
Algorithm-Directed Crash Consistence in NVM for
High Performance Computing

Jie Ren
jren6@ucmerced.edu

Kai Wu
kwu42@ucmerced.edu

Dong Li
dli35@ucmerced.edu

University of California, Merced

I. INTRODUCTION

Fault tolerance is one of the major design goals for high
performance computing (HPC). Because of hardware and
software faults and errors, HPC applications can crash during
the execution. The most common strategy to make application
survive execution crash and enable fault tolerant HPC is
the checkpoint/restart mechanism. However, checkpoint is not
scalable. If the application state to checkpoint is large, the
application has to suffer from large data copy overhead.

The emergence of non-volatile memories (NVM), provides
an alternative solution to build fault tolerant HPC. Those
memories are persistent, meaning that data are not lost when
the system crashes. Hence, using NVM as main memory to
build fault tolerant HPC is promising. However, there is no
guarantee that the application state in NVM is correct and
usable by the recovery process to restart applications, because
of volatile hardware caches and out-of-order processors widely
deployed in HPC systems. Ideally, if the application state in
NVM is the same as a one established by the checkpoint mech-
anism, then the existing restart mechanism can be seamlessly
integrated into the NVM-based HPC.

To maintain a consistent and correct state in NVM through-
out application execution, the common software-based ap-
proaches include redo-log or undo-log. Those approaches can
enable a transaction scheme for relatively small workloads
(e.g., hash table searching, B-tree searching, and random
swap). Those approaches are often based on a programming
model with the support of persistent semantics. Those ap-
proaches, unfortunately, can impose large runtime overhead,
because they have to log memory update intensively and main-
tain the corresponding metadata. While such large overhead
may be tolerable in specific domains (e.g., database) with data
persistence prioritized over performance, this overhead is not
acceptable in HPC. To leverage NVM as persistent memory
and build a consistent and correct state, we must introduce a
lightweight mechanism with minimum runtime overhead.

In this paper, we introduce a new method to establish a
consistent and correct state for critical data objects of HPC
applications in NVM. The goal is to reduce the necessity
of using checkpoint for HPC fault tolerance based on the

∗The full paper of this abstract was published on IEEE
International Conference on Cluster Computing (CLUSTER), 2017.
http://ieeexplore.ieee.org/document/8048960/

non-volatility of NVM (as main memory), while introducing
ignorable runtime overhead.

Our method is based on the following observation. Given
a relatively small cache size, most of data in an HPC ap-
plication are not in caches, and should be in consistent state
in NVM, because HPC applications are characterized with a
large memory footprint. However, how to detect which data
in NVM is consistent and can be reused for recomputation is
challenging. The existing logging-based approaches explicitly
establish data consistence and correctness with logs, but at
the cost of data copy. If we can reason the consistent state of
data in NVM, then we do not need logs, and reduce runtime
overhead.

Based on the above observation, we propose a novel method
to analyze data consistence and correctness in NVM when
the application crashes. In particular, instead of frequently
tracking and maintaining data consistence and correctness in
NVM at runtime, we slightly extend application data structures
or selectively flush cache blocks, which introduces ignorable
runtime overhead. Such application extension or cache flushing
allows us to use algorithm knowledge to reason data consis-
tence and correctness when the application crashes. For HPC
applications with a large input problem, data objects critical
for restart tend to be consistent and correct in NVM when the
application crashes. Using NVM and algorithm knowledge to
reason data consistence and correctness, we avoid any logging,
and greatly reduce the necessity of using checkpoint.

We study using numerical algorithm knowledge to detect
consistence and correctness from three perspectives discussed
as following.

II. ALGORITHM-DIRECTED CRASH CONSISTENCE FOR
CONJUGATE GRADIENT ALGORITHM

We use conjugate gradient algorithm (CG) from sparse
linear algebra as an example to study the feasibility of our
method. We leverage the orthogonality relationship between
data objects of CG to detect consistence and correctness.

CG is one of the most commonly used iterative methods to
solve the sparse linear system Ax = b, where the coefficient
matrix A is symmetric positive definite. Figure 1 lists the
algorithm pseudocode. In CG, three vectors p, q, and z can
be checkpointed for resuming other variables and restarting. In
the rest of this section, we use notation pi, ri and zi to specify
p, r, and z in the iteration i of the CG main loop (Lines 3-12



1 r ← b−A · x, z ← 0, p← 0, q ← 0, ρ← rT · r;
2 for i← 1 to n
3 q ← Ap
4 α← ρ/(pT · q)
5 z ← z + αp
6 ρ0 ← ρ
7 r ← r − αp
8 ρ← rT · r
9 β ← ρ/ρ0

10 p← p+ βp
11 Check r = b−A · z.
12 end for
Fig. 1. Pseudocode for CG. Capital letters such as A represent matrices;
lowercase letters such as p, q, r represent vectors; Greek letters α, ρ represent
scalar numbers.

in Figure 1), before p, r, and z are updated in Lines 10, 7,
and 5 in the iteration i; qi specifies q in the iteration i.

In CG, there are implicit relationships between multiple data
objects, shown in Equations 1 and 2. In particular, Equation 1
shows that at each iteration i, the vectors p(i+1) and q(i) satisfy
an orthogonality relationship. Equation 2 shows that at each
iteration i, the vectors r(i+1), z(i+1), b, and the matrix A
satisfy an equality relationship.

p(i+1)T · q(i) = 0 (1)

r(i+1) = b−A · z(i+1) (2)

Algorithm extension. Instead of using the checkpoint
method (which should explicitly save the three arrays p, q,
and z) for restart, we extend CG and leverage the above
implicit relationships between the data objects to reason the
crash consistency of p, q, and z in NVM. This method re-
moves runtime checkpoint and frequent cache flushing, hence
improving performance.

In particular, if a crash happens at an iteration x, we
examine the data values of p(x+1), q(x), z(x+1), and r(x+1)

in NVM, and decide if the above implicit relationships are
held. If not, then p, q, z, and r are not consistent and valid,
and we cannot restart from the iteration x. We then check p(x),
q(x−1), z(x) and r(x) and examine the implicit relationship for
the iteration x − 1. We continue the above process, until we
find an iteration j (j < x) where the four data objects satisfy
the above implicit relationship. This indicates that p(j+1), q(j),
z(j+1), and r(j+1) are consistent and valid. We can restart from
the iteration j.

To implement the above idea, we need to extend the original
implementation shown in Figure 1. In the figure, p, q, r and
z are one-dimensional arrays overwritten in each iteration.
We add another dimension into the four arrays, such that
each array has the data values of each iteration. We also
flush the cache line containing the iteration number i at the
beginning of each iteration. This makes the iteration number
consistent between caches and NVM, which is helpful for the
examination of the data values in NVM after the crash. Note
that we only flush one single cache line at every iteration.
This brings ignorable performance overhead. Figure 2 shows
our extension to the original implementation.

1 r ← b−A · x, z ← 0, p← 0, q ← 0, ρ← rT · r;
2 for i← 1 to n
3 flush the cache line containing i
4 q[i+ 1]← Ap[i]
5 α← ρ/(pT · q)
6 z[i+ 1]← z[i] + αp
7 ρ0 ← ρ
8 r[i+ 1]← r[i]− αp
9 ρ← rT · r

10 β ← ρ/ρ0
11 p[i+ 1]← p[i] + βp
12 Check r = b−A · z.
13 end for
Fig. 2. Extending CG to enable algorithm-directed crash consistence. Our
extension to CG is highlighted with red color.

Performance evaluation. We evaluate the performance of
our approach from two perspectives, runtime overhead and
recomputation cost after crashes. Ideally, we want to minimize
recomputation cost, and minimize runtime overhead.

We compare runtime overhead between traditional check-
point, Intel NVML library [1], and our approach. Our eval-
uation results demonstrate that CG (using Class C as input
problem from NPB benchmark suite) with our algorithm
extension achieves very good runtime performance: the run-
time overhead is less than 3%, while NVM-based checkpoint
and PMEM have 43.6% and 329% overhead, respectively.
Furthermore, when the input problem size is large enough,
the recomputation cost of our approach is limited to only one
iteration of the main loop of CG.

III. ALGORITHM-DIRECTED CRASH CONSISTENCE FOR
MATRIX MULTIPLICATION

We leverage the invariant conditions established by the
algorithm-based fault tolerance method (ABFT) to detect data
consistence and correctness. It has been shown that ABFT
introduces ignorable runtime overhead by slightly embedding
extra information (e.g., checksum) into data objects. Using
the extra information, we can determine data consistence and
correctness when the application crashes, and even correct
inconsistent data. We use an algorithm-based matrix multi-
plication from dense linear algebra as an example to study the
feasibility of this method.

IV. ALGORITHM-DIRECTED CRASH CONSISTENCE FOR
MONTE CARLO TRANSPORT SIMULATION

We further study the Monte-Carlo (MC) method. MC is
known for its statistics nature and error tolerance. In a sense,
the inconsistent data is an “error”. Hence MC can restart from
the crash without knowing the consistent state of the critical
data objects in NVM. However, contrary to the common
intuition, we find that some critical intermediate results in
MC could be lost and have big impact on computation result
correctness. We must ensure the consistence and correctness
of those critical intermediate results. Based on the above
algorithm knowledge, we only flush the data of the critical
intermediate results out of caches. This brings ignorable
overhead while ensuring the computation correctness when
restarting MC.

REFERENCES

[1] Intel NVM library. [Online]. Available: http://pmem.io/nvml/libpmem/

2

http://pmem.io/nvml/libpmem/

