we choose floating point instructions
for fault injection. For each fault injection deployment, we perform
4000 fault injection tests. In each fault injection deployment, the
success rate becomes stable after the first 1000 tests. Hence our
fault injection results have sufficient statistical significance.

Figure 5: Modeling accuracy. We use a small scale execution (four
MPI processes) and serial execution to predict a large scale execu-
tion (64 MPI processes).

Figure 6: Modeling accuracy. We use a small scale execution (eight
MPI processes) and serial execution to predict a large scale execu-
tion (64 MPI processes).

5.2 Evaluation Results
Prediction for 64 MPI processes. We first use serial execution
(a single MPI process) and small-scale executions (4 MPI processes
and 8 MPI processes) to predict the fault injection result of a large-
scale execution (64 MPI processes). Figures 5 shows the modeling
accuracy for using serial execution and four MPI processes to make
the prediction; Figure 6 shows the modeling accuracy for using
serial execution and eight MPI processes to make the prediction.

Using four MPI processes to make the prediction, the average
success prediction error is 8% (27% at most). Using eight MPI pro-
cesses to make the prediction, the average success prediction error
is 7% (19% at most). We find that using more samples (i.e., using
eight MPI processes) provide better modeling accuracy.

128 MPI processes prediction. To study how our modeling
approach performs in a larger scale environment, we use the same
small-scale executions and serial execution results as the input to
predict the fault injection result of a larger scale execution (128 MPI
processes). We cannot use any larger scale to verify our modeling
accuracy, because a larger scale execution takes too much execution
time for fault injection. We cannot get enough machine nodes to
study application resilience in larger scales for such long time.

Figure 7 shows the results for CG and FT. Using serial execution
and four MPI processes to make the prediction, the prediction error
is no larger than 7%; Using serial execution and eight MPI processes,
the prediction error is on larger than 6%.

Overall, our modeling method achieves high prediction accuracy.
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Figure 7: Modeling accuracy for a large scale execution (128 MPI
processes). “Serial+four procs”meansweuse a small scale execution
(four MPI processes) and serial execution to make the prediction;
“Serial+eight procs”meansweuse a small scale execution (eightMPI
processes) and serial execution to make the prediction.

Figure 8: Study the tradeoff between modeling accuracy and execu-
tion time (fault injection time).

Sensitivity study.Generally speaking, if the scale of small-scale
execution becomes larger, we can have better prediction accuracy,
but have longer execution time for fault injection. To study the
tradeoff between modeling accuracy and execution time (fault in-
jection time), we perform the following study.

We change the scale of small-scale execution from 4, 8, 16 MPI
processes to 32 MPI processes. We use those small-scale executions
and serial execution to make the prediction for 64 MPI processes.
We use all benchmarks for study and measure modeling accuracy
and execution time. Figure 8 show the results.

The figure shows the root mean square error [8] of the prediction
results of all benchmarks. The root mean square error is defined
in Equation 9, where n is the number of benchmarks. The figure
also shows the execution time (fault injection time) of small-scale
execution. For each small-scale execution, the figure shows the
average execution time of all benchmarks. The execution time is
normalized by that of serial execution.

RMSE =

√
1
n
Σni=1

(
measured_rate − predicted_rate

)2
(9)

The figure reveals that the accuracy is improved as we increase
the scale of small-scale execution, but the execution time increases
as well. When the scale of small-scale execution is 16 MPI processes,
we reach a balance between execution time and modeling accuracy.

6 RELATEDWORK
There exist some research efforts concentrating on developing and
applying various kinds of techniques to study application resilience.

Application level random fault injection. Fault injection is
a common method to evaluate application resilience. Casa et al. [7]
study the resilience of an algebraic multi-grid solver by injecting
faults into instructions’ output based on LLVM. Similar work can
be found in [6, 30]. Cher et al. [10] employ a GDB-like debug-
ging tool to corrupt register states. Li et al. [21] build a binary
instrumentation-based fault injection tool for random fault injec-
tion. Shantharam et al. [29] manually change the values of data
objects to study the resilience of iterative methods. GOOFI [1] pro-
posed by Aidemark et al is a pre-runtime software implemented
fault injector, which injects faults into program and data area of the
application. Ashraf et al. [2] and Wei et al. [36] use LLVM-based
tools to inject faults, but they further introduce the functionality
of tracking fault propagation. GemFI [24] proposed by Parasyris
et al, is built on the full system simulators Gem5 [5]. GemFI can
emulate the faults in registers within a processor. Levy et al. [20]
and Wanner et al [35] leverage virtualization technology to emu-
late soft errors using QEMU, which are similar to our FSEFI fault
injector used for the fault injection experiments. The existing work
may face challenges to study application resilience in large-scale
parallel execution.

Static and dynamic program analysis. Existing research uses
compiler static and/or dynamic instruction analysis to detect appli-
cation vulnerabilities. For example, Pattabiraman et al. use static
analysis [26] and a data-dependence analysis [25] to determine
the critical variables that are likely to propagate errors. Previous
work also leverages the idea that some faults produce similar man-
ifestations, thus they can be categorized into the same class in
application resilience studies. For example, Hari et al. [15] use static
and dynamic analysis to choose representative instructions for fault
injection. They further leverage the equivalence of intermediate
execution states to reduce the number of fault injections [28], and
quantify the impact of single-bit errors in all dynamic instructions
of an execution [34]. The above research efforts can be used in
our work to reduce the number of fault injection tests, but those
research efforts cannot fundamentally address the challenges to
study application resilience in large-scale parallel execution.

Resilience modeling. There are several existing studies inves-
tigating resilience modeling. Most of them [11, 16, 22, 27] focus on
the system-level fault behavior modeling while we build the model
on the application-level. Li et al. [38] introduce a new resilience
metric, the data vulnerability factor (DVF), to analyze application
vulnerabilities. However, such method requires knowledge of both
the application and target hardware into the calculation. In this
paper, we propose a sampling-based approach by analyzing appli-
cation fault injection results in small-scale execution and serial
execution to model and predict fault injection results for the ap-
plication running in large scales. This approach is lightweight and
does not need any algorithm or hardware knowledge.

7 CONCLUSIONS
Studying application resilience in large scales can be very challeng-
ing because of its high requirement on hardware resource. In this
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paper, we introduce a new methodology to study the resilience
of applications in large-scale parallel execution. Our methodology
makes such study feasible and manageable. We reveal that applica-
tion resilience in different execution modes (small scale and large
scale parallel executions) is correlated. Based on such correlation,
we introduce empirical models that use fault injection results from
small-scale and execution and serial execution to model and predict
application resilience in large-scale execution. Our work provides
potential opportunities to study application resilience in the future
extreme scale, hence helps future HPC applications survive ever
increasing threats from the HPC resilience challenges.
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