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ABSTRACT

Emerging non-volatile memory (NVM) is promising to be used as
main memory, because of its good performance, density, and energy
efficiency. Leveraging the non-volatility of NVM as main memory,
we can recover data objects and resume application computation
(recomputation) after the application crashes. The existing work
studies how to ensure that data objects stored in NVM can be re-
covered to a consistent version during system recovery, a property
referred to as crash consistency. However, enabling crash consis-
tency often requires program modification and brings large runtime
overhead.

In this paper, we use a different view to examine application
recomputation in NVM. Without taking care of consistency of
data objects, we aim to understand if the application can be re-
computable, given possible inconsistent data objects in NVM. We
introduce a PIN-based simulation tool, NVC, to study application
recomputability in NVM without crash consistency. The tool allows
the user to randomly trigger application crash and then perform
postmortem analysis on data values in caches and memory to exam-
ine data consistency. We use NVC to study a set of applications. We
reveal that some applications are inherently tolerant to the data in-
consistency problem. We perform a detailed analysis of application
recomputability without crash consistency in NVM.
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1 INTRODUCTION

Emerging byte-addressable non-volatile memory (NVM) technolo-
gies, such as memristors [21] and spin-transfer torque MRAM (STT-
MRAM) [12], provide better density and energy efficiency than
DRAM. Those memory technologies also have the durability of
the hard drive and DRAM-like performance. Those properties of
NVM allow us to use NVM as main memory, which blurs the tradi-
tional divide between byte-addressable, volatile main memory and
block-addressable, persistent storage.
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Leveraging the non-volatility of NVM as main memory, we can
recover data objects and resume application computation (recom-
putation) after the application crashes. However, with write-back
caching, stores may reach NVM out of order, breaking data object
recoverability. Also, data objects cached in the cache hierarchy and
stored in NVM may not be consistent. Such inconsistence persists
after the application restarts and may impact application execution
correctness. Consequently, many existing work [2, 3, 7, 15, 17, 28]
studies how to ensure that data objects stored in NVM can be re-
covered to a consistent version during system recovery, a property
referred to as crash consistency.

To ensure crash consistency, the programmer typically invokes
ISA-specific cache flushing mechanisms via inline assembly or li-
brary calls (e.g., CLFLUSH) to ensure persist order. To enable crash
consistency, log-based mechanisms and the checkpoint mecha-
nism [3, 6, 23, 29] are often employed to make a copy of critical
data objects. However, frequent cache flushing, data logging and
checkpointing can cause program stalls and large runtime over-
head [33].

In this paper, we use a different view to examine application
recomputation in NVM. Without taking care of consistency of
data objects, we aim to understand if the application can be re-
computable, given possible inconsistent data objects in NVM. We
define application recomputability regarding application outcome
correctness. In particular, we claim an application is recomputable
after a crash if the application outcome is correct. If an application
is recomputable without crash consistency of data objects, then
we do not need to employ any cache flushing or logging mech-
anisms, which improves performance. Having the performance
improvement is especially attractive to applications in the field of
high-performance computing (HPC).

Evaluating application recomputability without crash consis-
tency is not trivial, because of the following reasons. First, to evalu-
ate application recomputation, we must collect data object values
in NVM for recomputation, when the crash happens. Without avail-
able NVM hardware, the traditional DRAM-based main memory,
although often used to emulate NVM [27], can lose data when
the crash happens. NVDIMM-N provide a possible solution to ad-
dress the problem. In particular, when a power failure happens,
NVDIMM-N copies the data from the volatile traditional DRAM
to flash storage and copies it back when power is restored. In the
solution of NVDIMM-N [24], the traditional DRAM is used to emu-
late NVM, and a small backup power source (e.g., a large battery)
is used to make the data copy during the power failure. However,
NVDIMM-N is not suitable for our evaluation, because our evalua-
tion involves a large amount of application crash tests. For those
tests, a machine with NVDIMM-N has to repeatedly stop and restart,
which is time-consuming and impacts the machine reliability.
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Second, we must determine data consistency when the crash
happens. This requires that we compare data in caches and its coun-
terpart in memory. This indicates that we must track data dirtiness
of each cache line in caches. To quantify how much inconsistency
there is between two data copies, we must also record data values
of dirty cache lines. The real hardware does not allow us to track
data values and dirtiness of cache lines. The existing simulators
usually do not store data values in caches and main memory for
simulation.

To evaluate application recomputability without crash consis-
tency, we introduce a PIN [19]-based simulation tool, named NVC
(standing for Non-Volatile memory Crash tester). In essence, the
tool is a PIN-based cache simulator plus rich functionality for crash
tests. The tool allows the user to randomly trigger application crash
and then perform postmortem analysis on data values in caches
and memory to examine data consistency. The tool associates rich
data semantics with data values, such that the user can determine
which data objects are critical to application recomputatbility. The
tool is highly customizable, allowing the user to configure cache
hierarchy, cache coherence, and the association between data val-
ues and data semantics. The tool also allows the user to test the
impact of different cache flushing mechanisms (e.g., CLFLUSH, CLWB
and CFLUSHOPT) on data consistency. The tool also integrates the
functionality of restarting the application with postmortem data in
memory to determine application recomputability.

NVC is useful for several scenarios. Beyond being used to study
application recomputability, NVC can be used as a debugger tool.
As a debugger tool, NVC can be used to examine if the persist order
enforced by the programmer is correct. It can also be used to detect
if the data value of a specific variable is consistent as expected by
the programmer when the application crashes.

We use NVC to study recomputability of several representative
applications from the fields of HPC and machine learning. Using
thousands of crash tests, we statistically reveal that some applica-
tions do not need crash consistency on critical data objects and
are highly recomputable after crashes. We study the reasons that
account for the application’s inherent tolerance to crash consis-
tency, including memory access pattern, data size, and application
algorithm.

The major contributions of the paper are summarized as follows.

e We introduce a tool, NVC, to study application recomputabil-
ity in NVM without crash consistency, which is unprece-
dented.

e We use NVC to study a set of applications. Different from the
existing work that relies on enforcing crash consistency for
application recomputation, we reveal that some applications
are inherently tolerant to crash consistency. We perform a
detailed analysis of the reasons.

2 PROBLEM DEFINITION AND
BACKGROUND

Definition of data objects. Data objects considered in the paper
refer to large data structures that store computation results. An
example of such data structures is multi-dimensional arrays that
represent large matrices. When running an application in a large-
scale parallel system, those data objects are often the target to apply
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checkpoint. In a programming model for NVM (e.g., PMDK [14]),
those data objects can be placed into a memory (NVM)-mapped file
for the convenience of application restart.

In this paper, we do not consider memory address-related crash
consistency. The memory address-related crash consistency prob-
lem can cause dangling pointers, multiple frees, and memory leaks.
Those problems can easily cause memory segmentation fault when
the application restarts. Many existing efforts (e.g., [6, 29]) can ad-
dress the memory address-related crash consistency. Those efforts
are complementary to our work.

In addition, we do not consider those applications with strong
demand for memory transactions. Those applications include trans-
actional key-value store and the relational database. For those ap-
plications, losing data consistency has a severe impact on the func-
tionality of those applications, although some of them usually do
not have any problem to restart after crashes.

Application recomputability. We define application recom-
putability in terms of application outcome correctness. In particular,
we claim an application is recomputable after a crash, if the ap-
plication can restart and the final application outcome remains
correct.

The application outcome is deemed correct, as long as it is accept-
able according to application semantics. Depending on application
semantics, the outcome correctness can refer to precise numeri-
cal integrity (e.g., the outcome of a multiplication operation must
be numerically precise), or refer to satisfying a minimum fidelity
threshold (e.g., the outcome of an iterative solver must meet certain
convergence thresholds).

We distinguish restart and recomputability in the paper. After
the application crashes, the application may resume execution,
which we call restart, but there is no guarantee that the application
outcome after the application restarts is correct. If the application
outcome is correct, we claim application is recomputable.

Application restart. When the application crashes, data objects
that are placed into a memory (NVM)-mapped file are persistent
and usable to restart the application. Other data objects in NVM,
either being consistent or inconsistent, are not used for application
restarting.

Typically it is the programmer’s responsibility to decide which
data objects should be placed into the file. Those data objects are
critical to application execution correctness. We name those data
objects as critical data objects in the paper. In many applications,
non-critical data objects are either read-only or can be recomputed
based on the critical data objects.

In our study, we focus on applications with iterative structures.
In those applications, there is a main computation loop dominating
computation time. We choose those applications because they are
promising to be recomputable after crashes: The iterative structures
of those applications may allow the computation of those appli-
cations to amortize the impact of corrupted critical data objects.
There are a large amount of those applications, including most HPC
applications and many machine learning training algorithms.
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3 NVC: ATOOL FOR STUDYING
APPLICATION RECOMPUTABILITY

NVC is a PIN-based crash simulator. NVC simulates a multi-level
cache hierarchy with cache coherence and main memory; NVC also
includes a random crash generator, a set of APIs to support the con-
figuration of crash tests and application restart, and a component
to examine data inconsistency for post-crash analysis. For the sim-
ulation of cache and main memory, different from the traditional
PIN-based cache simulator, NVC not only captures microarchitec-
ture level, cache-related hardware events (e.g., cache misses and
cache invalidation), but also records the most recent value of data
objects in the simulated caches and main memory.

NVC is highly configurable and supports a range of crash tests
with different configurations, summarized as follows.

e Cache configuration, including the selection of a cache
coherence protocol and typical microarchitecture configura-
tions (e.g., cache associativity and cache size);

e Crash configuration, including when to trigger the crash
and which data objects are critical;

e Cache flush configuration, including specifying which
cache flushing instruction will be used to ensure data con-
sistency;

e Recomputation configuration, including specifying a point
within a program for restarting.

We describe the main functionality of NVC as follows.

Cache simulation. Besides supporting the simulation of multi-
level, private/shared caches with different capacities and associa-
tivity, our cache simulation supports the simulation of cache co-
herence, which allows us to study the impact of cache coherence
on data consistency. With the deployment of a cache coherence
protocol, it is possible that a private cache has a stale copy of a
cache block, while NVM has the most updated one, causing data
inconsistency. NVC can capture such data inconsistency and ignore
it if configured to do so. In our evaluation, we use data in NVM to
restart and does not count such data inconsistency, because NVM
has the most updated data values.

Using PIN to intercept every memory read and write instruc-
tions from the application, NVC can get memory addresses and
corresponding data values associated with memory accesses. NVC
also records cache line information, such as data values in each
cache line, cache line dirtiness, and validness.

Our cache simulation supports different cache flushing mech-
anisms. In particular, we provide three APIs: flush_cache_line(),
cache_line_write_back() and write_back_invalidate_cache(). Table 1
contains more details.

Main memory simulation. Different from the traditional mi-
croarchitectural simulation for main memory, the main memory
simulation in NVC aims to record data values. In particular, NVC
uses a hashmap with memory addresses as keys and data values
as values. Using the hashmap enables easy updates of data values:
whenever the cache simulation in NVC writes back any cache line,
the main memory simulation can easily find the corresponding
record in the simulated main memory.

Random crash generation. NVC emulates the occurrence of a
crash by stopping application execution after a randomly selected
instruction. To allow the user to limit crash occurrence to a specific
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code region (e.g., a function call or a loop), NVC introduces two
functions, start_crash() and end_crash(), to delineate the code region.
NVC intercepts the invocations of the two functions to determine
where to trigger a crash. To statistically quantify application recom-
putability, we perform a large number of crash tests (thousands of
tests) per benchmark.

To enforce random crash generation, NVC profiles the total num-
ber of instructions (specified as N), before crash tests. For each
crash test, NVC generates a random number n (1 < n < N). Aftern
instructions are executed, NVC stops application execution. Further-
more, NVC has functionality to report call path information when
a crash happens. This is implemented by integrating CCTLib [1]
into NVC. CCTlib is a PIN-based library that collects calling con-
texts during application execution. The call path information is
useful for the user to interpret crash results. In particular, the call
path information introduces the program context information for
analyzing crash results. Having the context information is useful
to distinguish those crash tests that happen in the same program
position (i.e., the same program statement), but with different call
stacks.

Data inconsistent rate calculation. NVC reports data incon-
sistent rate after a crash happens. The data inconsistent rate is
defined in terms of either all data in main memory or specific data
objects. If the data inconsistent rate is for all data in main mem-
ory, then the data inconsistent rate is the ratio of the number of
inconsistent data bytes to the size of whole memory footprint of
the application. If the data inconsistent rate is for specific data ob-
jects, then the data inconsistent rate is the ratio of the number of
inconsistent data bytes of the specific data objects to the size of the
data objects.

We use the following method to calculate the data inconsistent
rate. We distinguish cache line and cache block in the following
discussion. The cache line is a location in the cache, and the cache
block refers to the data that goes into a cache line. When a crash
happens, NVC examines cache line status in the simulated cache hi-
erarchy. If a cache line in a private cache has “invalidate” status, this
cache line is not considered for the calculation of data inconsistence
rate, because either another private cache or main memory has an
updated version of the cache line data and inconsistent data rate
will be based on the new version of the cache line data. If a cache
line has “dirty” status, then NVM compares the dirty cache block
of the cache line with the corresponding data in main memory to
determine the number of dirty data bytes. Note that for a specific
dirty cache block, we only consider it once, even if the cache block
may correspond to multiple cache lines in the cache hierarchy.

To calculate the data inconsistent rate for the critical data objects,
NVC must know memory addresses and data types of those data
objects, such that we can determine if a cache line has data of
the critical data objects. NVC relies on the user to use a dummy
function, critical_data(), to pass memory address and data type
information of a data object to NVC. This function is nothing but
uses memory address and data type as function arguments. NVC
intercepts them and associate them with a critical data object.

Application restart. When restarting the application, NVC
reads the critical data objects, initializes other data objects using
the initialization function of the application, and then resumes the
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Table 1: APIs for using NVC.

Signature

Description

void start_crash(); void end_crash();

Define where a crash could happen. A crash could happen within the
code region encapsulated by the two APIs.

critical_data(void const *p, char type[], int const size);

Collect the address, type and size information of a critical data object.

consistent_data(void const *p, char type[], int const size);

Collect the address, type and size information of a consistent data object.

void cache_line_write_back(void const *p);

Writes back a dirty cache line containing the address p, and marks the
cache line as clean in the cache hierarchy. This API is used to emulate
CLWB.

void flush_cache_line(void const *p);

Flush a cache line containing address p, invalidate this cache line from
every level of the cache hierarchy in the cache coherence domain. This
APl is used to emulate CLFLUSH and CLFLUSHOPT.

void write_back_invalidate_cache()

Writes back all dirty cache lines in the processor's cache to main memory
and invalidates (flushes) the cache hierarchy. This API is used to emulate

WBINVD.

main computation loop. Note that when NVC restarts the appli-
cation, except the critical data objects, other data objects are not
usable, even though NVC has data values for those data objects.
This is because data semantics for those data values are lost. NVC
does not know which data values belong to which data objects.

In our crash tests, we restart the application from the iteration
of the main loop where the crash happens, instead of recomputing
the whole main loop. To know which iteration to restart, we flush
the cache line that contains the iterator at the end of each iteration
to make the iterator consistent.

Putting all together. Figure 1 generally depicts the workflow
of using NVC. To use NVC, the user needs to insert specific APIs to
specify critical data objects, the initialization phase of the applica-
tion for a restart, and specific code regions for crash tests. The user
also needs to configure cache simulation and crash tests. During
the application execution, NVC leverages the infrastructure of PIN
to instrument the application and analyze instructions for cache
simulation. NVC triggers a crash as configured and then perform
post-crash analysis to report data inconsistent rate and then restart
the application.

An example case. We take MG as an example to explain how
we perform a crash test. We use the same method to preform crash
tests for other benchmarks.

Figure 2 shows how we add NVC APIs into MG. MG has two
critical data objects and their information is passed to NVC in Line
7 and Line 8. The crash test happens in the main computation
loop encapsulated by start_crash() and end_crash(). Right before
the main computation loop, we flush whole cache hierarchy (Line
11) to ensure that all data is consistent before we start the crash
test. Within the main loop, we flush the cache line containing the
iterator at the end of each iteration (Line 15) for the convenience
of application restart.

4 RECOMPUTABILITY EVALUATION
4.1 Execution Platform and Simulation
Configurations.

In this paper, we simulate a two-level, inclusive cache hierarchy,
using the LRU replacement policy. The first level is a private cache

static double u[NR];
static double r[NR];

5| int main(int argc, char sxargv) {

6 int it;

7 critical_data(&u[0], "double", NR);

8 critical_data(&r[0], "double", NR);
consistent_data(&it, "int", 1);

1 write_back_invalidate_cache ();
start_crash ();
for (it = 1; it <= nit; it++) {

cache_line_write_back(&it);

}
end_crash ();

Figure 2: Add NVC APIs into MG

(256KB per core and we simulate 8 cores). The second level is a
shared cache (20MB). In addition, we use a write-back and no-write
allocate policy for the first level cache, and a write-back and write
allocate policy for the second level cache. The cache line size is 64
bytes for both caches.

4.2 Benchmark Background.

We use three benchmarks from NAS parallel benchmark (NPB)
suite 3.3.1 and one machine learning code (Kmeans [4]) for our
study. Those benchmarks are summarized in Table 2. For each
benchmark, we use two different input problems, such that we can
study the impact of different memory footprint sizes on application
recomputability. We describe the benchmarks in details in this
section.

Conjugate gradient method (CG). CG is used to compute an
approximation to the smallest eigenvalue of a large sparse symmet-
ric positive definite matrix. CG is an iterative method, in the sense
that it starts with an imprecise solution and then iteratively con-
verges towards a better solution. CG has a verification phase at the
end of CG. The verification tracks the solution convergence towards
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Application execution

l PIN

Cache configuration Callpath recording
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Figure 1: The general workflow of using NVC.
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Figure 3: Recomputation success rate for CG.

a precision solution. We determine if CG successfully recomputes
based on the CG verification.

CG has sparse, unstructured matrix vector multiplication with
irregular memory access patterns. In CG, we have five critical data
objects (x, p, g, r and z), taking 1% of total memory footprint size.

Fourier transform (FT). This benchmark solves a partial dif-
ferential equation using forward and inverse fast Fourier transform
(FFT). FT has a main loop repeatedly performing FFT. At the end
of each iteration of the main loop, FT has a verification phase to
examine the result correctness of each iteration. The verification
phase compares some checksums embedded in data objects of FT
with reference checksums to determine the result correctness. Since

Figure 4: Recomputation success rate for FT.

FT is not an iterative solver and has verification at each iteration of
the main loop, we simulation one iteration for our study, in order to
save simulation time. We determine if FT successfully recomputes
based on the FT verification.

FT has strided memory access patterns. Depending on the input
problem size of FT, the stride size can be large, causing intensive
accesses to main memory. In FT, we have two critical data objects
(10 and u1), taking at least 80% of total memory footprint size.

Multigrid method (MG). MG is used to obtain an approxima-
tion solution to the discrete Poisson problem based on the multigrid
method. MG is also an iterative method, in the sense that MG al-
ternatively works at finer or coarser variants of the input problem



MCHPC’18, November 11, 2018, Dallas, TX, USA

Jie Ren, Kai Wu, and Dong Li

100% Table 2: Benchmark information.
% 90% Ex=1
g jg:z Ox=4 Benchmark | Description Memory footprint size of two
H T oo Ox-8 input problems
S & s0% CG Iterative Class A: 55MB, Class B: 398MB
5 £ 0% solver
5= 30% 9 : :
2 16% 19% . 20% o FT Spe;trzl Class A: 321MB, Class B: 1283MB
] metho
i = EN\m HEXm
= 0% MG Iterative Class A: 431MB, Class B: 431MB
phase 1 phase2 solver
Kmeans Clustering kdd_cup: 133MB, 819200: 222MB
(a) CLASS-A analysis
o  100%
s 90% mx=1
o 80%
g 0% Ox=4
x 0,
2 x 60% Ox=8
55 so%
B g 0% solution convergence towards a precision solution. We determine
g % 20% 9 18% if MG successfully recomputes based on the MG verification.
£ 20% 12% 13% 15% e . . .
8 0 ° MG has either short or long distance data movement, depending
= 0% on whether MG works on finer or coarser granularity of the input
phase 1 phase2 problem. Working at the coarse granularity, MG can cause intensive
main memory accesses. In MG, we have two critical data objects (u
(b) CLASS=B

Figure 5: Recomputation success rate for MG.

35 = = =
Hx=1 Ox=4 Ox=8 30.78 30.40 30.52

20 18.66 17 18.45
10 5.70 6.09 5.89 I H I
a NoEm |\

=x)

recomputation success rate
(thread
=
[6,]

phasel phase2 phase3
(a) kdd as input
35 Hx=1 Ox=4 Ox=8
30
25
<
11 20

16.03 15.70 15.94

recomputation success rate
(thread

- o o s §H
= N\ I

phasel phase2 phase3

(b) 8192 as input

Figure 6: Recomputation success rate for Kmeans.

to compute the increasingly more accurate solutions. MG has a
verification phase at the end of MG. The verification tracks the

and r), taking a least 70% of total memory footprint size.

Kmeans. Kmeans is a clustering algorithm to classify a set of
input data points into n clusters. Kmeans is an iterative algorithm: In
each iteration, each data point is associated with its nearest cluster,
and then a new cluster centroid for each cluster is formed. Kmeans
iteratively determines the cluster centroid for each cluster. Kmeans
will stop clustering when a convergence criteria is met. Given a set
of data points as input, the algorithm identifies related points by
associating each data point with its nearest cluster, computing new
cluster centroids and iterating until converge.

Kmeans has streaming memory accesses (lacking temporal data
locality). In Kmeans, we have centers as critical data objects, which
is the position information of cluster centroids. centers takes less
than 1% of total memory footprint.

4.3 Recomputability Summary.

We evaluate and characterize application recomputability by trigger-
ing crashes at different execution phases and changing the number
of threads to run benchmarks. Each case of our study is a combina-
tion of using a specific number of threads and triggering crashes at
a specific execution phase. Each case of our study includes 100 crash
tests. For each crash test, we stop the benchmark in one iteration of
the main loop, and then restart the benchmark and examine if the
benchmark can complete successfully by running the remaining
iterations of the main loop. For the benchmarks CG and MG, the
number of iterations of the main loop from one run to another
remains constant, but for Kmeans, the number of iterations is not
constant from one run to another. In addition, Kmeans can always
recompute (converge) successfully after the crash. To evaluate the
recomputability of Kmeans, we use the number of iterations after
the crash for Kmeans to converge as a metric. If Kmeans needs
more iterations to converge after the crash than before the crash,
then Kmeans has bad recomputability.
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4.4 Recomputability at Different Execution
Phases

We trigger crashes at different execution phases of each benchmark.
For CG and Kmeans, we evenly divide the whole iteration space of
the main loop into three parts, each of which corresponds to one
phase. For MG, we evenly divide the whole iteration space into two
parts (not three parts), because MG has a small number of iterations.
For FT, we only have one iteration, as described in Appendix A. We
divide the iteration into four phases (evolve, cfft3, cfft2, and cfft1)
based on algorithm knowledge. Our following discussion focuses on
the recomputation results of using one thread to run benchmarks.
Figures 3a-6b shows the results.

CG with Class A as input shows strong recomputability: at least
96% of all crash tests can recompute successfully. However, when
we use a larger input (Class B), CG shows weak recomputability in
Phases 2 and 3 (the recomputation success rate is 46% and 7% respec-
tively). FT shows very weak recomputability: the recomputability
success rate is less than 6% in all cases. MG also shows relatively
weak recomputability: the recomputability success rate is 15%-20%.
Kmeans can recompute successfully in all cases, showing strong
recomputability.

Observation 1. Different applications have large variance in
recomputability. Some applications (e.g., CG and Kmeans) can re-
compute successfully in almost all cases, while some applications
(e.g., FT) have close to zero tolerance to crash inconsistency.

Observation 2. Application recomputability is related to the
input problem size. With different input problems, application re-
computability can behave differently.

The observation 2 is aligned with our intuition. The application
with a larger input problem can lead to a smaller portion of data
objects in the cache hierarchy. This reduces the data inconsistent
rate when a crash happens, and results in a better possibility to
recompute.

When crashes happen at different execution phases of CG (Class
B as input), CG shows different recomputability (100%, 46% and
7% for Phases 1, 2 and 3 respectively). CG does not show good
recomputability at the late phase (Phase 3). Kmeans shows the
similar results: when crashes happen at different execution phases,
Kmeans uses a different number of iterations to converge. At the
late phase (Phase 3), Kmeans needs a larger number of iterations.

Observation 3. Application recomputability is different across
different execution phases.

The iterative structure of some applications has capabilities of
tolerating approximate computation by amortizing approximation
across iterations [11]. A crash and restart cause approximate com-
putation, because of data inconsistence. A crash happening at the
early execution phase has more iterations to tolerate approximation
and has a higher possibility to recompute.

Implication 1. If we enforce crash consistency to improve ap-
plication recomputability, we do not need to enforce it throughout
application execution. Reducing the necessity of enforcing crash
consistency is helpful to improve application performance. Some ap-
plications with specific input problems are naturally recomputable
after crashes. They do not need to enforce crash consistency.
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4.5 Recomputability with Different Numbers
of Threads

We use 1, 4 or 8 threads to run applications. The results are shown
in Figures 3a-6b. For CG with Class A, the number of threads has a
significant impact on recomputability. As the number of threads
increases, the recomputability goes worse. The recomputability
for 1, 4 and 8 threads is 99%, 93%, and 45%, respectively. However,
for CG (Class B), FT, MG and kmeans, the recomputability is not
sensitive to the number of threads.

Observation 4. Application recomputability can be negatively
impacted by the number of threads. However, applications with
weak recomputability (e.g., FT and MG) remain to have weak re-
computability when using different numbers of threads.

We attribute the above observation to the possible larger working
set for critical data objects in caches when using a larger number of
threads. When a crash happens, having a larger working set size for
critical data objects in caches means more data is inconsistent. On
the other hand, using a larger number of threads can cause higher
data consistent rate, because of more cache line eviction. More
cache line eviction implicitly causes more data to be consistent. We
discuss the data inconsistent rate in Section 4.6.

Furthermore, Kmeans seems to be a special case. Kmeans has
strong recomputability: the recomputation rate is always 100%, no
matter how many threads we use to run Kmeans and trigger crashes.
Different from CG (Class A) that also has strong recomputability,
the recomputability of Kmeans is not impacted by the number of
threads at all. We attribute such observation to the strong tolerance
to data corruption of Kmeans.

Implication 2. When using the different number of threads, we
must use different strategies to ensure application recomputability.
When using a larger number of threads to run an application, there
is often a need to enforce stronger crash consistency.

4.6 Analysis based on Data Inconsistent Rate

Figures 7a-10b show the data inconsistent rate for individual critical
data objects as well all data objects. We define the data inconsistent
rate in Section 3.

For CG, the data objects g and r have a high inconsistent rate in
all cases. The variance of data inconsistent rate across cases is also
small. We conclude that the recomputability of CG seems to be less
correlated with the data inconsistent rate of these two data objects.
We further notice that the data objects p and z has a large variance in
data inconsistent rate across cases, when using Class A as input. For
p, using a larger number of threads causes higher data inconsistent
rate; for z, using a larger number of threads has opposite effects.
We conclude that using a larger number of threads, accessing to
p and z may have opposite impact on application recomputability.
Given the fact that the recomputability of CG (Class A as input) is
not sensitive to the number of threads, the impacts of p and z on
application recomputability seem to be neutralized.

We have the similar observations for other benchmarks.

Observation 5. We cannot easily explain the variance of appli-
cation recomputability based on the data inconsistent rate. There
seems to be a small correlation between application recomputability
and the data inconsistent rate.



MCHPC’18, November 11, 2018, Dallas, TX, USA

Jie Ren, Kai Wu, and Dong Li

100% 100%
2 g0 O1thread evolve [4thread evolve B8 thread evolve -~ O1TP1 D4TP1 @8TP1 mi1TP2 mATP2 @O 8TP2
0 k4 0
% M1 thread cffts3 m 4 thread cffts3 [ 8 thread cffts3 ¢
3 €
g 60% 1 thread cffts2 04 thread cffts2 I 8 thread cffts2 ‘3 60%
2 2
§ 40% 01 thread cfftsl 04 thread cfftsl B8 thread cfftsl § 40%
£ £
© ©
5 20% 5 20%
0% MNBoe ) 1\ ] |- ————— R
u0 ul all data u r all data
(a) CLASS=A (a) CLASS=A
100% 100%
2 a0 O1thread evolve [04thread evolve B8 thread evolve . O1TP1 g4TP1 =8TPL @ITP2 mATP2 @S8TP2
©
& F11 thread cffts3 m 4 thread cffts3 £ 8 thread cffts3 f
E c
% 60% 1 thread cffts2 @ 4 thread cffts2 m 8 thread cffts2 % 60%
2 ‘3
<
§ 40% o1 thread cfftsl 04 thread cfftsl B8 thread cfftsl § 40%
c -
= =
tov 20% g 20%
0% N0 — nnﬂﬂ IH&IH”E e e Tl T = 0% r—— —Pe—m—— e e e—me——
u0 ul all data u r all data
(b) CLASS=B (b) CLASS=B

Figure 8: Data inconsistent rate for FT.

The above observation may be because of the following reason.
The data inconsistence rate only tells us that data is inconsistent,
but cannot quantify the value difference between caches and main
memory. Two crash tests may cause the same data inconsistent rate
for a data object, but have quite different data values in the data
object. Different data values can cause different application recom-
putability. Using the different number of threads and different input
problems can cause a big difference in data values between caches
and main memory when the crash happens. Such big differences
cause different application recomputability.

Implication 3. Considering the cache effects to determine appli-
cation inconsistent rate is not sufficient to understand application
recomputability. We must also consider how different data values
in caches and main memory are when the crash happens.

4.7 Discussions and Future Work

NVC is based on PIN that uses binary instrumentation. Running an
application with a large memory footprint and intensive memory
accesses with NVC can be time-consuming. In our experiments,
using NVC to run the application with large input size can cause
hundreds of times slowdown. Such long execution time brings chal-
lenges for running a large number of crash tests. We plan to extend
our work by introducing a new technique to accelerate our analysis.
In particular, we plan to proportionally scale down the applica-
tion’s data set and cache size for faster simulation without losing
the result correctness for quantifying application recomputability.

NVC allows us to learn the application recomputability and the
reason behind. We plan to learn more representative applications

Figure 9: Data inconsistent rate for MG. In the legend, “T” stands for
thread and “P” stands for phase. xXTyP means using x threads and
trigger crashes in Phase y.

and introduce a mechanism to leverage application recomputability
to avoid checkpoint or cache flushing for better performance.

5 RELATED WORK

Many existing work focuses on enabling crashing consistency in
NVM, using software- and hardware-based approaches. Different
from the existing work, we study application recomputability with-
out crash consistency. We review the existing work related to crash
consistency as follows.

Software support for crash consistency. Enabling crash con-
sistency in NVM with software-based approaches is widely ex-
plored. Undo logging and redo logging are two of the most common
methods to enable crash consistency, often based on atomic and
durable transactions. Using undo and redo logging, once a transac-
tion fails or the application crashes, any uncommitted modifications
are ignored, and the application rolls back to the latest version of
data in the log.

Persistent Memory Development Kit (PMDK) [13] from Intel
supports the transaction system in NVM by undo logging. Similarly,
NV-Heaps [7], REWIND [3] and Atlas [2] adopt write-ahead undo
logging in NVM. Kolli et al. [15] propose an undo logging that
minimizes the write ordering constraint by delaying to commit the
data modification.

Mnemosyne [28], a set of programming APIs and libraries for
programming with persistent memory, uses redo logging. Lu et
al. [17] optimize Mnemosyne to reduce the overhead of supporting
transaction by delaying and minimizing the cache flushing. To
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Figure 7: Data inconsistent rate for CG. In the legend, “T” stands for thread and “P” stands for phase. xTyP means using x threads and trigger

crashes in Phase y.

achieve that, they maintain the correct overwrite order of data but
do not write them back into memory immediately. A full processor
cache flushing will be scheduled when they accumulate enough
uncommitted data. Giles et al. [10] provide a redo logging based
lightweight atomicity and durability transaction by ensuring fast
paths to data in processor caches, DRAM, and persistent memory
tiers.

Some existing work focuses on enabling crash consistency for
specific data structures, including NV-Tree [32], FPTree [22], NVC-
Hashmap [25], CDDS [26] and wBTree [5]. Those data structures
support atomic and durable updates, and hence support crash con-
sistency.

Our work can be very helpful for the above work. In particular,
NVC can be used to check if crash consistency based on undo log
and redo log enables data consistence as expected.

Some existing work considers crash consistency with the context
of file system [8, 9, 30]. NOVA [31] is such a file system optimized
for heterogeneous memory (DRAM and NVM) systems. It provides
strong consistency guarantees and maintains independent logs for
each inode to improve scalability. Octopus [16] is another example.
Octopus is a RDMA-enabled distributed persistent memory file sys-
tem. Octopus can have high performance when enforcing metadata
consistency, by a “collect-dispatch” transaction. With the collect-
dispatch transaction, Octopus collects data from remote servers for
local logging and then dispatching them to remote sides by RDMA
primitives.

Among the above software-based work, some of them [15, 17] in
fact relaxes requirements on crash consistency and does not require
crash consistency to be timely enforced, in order to have better

performance. Since our work does not require crash consistency,
our work also relaxes requirements on crash consistency.

Hardware support for crash consistency. Lu et al. [18] use
hardware-based logging mechanisms to relax the write ordering
requirements both within a transaction and across multiple transac-
tions. To achieve such goal, they largely modify the cache hierarchy
and propose a non-volatile last level CPU cache. Ogleari et al. [20]
combine undo and redo hardware logging scheme to relax ordering
constraints on both caches and memory controllers for NVM-based
systems. Meanwhile, to minimize the frequency of using write-back
instructions, they add a hardware-controlled cache to implement a
writeback cache. Our work is different from the above hardware-
based work, because we do not require hardware modification for
crash consistency.

6 CONCLUSIONS

Using NVM as main memory brings an opportunity to leverage
NVM’s non-volatility for application restarting and recomputing
based on the remaining data objects in NVM, after the application
crashes. Different from the existing work that enables crash con-
sistency for application recomputation, we statistically quantify
recomputability of a set of applications without crash consistency
in NVM. We develop a tool (named NVC) that allows us to trigger
random crash, examine data consistency and restart application for
our study. Using the tool, we real that some applications have very
good recomputability without crash consistency on critical data
objects. Our work is the first one that studies application recom-
putability without crash consistency. Our work opens a door to
remove runtime overhead of those crash-consistency mechanisms



MCHPC’18, November 11, 2018, Dallas, TX, USA
100% o1TP1
o 04TP1
5 80% o8TPL
€ N m1iTP2
g 60% ~ m4TP2
(%) SN
c Y [ 8TP2
o 0
E 0% W 17P3
8 N 04TP3
& 20% N
a N m8TP3
SN
0% - g —_ e —
clusters all data
(a) kdd_cup as input
100%
o1TP1
% 80% O4TP1
= B28TP1
& 60% GiTP2
2 mATP2
<
S 40% 28TP2
= 17P3
5 20% §47P3
m8TP3
0%
clusters all data

(b) 819200 as input

Figure 10: Data inconsistent rate for kmeans. In the legend, “T”
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(e.g.

, logging and checkpoint). Our work makes NVM a more feasi-

ble solution for application recomputation in those fields with the
high-performance requirement.
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