
Processing-in-Memory for Energy-efficient Neural
Network Training: A Heterogeneous Approach

Jiawen Liu*‡, Hengyu Zhao*†, Matheus Almeida Ogleari�, Dong Li‡, Jishen Zhao†

†University of California, San Diego ‡University of California, Merced �University of California, Santa Cruz
†{h6zhao, jzhao}@ucsd.edu ‡{jliu265, dli35}@ucmerced.edu �mogleari@ucsc.edu

Abstract—Neural networks (NNs) have been adopted in a wide
range of application domains, such as image classification, speech
recognition, object detection, and computer vision. However,
training NNs – especially deep neural networks (DNNs) – can be
energy and time consuming, because of frequent data movement
between processor and memory. Furthermore, training involves
massive fine-grained operations with various computation and
memory access characteristics. Exploiting high parallelism with
such diverse operations is challenging. To address these chal-
lenges, we propose a software/hardware co-design of heteroge-
neous processing-in-memory (PIM) system. Our hardware design
incorporates hundreds of fix-function arithmetic units and ARM-
based programmable cores on the logic layer of a 3D die-stacked
memory to form a heterogeneous PIM architecture attached to
CPU. Our software design offers a programming model and a
runtime system that program, offload, and schedule various NN
training operations across compute resources provided by CPU
and heterogeneous PIM. By extending the OpenCL programming
model and employing a hardware heterogeneity-aware runtime
system, we enable high program portability and easy program
maintenance across various heterogeneous hardware, optimize
system energy efficiency, and improve hardware utilization.

I. INTRODUCTION

Neural networks (NNs) have been adopted by a wide range

of application domains, such as computer vision, speech

recognition, and natural language processing. Today, NN

models employ increasingly larger number of parameters and

data sets. For example, VGG [1] and AlexNet [2] employ

138M and 61M parameters for image classification, respectively.

Training such complex models demands immense computation

and memory resources, energy and time. One critical energy and

performance bottleneck when training NN is data movement

in systems. As NN models are becoming deeper and larger,

the data volume and the pressure on the runtime system

to support data intensive operations substantially increase.

Existing research efforts use low-precision data [3] or prune

NN models [4]. Yet, these efforts impose the difficulty

of quantifying the impact of model simplification on NN

model accuracy; They do not fundamentally address the data

movement problem in NN model training.

Recent development of processing-in-memory (PIM) tech-

niques have been explored as a promising solution to tackle

the data movement challenge in various applications [5, 6].

We profile various NN training workloads and reveal that such

workloads have diverse memory access patterns, computation

intensity, and parallelism (Section II). As a result, NN training

*These two authors contributed equally to this paper as the first authors.

can significantly benefit from heterogeneous PIM – which

incorporates both fixed-function logic and programmable cores

in the memory – to achieve optimal energy efficiency and

balance between parallelism and programmability. However,

such heterogeneous PIM architecture introduces multiple

challenges in the programming method and runtime system.

First, programming PIMs to accelerate NN training is non-

trivial. Today, the common machine learning frameworks, such

as TensorFlow [7], Caffe2 [8], heavily rely on a variety of

implementations for NN operations on various hardware, and

use a middleware to integrate those operations to provide

hardware transparency to the user. Such a software design can

place high burden on system programmers, because of the

increasing hardware heterogeneity and difficulty for program

maintenance. Most previous PIM software interfaces [5, 6,

9] require programmers to have the detailed knowledge of

underlying hardware. In order to improve productivity and

ease-of-adoption of PIM-based NN training accelerators, we

need to develop a programming method that maximizes code

reuse without asking the programmer to repeatedly program

on different PIMs.

Second, combining fixed-function logics and programmable

cores in PIM further complicates the software design. Fixed-

function and programmable PIMs employ vastly different

programming models: Fixed-function PIMs employ ISA-level

instructions accessed via assembly-level intrinsics or via library

calls; Programmable PIMs employ standard programming

paradigms, such as threading packages or GPGPU program-

ming interfaces [10]. As discussed in recent studies [10], most

previous PIM designs adopt homogeneous PIM architectures

– with either fixed-function or programmable PIMs – which

allows a simplified software interface design. But with hetero-

geneous PIM, it is critical to design a unified programming

model that can accommodate both PIM components.

Finally, the scale of operations in NN training can lead to

unbalanced hardware utilization. Ideally, we want to achieve

high utilization of PIMs without violating the dependency

requirement among NN training operations, by exploiting

abundant operation-level parallelism across the host processor

and PIMs. However, it can be difficult to achieve so in

such a heterogeneous system by pure hardware scheduling,

because of the complexity of tracking operation dependency

and synchronization. Furthermore, NN training typically adopts

a large amount (e.g., tens of thousands) of iterative steps

and hundreds of operations per step. Operation dependency

656

2018 51st Annual IEEE/ACM International Symposium on Microarchitecture

978-1-5386-6240-3/18/$31.00 ©2018 IEEE
DOI 10.1109/MICRO.2018.00059

across the massive amount of steps and operations can impose

synchronization overhead and decrease hardware utilization,

when operations are running on multiple computing devices.

Our goal in this paper is to design a PIM-based NN

training acceleration system that can efficiently accelerate

unmodified training models written on widely-used machine

learning frameworks (e.g., TensorFlow). To achieve our goal,

we propose a software/hardware co-design of a heterogeneous

PIM framework. Our design consists of three components. First,

we adopt a heterogeneous PIM architecture, which integrates

both fixed-function logics and programmable cores in 3D die-

stacked main memory. Second, we extend the OpenCL [11]

programming model to address the programming challenges.

The programming model maps the host CPU and heterogeneous

PIMs onto OpenCL’s platform model and extends OpenCL’s

execution and memory models for efficient runtime scheduling.

Finally, we propose a runtime system, which maximizes PIM

hardware utilization and NN-operation-level parallelism. This

paper makes the following contributions:

• We developed a profiling framework to characterize NN

training models written on TensorFlow. We identify the

heterogeneity requirements across the operations of various

NN training workloads. Based on our profiling results, we

identify opportunities and key challenges in the software

design for efficiently accelerating NN training using PIMs.

• We develop a heterogeneous PIM architecture and demon-

strate the effectiveness of such an architecture for training

NN models.

• We propose an extension to OpenCL programming model in

order to accommodate the PIM heterogeneity and improve

the program maintainability of machine learning frameworks.

• We propose a runtime system to dynamically map and

schedule NN operations on heterogeneous PIM, based on

dynamic profiling of NN operations.

II. BACKGROUND AND MOTIVATION

We motivate our software/hardware coordinated design by

discussing the challenges of accelerating machine learning

training workloads. We employ three widely used CNN training

models – VGG-19 [1], AlexNet [2], and DCGAN [12] – as

examples in this section. However, our observations can also

be applied to various other training workloads (Sections VI).

A. NN Training Characterization

In order to understand the characteristics of NN training

workloads, we develop a profiling framework (Figure 1)

by leveraging TensorBoard [13] and Intel VTune [14] to

collect software and hardware counter information of training

operations. Measuring the number of main memory accesses

of individual operations during training can be inaccurate due

to the extra cache misses imposed by simultaneously executing

operations. As such, we disable inter-operation parallelism to

ensure characterization accuracy of individual operations.

Table I illustrates our profiling results of top five most time-

consuming and memory-intensive operations, respectively, with

three training models. Each model has tens of different types

Timeline Profiler Operation
Ranking

Operation
Profiling

  Operation DAG
  Operation trace

NN Training
Workloads TensorBoard

Hardware Counters

  Operation execution time
  Input/output data size
  Input/output data address

(Table I)
Intermediate

Output:

Fig. 1: Our profiling framework for profiling NN training

workloads in TensorFlow.

of operations and requires thousands of iterative steps to train;

In each step, each type of operation can be invoked up to tens

of times. We only show results within one training step. But

the characteristics remain stable across training steps.

We make three key observations. First, only several op-

erations dominate training execution time. For example, top

five operations in VGG-19 model consume over 95% of total

execution time. Second, the most time-consuming operations

are also the most memory intensive. In fact, the top five most

time-consuming operations contribute to over 98% of total

main memory accesses across all three models. We further

classify operations into four classes, shown in Figure 2. The

first class of operations is compute intensive, and does not

have to be offloaded to PIMs, but we can offload them when

there are idling hardware units in PIMs. The second class of

operations is our target to offload to PIMs. The third class is

unusual, and the fourth class does not have big performance

impact on model training. The above two observations motivate
us to adopt a PIM architecture to accelerate NN training in
order to reduce data movement between the host processor
and the main memory.

Fig. 2: Four categories of NN training operations.

Third, time-consuming and memory-intensive operations

require heterogeneous computation types. It appears that

many of such operations are multiplication and addition (e.g.,

MatMul) or can be decomposed so (e.g., Conv2D). This is inline

with previous works on machine learning acceleration [5, 6].

Yet, significant amount of top time-consuming and memory-

intensive operations cannot simply be implemented by pure

multiplication and addition. For instance, Relu is an activation

function that incorporates conditional statement; MaxPool

is a sample-based discretization process; ApplyAdam is a

first-order gradient-based optimization of stochastic objective

functions. Complex operations, such as Conv2DBackpropFilter

and Conv2DBackpropInputs, include other logic and computa-

tions beyond multiplication and addition. Such non-multiply-

add operations can consume over 40% of total execution

time. Furthermore, studies on modern multi-tenancy [15]

and multimodel training [16] workloads also demonstrate

such heterogeneous computation requirement. This observation
motivates us to adopt a heterogeneous PIM architecture that
combines fixed-function logic and programmable cores.

Most previous works on PIM adopt either fixed-function [5]

657

TABLE I: Operation profiling results for three neural network models. “CI”= computation intensive; “MI”=memory intensive.
VGG-19

Top 5 CI Ops Execution Time(%) #Invocation Top 5 MI Ops #Main Memory Access(%) #Invocation
1. Conv2DBackpropFilter 40.15 16 1. Conv2DBackpropFilter 42.52 16
2. Conv2DBackpropInput 32.68 15 2. BiasAddGrad 35.68 16

3. BiasAddGrad 11.92 16 3. Conv2DBackpropInput 21.06 15
4. Conv2D 10.34 16 4. MaxPoolGrad 0.22 16

5. MaxPoolGrad 1.49 16 5. Relu 0.14 19
Other 13 ops 3.37 232 Other 13 ops 0.38 229

AlexNet
Top 5 CI Ops Execution Time(%) #Invocation Top 5 MI Ops #Main Memory Access(%) #Invocation

1. Conv2DBackpropFilter 33.64 5 1. BiasAddGrad 44.64 3
2. Conv2DBackpropInput 33.46 4 2. Conv2DBackpropInput 36.61 4

3. MatMul 13.54 6 3. Conv2DBackpropFilter 14.79 5
4. Conv2D 10.48 5 4. Relu 1.20 8

5. BiasAddGrad 4.62 3 5. Conv2D 0.46 5
Other 13 ops 4.26 121 Other 13 ops 2.30 119

DCGAN
Top 5 CI Ops Execution Time(%) #Invocation Top 5 MI Ops #Main Memory Access(%) #Invocation

1. Conv2DBackpropFilter 19.98 4 1. Conv2DBackpropFilter 37.21 4
2. Conv2DBackpropInput 17.18 4 2. Conv2DBackpropInput 28.09 4

3. MatMul 14.28 12 3. Slice 17.18 14
4. Conv2D 10.53 4 4. Conv2D 5.45 4

5. Mul 9.89 84 5. Mul 2.22 84
Other 47 ops 28.14 821 Other 47 ops 9.85 819

or programmable [6] computation components in the logic

layer of 3D die-stacked memory. In the following, we discuss

feasibility, challenges, opportunities of accelerating NN training

with software/hardware co-design of heterogeneous PIM.

B. Feasibility of Heterogeneous PIM Architecture

The logic layer of 3D memory stacks has area, power, and

thermal limitations. But previous studies demonstrated the

feasibility of adopting both fixed-function and programmable

PIMs, while meeting these constraints [17]. We adopt similar

methodologies to ensure the feasibility of our architecture

implementation (Section IV).

C. Software Design Challenges and Opportunities

There are three challenges for the software design (introduced

in Section I): (1) How do we enable high productivity of system

programmers and ease-of-adoption of PIM-based NN training

accelerators? (2) How do we develop a unified programming

model that can efficiently accommodate the host processor,

fixed-function PIMs, and programmable PIMs? (3) How do

we balance hardware utilization at runtime?

One candidate baseline programming model is OpenCL [11],

which is widely used in accelerator-based heterogeneous

computing platforms (e.g., GPU and FPGA). We adopt OpenCL,

due to its portability, expressiveness, and ability to enable

high programming productivity to support programming on

heterogeneous systems (details are discussed in Section III-B).

However, it is not straightforward to adopt OpenCL for NN

model training on the heterogeneous PIM architecture. (1)

How do we map the platform model of OpenCL to the

heterogeneous PIM architecture? (2) Given the execution model

of OpenCL with limited considerations on hardware utilization,

how do we make the best use of CPU (the host processor)

and different types of PIMs? (3) Given the memory model

of OpenCL with limited considerations on synchronization

between hardware units, how do we meet the requirement of

frequent synchronizations from NN operations?

Trade-offs between parallelism and programmability.
Fixed-function PIMs typically offer high computation paral-

lelism by executing fine-grained, simple operations distributed

across massive amount of logic units. However, they are less

flexible than programmable PIMs that can be programmed to

accommodate a large variety of operations. Furthermore, fixed-

function PIMs can impose high performance overhead by (i)

frequent operation-spawning and (ii) host-PIM synchronization.

Programmable PIMs typically execute coarse-grained code

blocks with less frequent host-PIM synchronization. However,

the limited number of computational units in programmable

PIMs can lead to much lower parallelism than in fixed-function

PIMs.

Opportunities in runtime system scheduling. Substantial

opportunities exist in leveraging system-level software to opti-

mize resource sharing among various system components. The

heterogeneity of our architecture introduces requirements on

scheduling model-training operations across the host processor

(CPU), fixed-function PIMs and programmable PIMs, based on

the dynamic utilization of compute resources on these system

components. Yet, we observe that NN training workloads tend

to have repeatable (hence predictable) computation behavior

over the execution time. As such, system software can ac-

curately predict and dynamically schedule the operations by

profiling the resource utilization of various compute elements

in the first few steps of modeling training. Such dynamic

profiling-based scheduling can achieve the best utilization of

computation resources, while improving energy efficiency.

D. CPU vs. GPU – Where to Attach Heterogeneous PIMs?

Today, NN-training workloads can be executed on both CPU-

and GPU-based systems. Recent silicon interposer technology

allows both types of systems to adopt 3D die-stacked memories

658

closely integrated with logic components. For example, modern

GPU device memories [18] are implemented by high-bandwidth

memory technology. High-end CPU servers integrate high-

bandwidth memories using the DRAM technology adopted

from hybrid memory cubes.

Our heterogeneous PIMs are logic components closely

integrated with die-stacked memories. Therefore, they are

generally applicable to both CPU or GPU systems. However,

this paper focuses on the software design for heterogeneous

PIMs attached on CPU systems, due to the constraint of current

GPU systems. Today, GPU systems often fuse and organize

computation kernels into NN layers rather than fine-grained

operations, because of the inefficiency of compute preemption

and thread scheduling. This significantly limits the flexibility

of operation scheduling on GPU.

The NVIDIA Volta GPU provides certain support for fine-

grained acceleration of NN training operations, yet only

available with limited number of threads. Modern CPU systems

are easy to access and program; this enables easy-to-adopt and

flexible programming abstraction and system library functions.

III. DESIGN

To address the aforementioned challenges, we propose a

software/hardware co-design of heterogeneous PIM framework

to accelerate NN training. Our design consists of a heteroge-

neous PIM architecture, an extended OpenCL programming

model, and a runtime system. Figure 3 depicts our architecture

configuration. Figure 4 shows the process of building and

executing NN training with our software framework. Given

an OpenCL kernel to implement an operation, our system

extracts code sections from the kernel and compiles them into

a set of binaries to run on CPU, programmable PIM, and fixed-

function PIMs, respectively. After the training workload starts to

execute, our runtime scheduler profiles the first step of training

to obtain operation characterization. It then performs dynamic

scheduling of operations across CPU, programmable PIM, and

fixed-function PIMs in the rest of training steps. Our runtime

system incorporates two key components: (i) an operation-

pipeline scheme, which allows multiple NN operations to co-

run on PIMs to improve hardware utilization and (ii) a recursive

operation-execution scheme, which allows the programmable

PIM to call fixed-function PIMs to improve hardware utilization

and avoid frequent synchronization between CPU and PIMs.

Software/hardware co-design principles. Our software de-

sign supports our hardware configuration in the following

manner. First, our software design offers a portable program-

ming model across the host processor, fixed-function PIMs,

and the programmable PIM. Our programming model provides

a unified abstract to program various PIMs, which need to be

programmed in separate manners in conventional systems. Our

runtime scheduling scheme effectively optimizes PIM hardware

utilization. Our runtime system also enables recursive calls

between the programmable PIM and fixed-function PIMs. Our

architecture design supports our software design in two ways:

our heterogeneous PIM architecture enables efficient NN train-

ing acceleration by exploiting the heterogeneous characteristics

of software operations; We employ a set of hardware registers

to track PIM hardware utilization information, which is required

by our runtime scheduling.

A. Heterogeneous PIM Architecture

To accommodate various types of operations that are likely to

execute on PIMs, we adopt a heterogeneous PIM architecture

consisting of (i) a programmable PIM, which is an ARM

core and (ii) massive fixed-function PIMs, which are adders

and multipliers distributed across all memory banks. While

our design can be used with various 3D die-stacked memory

devices, we employ a 32-bank memory stack (where a bank

is a vertical slice in the stack) as an example in this paper.

Figure 3 depicts our architecture configuration. Section IV

describes hardware implementation details.

B. Programming Model for Heterogeneous PIM

We extend the OpenCL programming model to program the

heterogeneous PIM. OpenCL has been widely employed to

enable program portability across accelerator-based, heteroge-

neous computing platforms (e.g., GPU and FPGA). We use

OpenCL because of the following reasons. First, by treating the

fixed-function PIMs and programmable PIM as accelerators, the

semantics of OpenCL naturally fit into the heterogeneous PIM

environment. Second, writing a program for the heterogeneous

PIM based on an abstract and unified hardware model in

OpenCL, the programmer can write the program just once

but run it on a variety of PIMs. Therefore, by using OpenCL,

we can hide hardware variety of the heterogeneous PIM from

system programmers, improve their productivity, and enable

code portability.

Other programming models, such as OpenACC [19, 20]

and OpenMP [21], can also hide hardware heterogeneity and

reduce programmers’ burden. However, these are higher-level

programming models, which rely on compilers to transform

programs into a lower-level programming model, such as

OpenCL, to enable code portability. We focus on OpenCL

in our study, because it provides a foundation for those higher-

level programming models.

Overview of our programming model. Table II summarizes

our extension to OpenCL. Our platform model includes multiple

types of heterogeneous devices. Such platform model is driven

by the characteristics of NN training operations. Our execution

model adds (i) recursive kernel invocation to enable kernel

invocation between PIMs to support complex NN operations

(e.g., Conv2DBackpropFilter) and (ii) operation pipeline to

improve hardware utilization for small NN operations with

limited parallelism (e.g., Slice). Finally, we extend the memory

model to support a single global memory shared between

the host processor and accelerators. We also add explicit

synchronization across different PIMs and CPU (host processor)

to enforce execution orders across NN operations.

OpenCL background. The existing OpenCL adopts a host-

accelerator platform model as shown in Figure 5(a). A host

processor connects to one or more compute devices (i.e.,

accelerators). A compute device is divided into one or more

659

Programmable PIM

Core Core

TLBs / MMU

Last-level Cache

CPU

Programmable PIM g

Page Table

PIM
Page Table

Memory Controller

PIM Controller

Memory
Fixed-function PIM

PIM

Address
Translation Register File Bank

Scratchpad Memory or
Cache Bank

In-order Core
ALUs

P
ow

er
 G

at
in

g
C

on
tro

l L
og

ic

NI NI

n

Cache
Core

Cache
Core

Cache
Core

Cache

Silicon Interposer
CPU Logic Layer

DRAM
DRAM
DRAM
DRAM

CPU

Fixed-function PIMs Programmable PIM Memory
controller
and router

Lo
gi

c
La

ye
r

(a) Heterogeneous PIM architecture overview. (b) Operation offloading between CPU and PIM. (c) Architecture of programmable PIM.

FIFOs

Operation offloading C C C C C C

8 banks

c
a

4 banks

unctio

C

n mma

C
a

Address Exchange
An edge

bank

A central
bank

A corner
bank

C C C C C

C

C C C C C C

C C C C C C

4 44

AA

C C

C C

Fig. 3: Architecture overview of the proposed heterogeneous PIM.

Fig. 4: The process of executing NN training with our software framework design.

compute units, each of which is further divided into one or

more processing elements (PE). An OpenCL program consists

of kernels for compute devices and a host program. The host

program runs on CPU and enqueues commands to a command-

queue attached to a compute device.

In order to employ OpenCL programming model on the

heterogeneous PIM system, we investigate how to map the

heterogeneous PIM system onto the OpenCL model, and

extend the OpenCL model for efficient runtime scheduling.

In the following, we discuss our mapping method from the

perspectives of platform model, execution model, and memory

model. Table II summarizes our programming model extension.

Heterogeneous PIM platform model. Figure 5(b) illustrates

our platform model. A large number of fixed-function PIMs

provide massive parallelism for data processing. Each fixed-

function PIM is a PE (in the OpenCL jargon). All fixed-

function PIMs in all memory banks form a compute device.

All fixed-function PIMs in a bank form a compute unit. Each

programmable PIM is a compute device; each core of the

programmable PIM is a PE. Hence, within the context of

OpenCL, a heterogeneous PIM system has heterogeneous com-

pute devices. We expose fixed-function PIM and programmable

PIM as distinct compute devices to give control flexibility

to the runtime system for operation scheduling. An OpenCL

operation can be offloaded to any compute device that supports

the operation execution.

Execution model. Tasks (i.e., operations in NN model training)

to be launched on any PIM are represented as kernels managed

by a host program, as in a traditional OpenCL program. If

the task includes instructions that cannot be executed on

the fixed-function PIM, then the task will not be scheduled

by the OpenCL runtime to run on the fixed-function PIM.

Otherwise, a task can run anywhere (CPU, fixed-function PIM,

and programmable PIM). The OpenCL runtime (on CPU)

Fig. 5: Enabling OpenCL platform model on heterogeneous

PIM systems.

is in charge of task scheduling between different PIMs and

CPU. Leveraging low-level APIs (Section IV-A) and hardware

registers, the runtime can determine whether a specific PIM

is busy and whether a specific task is completed. We describe

the scheduling algorithm in Section III-C. Binary files for a

task to run on CPU, fixed-function PIM, or programmable PIM

are generated during the compilation stage. Given an OpenCL

kernel for a task, we generate four binary files as shown in

Figure 4. Section IV discusses details of binary generation.

Binaries (#3) and (#4) in Figure 4 allow recursive PIM
kernel, a new execution scheme for our heterogeneous PIM

design. A kernel in the programmable PIM can trigger data

processing with fixed-function PIMs. This is supported by

the programmable PIM runtime and implemented by calling

small kernels loadable on fixed-function PIMs. By combining

multiple kernels into a single kernel, the recursive PIM

kernel scheme reduces overhead of kernel spawning and

synchronization between the host and PIMs. Figure 6 shows an

example that further explains the recursive PIM kernel. In the

example, we illustrate an NN operation, Conv2DBackpropFilter,

which is offloaded to the programmable PIM as a kernel; the

kernel includes computation phases 1 and 2 that cannot be

offloaded to the fixed-function PIMs. Conv2DBackpropFilter

includes convolution computation (“Conv(...)” in the figure);

The programmable PIM offloads this portion of computation

to fixed-function PIM as a smaller kernel. The computation

660

TABLE II: Extending OpenCL for the heterogeneous PIM.
Native OpenCL Extensions for Heterogeneous PIM

Platform model Host + accelerators (e.g., host + GPU). Host + two types of accelerators (fixed-function PIMs and
programmable PIM) driven by the characteristics of NN
training.

Execution model Host submits work to accelerators. • Host submits work to accelerators;
• Accelerators submit work to accelerators (i.e., recursive

kernel invocation);
• Work execution pipeline (i.e., operation pipeline);
• Work scheduling based on dynamic profiling.

Memory model • Multiple types of memory with a relaxed consistency model;
• The global memory is not shared;
• No defined synchronization across accelerators.

• A single global memory with a relaxed consistency model;
• The global memory is shared;
• Explicit synchronization across PIMs and CPU.

Fig. 6: An example of the recursive PIM kernel.

phases 1, 2 and convolution are combined as a single recursive

PIM kernel, which reduces the synchronization between CPU

and PIMs.

In general, the four binary files provide convenience for

scheduling on CPU, the fixed-function PIMs and programmable

PIM, and hence allows the runtime to maximize utilization of

CPU and PIMs.

Memory model. The existing OpenCL defines four distinct

memory regions in a compute device: global, constant, local,

and private. On a heterogeneous PIM system, only a single

global memory (i.e., the main memory) exists. In addition,

the global memory is shared between CPU and PIMs, and

addressed within a unified physical address space. This mem-

ory model requires synchronization at multiple points: (1)

between CPU and PIMs; and (2) between different PIMs. The

synchronization is necessary to avoid data race and schedule

operations.

To implement effective synchronization, we employ the pro-

grammable PIM to drive the synchronization and avoid frequent

interrupts to CPU. In particular, for synchronization between

CPU and PIMs, the programmable PIM checks the completion

of operations offloaded to PIMs (either programmable or fix

function PIMs) and sends the completion information to CPU.

For synchronization between different PIMs, the programmable

and fix function PIMs synchronize through global variables in

main memory.

Between CPU and PIMs, we introduce explicit synchroniza-

tion points to synchronize the accesses to shared variables.

To the host processor, the whole set of fixed-function PIMs

or the programmable PIM appear as another processor. We

employ standard synchronization schemes (e.g., barriers and

locks), similar to the ones in a shared-memory multiprocessor.

For fixed-function PIMs, their operations are atomic and the

synchronization points are not expected in the middle of

operations. For programmable PIMs, the synchronization points

can be in the middle of a kernel. This is feasible based on

global lock variables shared between CPU and PIMs. To

support memory consistency, we adopt a relaxed memory

consistency model, which aims to improve performance and

reduce hardware complexity. In particular, an update to a

memory location by a fixed-function PIM is not visible to

all the other fixed-function PIMs at the same time. Instead,

the local view of memory from each fixed-function PIM is

only guaranteed to be consistent right after the kernel call

to fixed-function PIMs. Between the fixed-function PIMs and

programmable PIM, we employ the same consistency scheme:

updates to memory locations by the entire set of fixed-function

PIMs are not visible until the end of the kernel call to the

fixed-function PIMs.

Because of our shared memory model, there is no data copy

overhead before and after PIM kernel calls. Based on the above

synchronization schemes, PIM kernel calls can be launched

asynchronously to overlap computation on CPU and PIMs.

Support for easy program maintenance. To use the extended

OpenCL programming model, operations need to be re-

written using OpenCL. To write OpenCL code for operations,

one can use OpenACC directives and compilers [19, 20]

to automatically transform the original code into OpenCL

code. This can significantly simplify the programming work.

Furthermore, the number of operations for machine learning

models is limited (tens of operations). Hence, using OpenCL

to implement those machine learning operations is feasible.

Other than that, however, the higher level software components

(e.g., most of the middleware components, operation APIs,

and Python syntax for using machine learning models) remain

the same. This enables easy maintenance of machine learning

frameworks.

C. Runtime System Design

Our runtime system is in charge of scheduling operations

to fixed-function PIMs, programmable PIM, and CPU. To

minimize NN training time, the runtime strives to maximize

utilization of PIMs and CPU to optimize system throughput.

The runtime schedules operations based on the following two

steps.

Step 1: profiling. The runtime profiles performance of all

operations on CPU. The profiling happens in only one step

of NN model training. NN model training typically has a

661

large amount of iterative steps (thousands and even millions

of steps). Using one step for profiling has ignorable impact on

performance. In addition, all steps almost have the same classes

of operations; performance of operations (particularly execution

time and the number of main memory access) remains stable

across steps. Therefore, one step is sufficient for profiling

purpose. During profiling, the runtime executes operations one

by one in CPU, collecting execution time and the number of

main memory access level cache misses of each operation with

hardware counters. Based on the profiling results in the step,

the runtime employs the following algorithm to determine the

candidate operations to be offloaded to PIMs.

To determine the candidate operations, the runtime sorts

operations into two lists (in descending order) based on

execution time and the number of main memory accesses,

respectively. Each operation in each of the two lists is correlated

to an index, i.e., each operation has two indexes. With each

operation, the runtime calculates a global index by adding

these two indexes. Based on the global indexes, the runtime

sorts operations into a global list. The runtime chooses top

operations in the global list to offload to PIMs. Those top

operations account for x% of total execution time of one step

(x = 90 in our evaluation). The above algorithm is inspired by

feature selection process in machine learning [22]. The goal

of this algorithm is to select those operations that are both

time-consuming and have a large number of main memory

accesses.

Step 2: scheduling. Given the candidate operations to offload,

the runtime makes the scheduling decision based on the

following three principles.

• Scheduling operations to execute on fixed-function PIMs as

much as possible.

• Scheduling operations to execute on PIMs (not CPU) as much

as possible. In case all fixed-function or programmable PIMs

are busy, the runtime will schedule the candidate operations

to execute on CPU;

• Scheduling needs to respect data dependency across opera-

tions.
The first principle favors fixed-function PIMs over other

compute units, because fixed-function PIMs are more energy

efficient and typically performs faster with higher parallelism

than other compute units. The second principle avoids CPU

idling and introduces parallelism between CPU and PIMs. The

third principle ensures execution correctness. Each operation de-

fined in the machine learning frameworks typically has explicit

input and output data objects (e.g., Tensors in TensorFlow),

which provides convenience in tracking data dependencies

across operations.

Operation pipeline. The above scheduling algorithm and

principles enable operation pipeline to maximize hardware

utilization. In particular, when an operation in a step cannot

fully utilize fixed-function PIMs, our runtime schedules an

operation in the next step to execute a portion of its computation

by utilizing idling fixed-function PIMs as long as the two

operations do not depend on each other.

In essence, these two operations can enable a pipelined

execution manner. For instance, in AlexNet, a single convo-

lution operation with a filter size of 11×11 consumes 121

multiplication and 120 addition (241 fixed-function PIMs

in total). In case we have 444 fixed-function PIMs in total

(Section IV-D), the utilization of fixed-function PIMs is only

54%. To improve hardware utilization, the runtime can schedule

multiplication and addition from an operation (or operations)

in the next step to execute on fixed-function PIMs. Once

the convolution operation in the current step is completed,

the partially executed operation(s) from the next step can

immediately utilize the newly released fixed-function PIMs to

improve hardware utilization and performance. This indicates

that an operation can dynamically change its usage of PIMs,

depending on the availability of PIMs. Such dynamic nature

of operation execution is feasible based on a runtime system

running on the programmable PIM (Section IV-C presents

implementation details).

IV. IMPLEMENTATION

A. Low-level APIs for PIM Runtime System

We introduce several low-level API functions for fixed-

function and programmable PIMs. These API functions allow

direct control of individual PIMs, and provide foundation for

our runtime. The API achieves the following functionality: (1)

offloading a specific operation into specific PIM(s); (2) tracking

the status of PIMs, including examining whether a PIM is busy

or not; (3) querying the completion of a specific operation;

(4) querying the computation location (i.e., which PIM) and

input/output data location (i.e, which DRAM banks) for a

specific operation. Table III summarizes our API functions.

B. OpenCL Binary Generation

To schedule operations to execute on CPU, fixed-function

PIMs, or programmable PIM, we generate four binary files

(Figure 4). In order to generate the binary file (#3) that

corresponds to a portion of a large operation (an OpenCL

kernel) to execute on fixed-function PIMs (e.g., the convolution

within the operation Conv2DBackpropFilter), we first extract

code sections from the corresponding OpenCL kernel. We

then transform these code sections into a set of small kernels

to execute on fixed-function PIMs. Finally we compile them

into binary file (#3). In the original OpenCL kernel, these

extracted code regions are replaced with the kernel calls

and then compiled into binary file (#4) to execute on the

programmable PIM. Binary files (#1) and (#2) are generated

during the regular compilation stage.

C. Runtime Implementation

Our runtime consists of two components, which execute on

the CPU and the programmable PIM, respectively.

The runtime on CPU. To support our runtime scheduling,

we extend the runtime system of TensorFlow by adding

approximately 2000 lines of code. The runtime on CPU

schedules operations on CPU and PIMs, based on hardware

utilization information provided by the low-level APIs. It does

not support the implementation of recursive PIM kernels. In

662

TABLE III: Low-level APIs for PIMs.
Name Description

int pim fix(int* pim ids, void* args, void* ret, size t num pim) Asks specific fixed-function PIMs to work with input arguments args and return results ret and a work ID.
int pim prog(int pim id, pim program kernel, void* args, int* args offset, void* ret, size t ret size) Asks a programmable PIM to work on a kernel (an operation) and return a work ID.

int pim status(int pim id) Checks whether a specific PIM is busy.
int work query(int work id) Checks whether a specific operation is completed.

void work info(int work id, int* pim ids, int* data loc) Queries the computation location (pim ids) and input/output data location (i.e, which DRAM banks) for a specific operation.

FIFO

Register
File

ALU

Fixed-Function PIM
Request Queue

To Register File

To FIFO

ALU

TT

M
U

X

M
U

X

Core C X

X

PIM
Controller

M
U

X

Programmable PIM
Request Queue

M
M

U
X

FIFO

Opcode P
IM

C

on
tro

lle
r Conv2D

BackpropFilter

CPU

Filter

Conv2D

Fig. 7: Heterogeneous PIM implementation.

other words, the runtime on CPU is only responsible for

offloading a kernel – which can have a part of its computation

offloadable to fixed-function PIMs – to the programmable PIM.

Our modifications to TensorFlow runtime include (1) device

initialization and characterization using OpenCL intrinsics;

(2) creating a device context and instance for a PIM device;

(3) providing a new OpenCL device abstraction to other

components of Tensorflow; (4) a mechanism to communicate

with the runtime on the programmable PIM. This is one-

time modification to Tensorflow, but can support various PIM

hardware configurations without involving system programmers’

future efforts.

The runtime on programmable PIM. The runtime on

the programmable PIM supports recursive PIM kernels and

operation pipeline. In particular, a kernel with a part of its

computation replaced with kernel calls to fixed-function PIMs

is handled by the runtime on the programmable PIM, which

automatically offloads the computation to fixed-function PIMs.

In order to keep track of the dynamic utilization of fixed-

function PIMs, our runtime on the programmable PIM records

the numbers of additions and multiplications already completed

in each operation offloaded to the programmable PIM, as well

as the remaining additions and multiplications.

D. Hardware Implementation

Figure 3 and Figure 7 illustrate our hardware implementation.

The programmable PIM employs an ARM Cortex-A9 processor

with four 2GHz cores. Each core has an in-order pipeline.

In individual NN training models, operations that are poten-

tially offloaded to the programmable PIM (e.g., ApplyAdam,

MaxPooling, and ReLU) are typically not executed at the

same time. Therefore, we only adopt one programmable PIM

in our design. Even if we simultaneously train multiple NN

models, the chance of having multiple operations to use the

programmable PIM at the same time is low according to our

evaluation with mixed workload analysis (Section VI-F).

Because a significant portion of NN training operations can

be decomposed to addition and multiplications (Section II-A),

we implement our fixed-function PIMs as 32-bit floating

point multipliers and adders. We implement equal numbers of

multipliers and adders in the pool of fixed-function PIMs. Our

low-level APIs allow us to map operations to fixed-function

PIMs that are in the same bank as input data of the operations.

In addition, we accommodate random memory access pattern

in NN computation by adopting buffering mechanisms [5]. We

determine the fixed-function PIM configurations by employing

a set of architectural level area, power, and thermal modeling

tools, including McPAT [23] and HotSpot [24], to perform

design space exploration of the logic die of 3D DRAM. Based

on our study, the total number of allowed fixed-function PIMs

is limited by the area of the logic die. With our baseline 3D

DRAM configuration (Section V), we can distribute 444 fixed-

function PIMs (pairs of multipliers and adders) across the 32

banks in the logic die. It is impossible to distribute these fixed-

function PIMs evenly to each bank. We consider the placement

of the fixed-function PIMs on 32 banks based on the following

policy: we place more fixed-function PIMs on edge and corner

banks than on central banks (Figure 3 (a)). The rationale behind

is that the banks at the edge and corner have better thermal

dissipation paths than central banks. Therefore, these banks

can support higher computation density.

Furthermore, we employ a set of registers as shown in

Figure 7. Each register indicates the idling of either a bank of

fixed-function PIMs or the programmable PIM. The registers

allow our software runtime scheduler to query the completion

of any computation and decide the idleness of processing units.

V. EXPERIMENTAL SETUP

A. Simulation Framework

In order to evaluate the performance of our design, we

model fixed-function PIM and programmable PIM architectures,

respectively, using Synopsys Design Compiler [25] and Prime-

Time [26] with Verilog HDL. We adopt HMC 2.0 [27] timing

parameters and configurations for our evaluation of 3D memory

stack. Baseline memory frequency is set to 312.5 MHz, which

is the same as HMC 2.0 specification [27]. This is also used as

the working frequency of our heterogeneous PIM. We employ

a trace generator developed on Pin [28] to collect instruction

trace, when running our OpenCL kernel binaries on CPU. We

develop a python-based, trace-driven simulation framework

based on our design to evaluate the execution time of various

training workload traces. Our simulator also incorporates our

runtime scheduling mechanisms.

B. Power and Area Modeling

We adopt 10nm technology node for the host CPU and the

logic die of the PIMs; 25nm technology node for the DRAM

dies. We measure CPU and GPU power with VTune [29] and

nvidia-smi, respectively. Our power model considers whole

system power when we evaluate the power of heterogeneous-

PIM-based systems, including CPU and the memory stack.

We calculate the power and area of the programmable PIM

663

TABLE IV: System configurations.

CPU Intel Xeon E5-2630 V3@2.4GHz

Main memory 16GB DDR4

Operating system Ubuntu 16.04.2

GPU NVIDIA GeForce GTX 1080 Ti (Pascal)

GPU cores 28 SMs, 128 CUDA cores per SM, 1.5GHz

L1 cache 24KB per SM

L2 cache 4096KB

Memory interface 8 memory controllers, 352-bit bus width

GPU main memory 11GB GDDR5X

using McPAT [23]. We evaluate the power and area of fixed-

function PIMs using Synopsys Design Compiler [25] and

PrimeTime [26].

C. Workloads

We evaluate various training models, including VGG-19 [1],

AlexNet [2], Deep Convolutional Generative Adversarial Net-

works (DCGAN)) [12], ResNet-50 [30], Inception-v3 [31],

Long Short Term Memory (LSTM) with dropout [32] and

Word2vec [33]. LSTM and Word2vec are evaluated in Sec-

tion VI-F. The rest models are widely used in recent studies

on CNN training and image classification.

Training Datasets. We employ ImageNet as training data set

of VGG-19, AlexNet, ResNet-50, and Inception-V3. ImageNet

is a large image dataset with millions of images belonging to

thousands of categories. DCGAN employs MNIST dataset [34].

LSTM adopts Penn Tree Bank (PTB) [32] dataset. Word2vec

employs “questions-words” dataset [35] in TensorFlow.

Training framework and batch Size. We adopt Tensor-

Flow [7] as our training framework. We adopt default batch

sizes of each training model in TensorFlow. The batch size of

VGG-19, AlexNet and Inception-v3 is 32. The batch size of

Word2vec and ResNet-50 is 128. DCGAN has a batch size of

64. LSTM employs a batch size of 20.

D. Real Machine Configurations

To compare performance and energy efficiency of heteroge-

neous PIM with GPU and CPU, we run the training models on

(1) NVIDIA GeForce GTX 1080 Ti graphic card [36] and (2)

CPU listed in Table IV. Our GPU-based training evaluations

adopt CUDA 8 [37] and NVIDIA cuDNN 6.0 library [38]. GPU

utilizations of each training model in TensorFlow are: Inception-

v3 (average: 62%; peak: 100%); ResNet-50 (average: 44%;

peak: 58%); AlexNet (average: 30%; peak: 34%); VGG-19

(average: 63%; peak: 84%); DCGAN (average: 28%; peak 42%.

We use NVIDIA’s profiling tool [39] and Intel’s VTune [14]

to collect performance and power statistics.

VI. EVALUATION

Our experiments compare among the following five configu-

rations, including our design.

• CPU – Executing all training operations on CPU;

• GPU – Executing all training operations on GPU;

• Progr PIM – Programmable PIMs only, which executes all

operations on as many ARM-based programmable cores as

needed by workloads (without our runtime scheduling);

• Fixed PIM – Fixed-function PIMs only, which executes the

operations that can be offloaded on fixed-function PIM and

other operations on CPU (without our runtime scheduling);

• Hetero PIM – Our heterogeneous PIM design (including

our runtime scheduling).

A. Execution Time Analysis
Figure 8 shows execution (training) time of various NN

training models. We break down the execution time into

synchronization time, data movement time and operation time

(i.e., computation time in CPU, GPU or PIMs). For GPU-

based systems, the data movement time is the time for data

transfer between main memory and GPU global memory.

Certain amount of data transfer time is overlapped with GPU

computation, e.g. by copying a minibatch of images to the

GPU memory, while the computation on GPU is processing

another minibatch. Our breakdown only shows the data transfer

time that is not hidden by the computation. For PIM-based

systems, the data movement time is the time for data transfer

between CPU and the main memory. Our runtime scheduling

allows operations to execute concurrently on CPU and PIMs.

We observe that PIM-based designs (including Fixed PIM,

Progr PIM and Hetero PIM) perform much better than CPU,

with 19%-28× performance improvement. Compared with

Progr PIM and Fixed PIM, our design has 2.5×-23× and

1.4×-5.7× performance improvement, respectively. PIM-based

designs also significantly reduce data movement overhead,

compared to CPU and GPU. Overall, Hetero PIM leads to the

lowest synchronization and data movement overhead among

all configurations.

The performance benefit of Hetero PIM stands out with

larger training models and larger working sets due to (i) more

reduction in data movement and (ii) higher parallelism between

host CPU and PIMs introduced by more offloadable operations.

DCGAN has smaller model and working set than others. There-

fore, Hetero PIM appears to result in worse performance than

GPU with DCGAN; yet, compared with other configurations,

our design still significantly improves performance. ResNet is

a large training model with large working sets. As a result,

Hetero PIM leads to better performance than GPU with ResNet.

With other training models, Hetero PIM leads to performance

close to (within 10% of) GPU. GPU has good performance

because of its massive thread-level parallelism. Our design

leads to much better performance than all other configurations.

B. Energy Consumption Analysis

Figure 9 shows the dynamic energy consumption of the

five NN models with five different configurations. The energy

consumption results are normalized to the results of Hetero

PIM. We observe substantial energy benefit of using our design:

it consumes 3×-24× and 1.3×-5× less energy than CPU and

GPU, respectively. CPU consumes higher dynamic energy than

Hetero PIM, Fixed PIMs, and GPU, even though its power

consumption is the lowest among all of these configurations

(note that we take CPU power into account when we calculate

the power of PIMs and GPU, in order to evaluate full-system

664

Fig. 8: Execution time breakdown of five NN models.

1

1

1

1

1

Fig. 9: Normalized dynamic energy of various NN models.

0

10

20

30

40

VG
G-

19

Al
ex

Ne
t

DC
GA

N

Re
sN

et
-

50

in
ce

pt
io

n-
v3

En
er

gy
 co

ns
um

pt
io

n
ra

tio
 o

f N
eu

ro
cu

be
to

He

te
ro

. P
IM

0

10

20

30

40

VG
G-

19

Al
ex

Ne
t

DC
GA

N

Re
sN

et
-5

0

in
ce

pt
io

n-
v3Ex

ec
ut

io
n

tim
e

ra
tio

 o
f

Ne
ur

oc
ub

e
to

 H
et

er
o.

 P
IM

(a) Execution time comparison. (b) Energy consumption comparison.

Fig. 10: Performance and energy comparison with Neurocube.

power consumption). This is because CPU has the longest

execution (training) time. Furthermore, we notice that the

dynamic energy consumption of Progr PIM is higher than

that of other configurations, because the speed of Progr PIM is

only slightly faster than that of CPU, yet the dynamic power

of Progr PIM is higher than that of CPU due to the additional

processing units in Progr PIM. Overall, Hetero PIM leads to the

lowest dynamic energy consumption across all configurations.

C. Comparison with Prior PIM-based NN Acceleration

Figure 10 shows a quantitative comparison between our

design and a recent PIM-based NN accelerator design, Neu-

rocube [6] (qualitative comparison is in Section VII). Neu-

rocube also reduces data movement overhead and improves

energy efficiency by using PIM technology. However, our work

outperforms Neurocube in terms of performance and energy

efficiency. With highly compute-intensive models, such as VGG-

19 and Inception-V3, our design achieves much higher per-

formance and energy-efficiency improvement than Neurocube.

Even with less compute-intensive models, such as DCGAN, our

work can achieve at least 3× higher performance and energy

efficiency than Neurocube. The reason for the improvement

is two-fold: (1) Neurocube only adopts programmable PIMs,

while our design employs energy-efficient, highly-parallel fixed-

function PIMs to accelerate fine-grained operations; (2) Our

design employs runtime scheduling that effectively optimizes

hardware utilization (evaluated in Section VI-E).

D. Sensitivity Study

Frequency Scaling. We adopt three different frequencies for

fixed-function PIMs and programmable PIM: their original

frequencies (1×), doubling of their frequencies (2×) and

quadrupling of their frequencies (4×). We use a phase-locked

loop module to change the frequency. We study execution

(training) time with the different frequencies.

Figure 11 shows the results. We observe that with higher

frequency, the heterogeneous PIM performs better than GPU.

With 2× frequency, Hetero PIM performs 36% and 17% better

than GPU, with VGG-19 and AlexNet, respectively. With 4×
frequency, Hetero PIM performs 37% and 60% better than

GPU, with VGG-19 and AlexNet respectively. We also observe

that the synchronization and data movement overheads are

reduced, when using higher frequencies.

Programmable PIM Scaling. We employ three different

configurations for Hetero PIM, while keeping the area of logic

die in the memory stack unchanged. We scale the number of

Progr PIM (ARM cores) from one to two to 16, while the rest

of the logic die area is used to implement Fixed PIM. The three

configurations are labeled as 1P, 4P and 16P, respectively.

Figure 12 shows our results. The figure reveals that the

performance difference between the three configurations is

relatively small. The performance difference between 16P
and 1P is 12%–14%. The reason is two-fold: (1) One Progr

PIM is sufficient for the NN models to schedule and pipeline

operations; (2) Using more Progr PIMs loses more Fixed PIMs,

given the constant area in the logic layer of memory stacks.

E. Evaluation of Software Impact

We isolate the the impact of our software (runtime)

techniques from that of Hetero PIM hardware. We aim

to provide more insightful analysis on the effectiveness of

software/hardware co-design. In particular, we study execution

time, energy and utilization of Fixed PIM with and without

the recursive PIM kernel call (RC) and operation pipeline

(OP) – our two major runtime techniques. Without RC and
OP, we also compare Hetero PIM hardware design with Fixed
PIM and Progr PIM, in terms of execution time and energy.
This comparison allows us to study the impact of Hetero PIM
architecture with the absence of our runtime techniques.
Execution time analysis. As shown in Figure 13, Hetero PIM

without runtime scheduling performs better than Progr PIM

and Fixed PIM by up to 8.5×. This demonstrates the necessity

of using Hetero PIM architecture. However, comparing with

Fixed PIM, the performance benefit of Hetero PIM hardware

is not significant (7%-30%). After incorporating the runtime

scheduling techniques, the performance of Hetero PIM is

improved by up to 3.8×. This result demonstrates the necessity

of using an efficient runtime to maximize the benefit of Hetero

PIM architecture.

665

Fig. 11: Execution time breakdown of various NN models with 3D memory frequency scaling.

0
1000
2000
3000

1P 4P 16P 1P 4P 16P 1P 4P 16P 1P 4P 16P 1P 4P 16P

VGG-19 Inception-v3 AlexNet DCGAN ResNet-50

Ti
m

e
(m

s)

100

300

200

Fig. 12: Execution time with Progr PIM scaling.

31194

2542

138

2744

25424

3665

363
113

1055

5406
3425

342
106

811

5272
1301

141
58

254

13881280

135
54

250

1354

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

VGG-19 AlexNet DCGAN ResNet-50 Inception-v3

Ti
m

e
(m

s)

Prog. PIM Fixed-Func. PIM Hetero. PIM without RC and OP
Hetero. PIM with RC and without OP Hetero. PIM with RC and OP

Fig. 13: Execution time with and without RC and OP.

2444.0

187.4

7.0

202.3

2191.1

100.5

9.0

2.0

26.3

163.6
89.0

7.9
2.0

18.5

127.7
33.8

3.3
1.1

5.8

33.633.3

3.1
1.0

5.7

32.8

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

VGG-19 AlexNet DCGAN ResNet-50 Inception-v3

No
rm

al
ize

d
dy

na
m

ic
en

er
gy

 co
ns

um
pt

io
n

Prog. PIM Fixed-Func. PIM Hetero. PIM without RC and OP
Hetero. PIM with RC and without OP Hetero. PIM with RC and OP

Fig. 14: Dynamic energy with and without RC and OP.

0%
20%
40%
60%
80%
100%

VGG-19 AlexNet DCGAN ResNet-50 Inception-v3

H
ar

dw
ar

e
ut

ili
za

tio
n

Hetero. PIM without RC and OP Hetero. PIM with RC and without OP
Hetero. PIM with RC and OP

Fig. 15: Hardware utilization with and without RC and OP.

Energy analysis. Figure 14 shows our energy results normal-

ized to the energy of Hetero PIM with RC and OP. We have

similar observations as the execution time analysis: Hetero

PIM without runtime scheduling performs better than Progr

PIM and Fixed PIM by up to 2.7×. With RC and OP, we

further reduce the energy of Hetero PIM by up to 3.9×.

PIM utilization analysis. Figure 15 shows our utilization

results. With RC only, the utilization of Fixed PIM in Hetero

PIM is improved by up to 66% (VGG-19); With OP, the

utilization of Fixed PIM is further improved by up to 18%

(AlexNet); With RC and OP, the utilization of Fixed PIM is

close to 100%. The reason for the poor hardware utilization

with neither RC nor OP is the lack of scheduling for the

operations that do not have sufficient parallelism or cannot be

completely offloaded to Fixed PIM.

F. Mixed Workloads Analysis

We also evaluate the case, when multiple models co-run

in the same system [40]. We co-run two NN training models:

a CNN model and a non-CNN model. The CNN model can

execute on CPU and PIMs, subject to our runtime scheduling;

the non-CNN model executes on CPU or the programmable

PIM, when they are idle. Figure 16 shows the results of six

co-run cases. In each case, “Hetero. PIM” indicates that we

0

1000

2000

3000

4000

5000

VG
G

-1
9-

LS
TM

VG
G

-1
9-

W
or

d2
ve

c

In
ce

pt
io

n-
v3

-L
ST

M

In
ce

pt
io

n-
v3

-
W

or
d2

ve
c

Al
ex

N
et

-
LS

TM

Al
ex

N
et

-
W

or
d2

ve
c

D
CG

AN
-

LS
TM

D
CG

AN
-

W
or

d2
ve

c

Re
sN

et
-

50
-L

ST
M

Re
sN

et
-

50
-

W
or

d2
ve

c

Ti
m

e
(m

s)

Hetero. PIM

Sequential Execution

200

100

300

500

400

Fig. 16: Execution time of multiple NN training models with

our design and sequential execution, respectively.

simultaneously execute both models, with the total execution

time matched (i.e., when the CNN model executes for one

step, the non-CNN model can execute one or multiple steps

because the latency of the CNN model in one step can be

longer than the non-CNN model in one step); “Sequential

Execution” indicates that we execute the two models one after

another in serial.

The results show that Hetero. PIM achieves 69%-83%

performance improvement compared with Sequential Execution.

Such improvement comes from high utilization of CPU and the

programmable PIM in our design. With Sequential Execution,

there can be no operations available to execute even though

CPU and the programmable PIM are idle due to dependency

between operations within the same model. Hetero. PIM avoids

hardware idling, because operations across different models

have no dependency and can execute simultaneously.

G. Energy Efficiency Analysis

We study energy efficiency of the PIMs with different

frequencies as in SectionVI-D. We use energy-delay-product

(EDP) as the metric to evaluate energy efficiency. Figure 17 (a)

shows the results. The figure reveals that the most energy

efficient point is not the original frequency for the five

models. The 4× frequency is the most energy efficient for

the five models. The tradeoff between energy consumption and

execution time leads to such results. Thus, we conclude that

higher frequency tends to be more energy efficient for NN

model training. Figure 17 (b) compares power consumption

between GPU and Hetero PIM with different frequencies. In

general, GPU is very power hungry. It consumes 1.5× to

2.6× more power than Hetero PIM with high frequency (4×).

Compared with GPU, Hetero PIM can be highly power efficient.

VII. RELATED WORK

To our knowledge, this is the first paper to propose a

software/hardware co-design of a heterogeneous-PIM-based

acceleration framework for NN training. Whereas previous

PIM-based accelerator designs [5, 9, 10, 41–45] investigated

666

Fig. 17: Energy efficiency and power with 3D memory frequency scaling.

the mapping of workloads on either fixed-function or pro-

grammable PIMs, it is unclear how to coordinate software and

hardware designs to best utilize PIM technologies to support

the heterogeneity requirement of NN training workloads.

Processing-in-memory for machine learning. Recent PIM-

based machine learning accelerator designs strive to leverage

the memory cells of nonvolatile memory technologies to

execute NN inference operations [5, 46–48]. However, NN

training typically incorporates substantial complex operations

as we identified. It is difficult to accommodate these complex

operations in previous processing-in-memory-cell designs.

Azarkhish et al. [49] and Schuiki et al. [50] adopt RISC-V

cores [51] and a streaming coprocessor in die-stacked DRAM to

accelerate convolution networks or SGD. However, the RISC-V

cores are merely used to control the arithmetic elements in the

streaming coprocessor. Furthermore, both designs require users

to modify code and perform tiling based on new APIs. Schuiki

et al.’s study [50] only focuses on a specific operation (SGD).

Azarkhish et al.’s design [49] primarily aims at inference

and requires data to be carefully laid out in memory with

4D tiling. This constraint on data layout leads to inefficient

training, because intermediate activations after each layer

need to be re-tiled [50]. Neurocube [6] accelerates CNN

inference and training by integrating programmable processing

elements in the logic layer of 3D die-stacked DRAM. However,

using programmable PIMs alone cannot provide the massive

parallelism and execution efficiency enabled by heterogeneous

PIMs. Furthermore, the aforementioned previous studies do

not consider dynamic runtime scheduling of operations. Our

experiment results demonstrate an efficient heterogeneous PIM

design with runtime scheduling.

Processing-in-memory for general applications. Fujiki et

al. [9] proposed a ReRAM-based in-memory processor ar-

chitecture and data-parallel programming framework. The

study introduces a compact instruction set for memory ar-

ray with processors. The programming framework combines

dataflow and vector processing, employs TensorFlow input,

and generates code for in-memory processors. Our work also

employs TensorFlow, but optimizes operations scheduling and

introduces PIM heterogeneity. Ahn et al. [41] explores mapping

of PIM operations based on data locality of applications, while

we schedule operations in multiple dimensions – hardware

utilization, data locality, and data dependency. Ahn et al. [45]

introduced PIM for parallel graph processing. The design

offers an efficient communication method between memory

partitions and develops prefetchers customized for memory

access patterns of graph processing. Other works introduce

PIM architectures based on 3D-stacked memory. For example,

Zhang et al. [52] presented an architecture for programmable,

GPU-accelerated, in-memory processing implemented using

3D die-stacking. The throughput-oriented nature of GPU

architectures allows efficient utilizaztion of high memory

bandwidth provided by 3D-stacked memory, while offering

the programmability required to support a broad range of

applications. Akin et al. [42] presented a set of mechanisms

that enable efficient data reorganization in memory using

3D-stacked DRAM. However, the aforementioned studies

cannot efficiently accelerate NN training workloads, because

they cannot fully accommodate the heterogeneous computing

requirement in NN training. Furthermore, these studies do not

consider efficient programming model and runtime system to

accommodate the hardware heterogeneity as explored in our

study.

Other accelerator optimization for machine learning. Re-

cent works explored software- and hardware-based approaches

for a variety of inference acceleration [53–57]. Most of these

works focused on improving performance and energy efficiency

of NN inference. However, training is much more compute

and memory intensive than inference. The data movement

overhead in training is much more significant. Several prior

studies [58–60] investigated architecture design for NN training.

However, these studies focus on addressing the memory

capacity constraint issues caused by a large amount of feature

maps generated in CNN training. The data movement bottleneck

is not fully explored.

VIII. CONCLUSIONS

In this paper, we propose a software and hardware co-

design of heterogeneous PIM approach, combining the power

of programmable PIM and fixed-function PIMs, for NN

training. Our software design enables (1) a portable and unified

programming model across CPU, fixed-function PIMs, and

programmable PIM; (2) runtime scheduling that effectively op-

timizes PIM hardware utilization and maximizes NN-operation-

level parallelism. Our design not only allows natively training

models to execute on heterogeneous PIM, but also enables

easy maintenance of machine learning frameworks. Our design

achieves significant improvement in performance and energy

efficiency with various NN training workloads.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-

back. This paper is supported in part by NSF grants 1652328,

1718158, 1617967, 1553645, 171819, and SRC/DARPA Center

for Research on Intelligent Storage and Processing-in-memory.

667

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolu-

tional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”

in Advances in neural information processing systems,

pp. 1097–1105, 2012.

[3] C. De Sa, M. Feldman, C. Ré, and K. Olukotun, “Under-

standing and Optimizing Asynchronous Low-Precision

Stochastic Gradient Descent,” in International Symposium
on Computer Architecture (ISCA), 2017.

[4] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das,

and S. Mahlke, “Scalpel: Customizing DNN Pruning to

the Underlying Hardware Parallelism,” in International
Symposium on Computer Architecture (ISCA), 2017.

[5] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang,

and Y. Xie, “PRIME: A novel processing-in-memory

architecture for neural network computation in ReRAM-

based main memory,” in Proceedings of the 43rd Interna-
tional Symposium on Computer Architecture, pp. 27–39,

2016.

[6] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and

S. Mukhopadhyay, “Neurocube: A programmable digital

neuromorphic architecture with high-density 3D memory,”

in Proceedings of the 43rd International Symposium on
Computer Architecture, pp. 380–392, 2016.

[7] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,

et al., “Tensorflow: Large-scale machine learning

on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:

Convolutional architecture for fast feature embedding,”

arXiv preprint arXiv:1408.5093, 2014.

[9] D. Fujiki, S. Mahlke, and R. Das, “In-memory data

parallel processor,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-

LOS ’18, (New York, NY, USA), pp. 1–14, ACM, 2018.

[10] G. H. Loh, N. Jayasena, M. H. Oskin, M. Nutter,

D. Roberts, M. Meswani, D. Zhang, and M. Ignatowski,

“A processing-in-memory taxonomy and a case for study-

ing fixed-function PIM,” in WoNDP, pp. 1–6, 2013.

[11] “Khronos Group, the open standard for parallel program-

ming of heterogeneous systems.” https://www.khronos.

org/opencl/.

[12] A. Radford, L. Metz, and S. Chintala, “Unsupervised

representation learning with deep convolutional generative

adversarial networks,” CoRR, vol. abs/1511.06434, 2015.

[13] “TensorBoard: Visualizing learning,”

https://www.tensorflow.org/programmers guide/summa

ries and tensorboard.

[14] “Intel, Vtune user’s guide,” https://software.intel.com/en-

us/get-started-with-vtune/.

[15] S. Boag, P. Dube, B. Herta, W. Hummer, V. Ishakian,

J. K. R., M. Kalantar, V. Muthusamy, P. Nagpurkar, and

F. Rosenberg, “Scalable Multi-Framework Multi-Tenant

Lifecycle Management of Deep Learning Training Jobs,”

in Workshop on ML Systems at NIPS’17, 2017.

[16] “MultiModel: Multi-task machine learning across do-

mains,” https://ai.googleblog.com/2017/06/multimodel-

multi-task-machine-learning.html.

[17] Y. Zhu, B. Wang, D. Li, and J. Zhao, “Integrated thermal

analysis for processing in die-stacking memory,” in

Proceedings of the Second International Symposium on
Memory Systems, pp. 402–414, 2016.

[18] “NVIDIA, TITAN Xp,” https://www.nvidia.com/en-

us/geforce/products/10series/titan-xp/.

[19] “Openarc.” https://ft.ornl.gov/research/openarc.

[20] “Ipmacc compiler.” https://github.com/lashgar/ipmacc.

[21] O. Forum, “OpenMP Fortran application program inter-

face, version 1.1.” http://www.openmp.org, 1999.

[22] H. v. Halteren, J. Zavrel, and W. Daelemans, “Improving

accuracy in word class tagging through the combination

of machine learning systems,” Computational linguistics,

vol. 27, no. 2, pp. 199–229, 2001.

[23] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.

Tullsen, and N. P. Jouppi, “McPAT: An integrated power,

area, and timing modeling framework for multicore and

manycore architectures,” in Proceedings of the 42Nd
Annual IEEE/ACM International Symposium on Microar-
chitecture, pp. 469–480, 2009.

[24] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,

S. Velusamy, and D. Tarjan, “Temperature-aware mi-

croarchitecture: modeling and implementation,” ACM
Transactions on Architecture and Code Optimization,

vol. 1, no. 1, pp. 94–125, 2004.

[25] Synopsys, “Design compiler.” https://www.synopsys.

com/support/training/rtl-synthesis/design-compiler-rtl-

synthesis.html.

[26] Synopsys, “Primetime.” https://www.synopsys.com/

support/training/signoff/primetime1-fcd.html.

[27] HMCC, “Hybrid memory cube specification 2.0.” http:

//http://www.hybridmemorycube.org/.

[28] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,

“Pin: Building customized program analysis tools with

dynamic instrumentation,” in Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language
Design and Implementation, (New York, NY, USA),

pp. 190–200, 2005.

[29] J. Reinders, “Vtune performance analyzer essentials,” Intel
Press, 2005.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-

ing for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,

pp. 770–778, 2016.

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and

Z. Wojna, “Rethinking the inception architecture for

668

computer vision,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2818–

2826, 2016.

[32] W. Zaremba, I. Sutskever, and O. Vinyals, “Recur-

rent neural network regularization,” arXiv preprint
arXiv:1409.2329, 2014.

[33] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,

and J. Dean, “Distributed representations of words and

phrases and their compositionality,” in Advances in neural
information processing systems, pp. 3111–3119, 2013.

[34] Y. LeCun and C. Cortes, “MNIST handwritten digit

database,” 2010.

[35] “Tensorflow, questions-words dataset,”

http://download.tensorflow.org/data/questions-words.txt.

[36] “NVIDIA, GeForce GTX 1080 Ti,”

https://www.nvidia.com/en-us/geforce/products/.

[37] “NVIDIA CUDA.” http://www.nvidia.com/cuda.

[38] NVIDIA, “cudnn.” https://developer.nvidia.com/cudnn.

[39] “NVIDIA, Profiler user’s guide,”

http://docs.nvidia.com/cuda/profiler-users-guide/.

[40] T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang, “Ease.ml:

Towards multi-tenant resource sharing for machine learn-

ing workloads,” Proc. VLDB Endow., vol. 11, no. 5, 2018.

[41] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled

instructions: A low-overhead, locality-aware processing-

in-memory architecture,” in Proceedings of the 42Nd An-
nual International Symposium on Computer Architecture,

pp. 336–348, 2015.

[42] B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization

in memory using 3D-stacked DRAM,” in Proceedings
of the Annual International Symposium on Computer
Architecture, pp. 131–143, 2015.

[43] L. Nai and H. Kim, “Instruction offloading with HMC

2.0 standard: A case study for graph traversals,” in

Proceedings of the 2015 International Symposium on
Memory Systems, pp. 258–261, 2015.

[44] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasi-

bility of die-stacked processing in memory,” in WoNDP,

pp. 1–6, 2014.

[45] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A

scalable processing-in-memory accelerator for parallel

graph processing,” in Proceedings of the 42nd An-
nual International Symposium on Computer Architecture,

pp. 105–117, 2015.

[46] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubra-

monian, J. P. Strachan, M. Hu, R. S. Williams, and

V. Srikumar, “ISAAC: A convolutional neural network

accelerator with in-situ analog arithmetic in crossbars,”

in Proceedings of the 43rd International Symposium on
Computer Architecture, pp. 14–26, 2016.

[47] P. Wang, Y. Ji, C. Hong, Y. Lyu, D. Wang, and Y. Xie,

“SNrram: an efficient sparse neural network computation

architecture based on resistive random-access memory,”

in Proceedings of the 55th Annual Design Automation
Conference, p. 106, ACM, 2018.

[48] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “CMP-PIM: an

energy-efficient comparator-based processing-in-memory

neural network accelerator,” in Proceedings of the 55th
Annual Design Automation Conference, pp. 105–110,

ACM, 2018.

[49] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neu-

rostream: Scalable and energy efficient deep learning with

smart memory cubes,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 2, pp. 420–434, 2018.

[50] F. Schuiki, M. Schaffner, F. K. Gürkaynak, and L. Benini,

“A scalable near-memory architecture for training deep

neural networks on large in-memory datasets,” arXiv,

vol. abs/1803.04783, 2018.

[51] “RISC-V: The free and open RISC instruction set archi-

tecture.” https://riscv.org/.

[52] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse,

L. Xu, and M. Ignatowski, “TOP-PIM: Throughput-

oriented programmable processing in memory,” in Pro-
ceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing, pp. 85–

98, 2014.

[53] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee,

S. K. Lee, J. M. Hernández-Lobato, G.-Y. Wei, and

D. Brooks, “Minerva: Enabling low-power, highly-

accurate deep neural network accelerators,” in Proceed-
ings of the 43rd International Symposium on Computer
Architecture, pp. 267–278, 2016.

[54] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial

architecture for energy-efficient dataflow for convolutional

neural networks,” in ISCA, pp. 367–379, IEEE, 2016.

[55] H. Esmaeilzadeh, A. Sampson, and L. Ceze et al., “Neural

acceleration for general-purpose approximate programs,”

in MICRO, pp. 449–460, IEEE Computer Society, 2012.

[56] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-

layer CNN accelerators,” in MICRO, pp. 1–12, IEEE,

2016.

[57] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,

T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDianNao: A

machine-learning supercomputer,” in IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2014.

[58] M. Rhu, N. Gimelshein, and J. C. et al., “vDNN:

Virtualized deep neural networks for scalable, memory-

efficient neural network design,” in MICRO, 2016.

[59] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon,

and S. W. Keckler, “Compressing DMA engine: Leverag-

ing activation sparsity for training deep neural networks,”

in HPCA, pp. 78–91, 2018.

[60] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhi-

menko, “Gist: Efficient data encoding for deep neural

network training,” in ISCA, pp. 1–14, 2018.

669

