
Unimem: Runtime Data Management on NVM-based
Heterogeneous Main Memory for High Performance Computing

Kai Wu
kwu42@ucmerced.edu

University of California, Merced

Dong Li
dli35@ucmerced.edu

University of California, Merced

1 INTRODUCTION
Non-volatile memory (NVM) is a promising technique to build
future high performance computing (HPC) systems. NVM can
provide a scalable and power-e�cient solution as main memory,
alternative to DRAM. However, comparing with DRAM, NVM as
main memory can be challenging, since there is a big performance
gap between NVM-based and traditional DRAM-based systems for
HPC applications. Our initial performance evaluation with repre-
sentative numerial kernels shows that there is 1.09x-8.4x slowdown
on NVM-only systems, when NVM is con�gured with 1/2-1/8 of
DRAM bandwith or 2x-8x DRAM latency. Our results are di�erent
from those of the existing work that claims that inferior perfor-
mance of NVM has limited impact on the performance of HPC
applications. To make NVM feasible for future HPC, NVM must be
paired with a fraction of DRAM to form a heterogeneous memory
system (HMS). By selectively placing frequently accessed data in
DRAM, we are able to exploit cost and scaling bene�ts of NVM
while minimizing the limitation of NVM with DRAM.

To selectively place data in DRAM, it is important to charac-
terize memory access pa�erns associated with data objects. Fig-
ure 1 summarizes the results of our characterization study on a
numerical kernel SP. �e results reveal that some data objects (e.g.,
in bu�er+out bu�er), a�er being moved from NVM with less mem-
ory bandwidth to DRAM, there is big performance improvement.
However, we do not have such improvement a�er moving them
from NVM with longer access latency to DRAM. We claim such
data objects are sensitive to memory bandwidth. Similarly, we �nd
some data object which is only sensitive to memory latency (e.g.,
lhs), or sensitive to both bandwidth and latency (e.g., rhs).

Figure 1: �e impact of data placement on performance (execution
time) of NVM-based mainmemory. �e performance is normalized
to DRAM-only systems. �e legend entries “in bu�er+out bu�er”,
“lhs”, and “rhs” are the data objects placed in DRAM in the
DRAM+NVM system. �e x axis shows the con�guration of NVM
(4x DRAM latency or 1/2 DRAM bandwidth).
∗�e full paper of this abstract was published on the 29th ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis (SC)
h�ps://doi.org/10.1145/3126908.3126923

Based on the above performance study, we introduce a so�ware-
based solution, named “Unimem”, to automatically and transpar-
ently decide and implement data placement on NVM-based HMS.
Di�erent from some existing work, Unimem is a lightweight run-
time system to manage data placement for MPI programs, without
hardware modi�cations and disruptive changes to applications and
system so�ware. Also, Unimem employs online pro�ling based
on performance counters to capture memory access pa�erns for
application execution phases, based on which we characterize the
sensitivity of data objects to memory bandwidth and latency. Fur-
thermore, Unimeme introduces lightweight performance models,
based on which we predict performance bene�t and cost if moving
data objects between NVM and DRAM.

Our performance evaluation results show that using Unimem,
the performance di�erence between DRAM-only and HMS is only
6.2% on average (16% at most) for six common numerial kernels
and a large HPC production code. Unimem greatly narrows the
performance gap between NVM- and DRAM-based systems, and
demonstrates be�er performance than a state-of-the-art so�ware-
based solution.

2 UNIMEM DESIGN
We target on MPI-based HPC applications with an iterative struc-
ture (i.e., typically such application has a main computation loop).
For such an application, we decompose it into phases. A phase can
be a computation phase delineated by MPI operations; A phase can
also be an MPI communication phase.
2.1 Design
�e work�ow of Unimem includes three steps: phase pro�ling, per-
formance modeling, and data placement decision and enforcement.
�e phase pro�ling happens in the �rst iteration of the main com-
putation loop of the application. At the end of the �rst iteration,
we build performance models and make data placement decision.
A�er the �rst iteration, we enforce the data placement decision for
each phase. We describe the three steps in details as follows.

2.1.1 Phase Profiling. �is step collects memory access infor-
mation for each phase. �is information is leveraged by the second
and third steps to decide data placement for each phase.

We rely on hardware performance counters widely deployed
in modern processors. In particular, we collect the number of last
level cache miss event, and then map the event information to data
objects. Leveraging the common sampling mode in performance
counters, we collect memory addresses whose associated memory
references cause last level cache misses. �ose memory addresses
help us identify target data objects that have frequent memory
accesses in main memory.

2.1.2 Performance Modeling. Performance modeling estimates
performance bene�t and data movement cost. We trigger data



movement only when the bene�t outweighs the cost. To calcu-
late the performance bene�t, we must decide if the data object is
bandwidth sensitive or latency sensitive.

Bandwidth sensitivity vs. latency sensitivity. To decide if
a target data object in a phase is bandwidth sensitive or latency
sensitive, we use main memory bandwidth consumption as an
indicator.

Calculation of data movement bene�t. To calculate the per-
formance bene�ts (a�er data movement from NVM to DRAM)
for data objects, we estimate the performance di�erence between
running the application on NVM and on DRAM. For bandwidth
sensitive data objects, the performance di�erence is estimated by
memory access time in NVM minus memory access time in DRAM.
For latency sensitive data objects, we follow the similar idea but
consider the latency di�erence instead of bandwidth di�erence
between NVM and DRAM.

Calculation of datamovement cost. �e data movement cost
can be simply calculated as data size

mem copy bw . However, to reduce the
data movement cost, we overlap data movement with application
execution. In particular, we introduce a helper thread that runs in
parallel with the application and triggers data movement before
the application accesses data. �is helper thread-based approach is
an asynchronous data movement.

2.1.3 Data Placement Decision and Enforcement. Based on the
above performance modeling to calculate bene�t and cost of every
possible data movement, we determine data placement by two
strategies (“phase local search” and “cross-phase global search”).
Phase local search determines data placement at the granularity of
individual phases. �is strategy leads to optimal data placement
for each phase, but can result in frequent data movement across
phases. Cross-phase global search treats all phases as a combined
single phase: Once an optimal data placement is determined within
the combination of all phases, there is no data movement within
the combination. Hence, this strategy has less data movement than
phase local search. Unimem compares the potential bene�ts of two
strategies and choose the best one.

2.2 Optimization
To improve runtime performance, we introduce a couple of opti-
mization techniques as follows.

Handling workload variation across iterations. In some
HPC applications, the computation and memory access pa�erns do
not remain stable across iterations of the main loop. To accommo-
date workload variation across iterations, Unimem monitors the
performance of each phase a�er data movement. If there is obvious
performance variation, then Unimem will activate phase pro�ling
again and adjust the data placement decision.

Initial data placement. Even though we use the asynchronous
data movement to overlap data movement with application execu-
tion, data movement can still be expensive, especially for large data
objects. To reduce the data movement cost, we place some data
objects with a large number of memory references into DRAM at
the beginning of application execution. To calculate the number
of memory reference for each data object, we employ compiler
analysis.

Handling large data objects. We move data between DRAM
and NVM at the granularity of data object. �is means that a data

Figure 2: �e performance (execution time) comparison between
DRAM-only, NVM-only, the existing work (X-Mem), and HMS with
Unimem. NVM has 1/2 DRAM bandwidth.

Figure 3: �antifying the contributions of our four major tech-
niques to performance improvement.

object larger than the DRAM space cannot be migrated. A method
to address this problem is to partition the large data object into
multiple chunks, with each chunk smaller than the DRAM size. At
runtime, we pro�le memory access for each chunk instead of the
whole data object, and move data chunk if the bene�t overweight
the cost of data chunkmovement. In Unimem, we use compiler tech-
niques to partition one-dimensional arrays with regular memory
references into chunks.

3 EVALUATION
We use�artz emulator [2] to enable e�cient emulation of a range
of NVM latency and bandwidth characteristics. We compare the ba-
sic performance (execution time) of DRAM-only, NVM-only, HMS
with X-Mem [1] (a state-of-art so�ware solution for data manange-
ment) and HMS with Unimem (See Figure 2). �e result shows
that Unimem greatly narrows the performance gap and makes
performance of HMS very close to that of DRAM-only cases: the
average performance di�erence between DRAM-only and HMS is
only 3%. Also, Unimem performs similarly to X-Mem, but performs
10% be�er than X-Mem for Nek5000 (a production HPC code). We
also quantify the contributions of our performance optimization
techniques to performance improvement on HMS. Figure 3 shows
that cross-phase global search can be very e�ective (contributing 90
% in CG and LU); Using phase local search can complement cross-
phase global search (contributing 19% and 44% in BT and Nek5000
respectively); Initial data placement takes e�ect on all benchmarks
(improving SP by 87%); Partitioning large data objects does not take
e�ect except FT, because the partitioning of data objects introduces
very frequent data movement which loses performance.

REFERENCES
[1] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran, J. Jackson,

and K. Schwan. Data Tiering in Heterogeneous Memory Systems. In Proceedings
of the Eleventh European Conference on Computer Systems (EuroSys), 2016.

[2] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li. �artz: A Lightweight Per-
formance Emulator for Persistent Memory So�ware. In Annual Middleware
Conference (Middleware), 2015.

2


	1 Introduction
	2 Unimem Design
	2.1 Design
	2.2 Optimization

	3 Evaluation
	References

