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Abstract—As high-performance computing systems scale in
size and computational power, the danger of silent errors, i.e., er-
rors that can bypass hardware detection mechanisms and impact
application state, grows dramatically. Consequently, applications
running on HPC systems need to exhibit resilience to such errors.
Previous work has found that, for certain codes, this resilience
can come for free, i.e., some applications are naturally resilient,
but few studies have shown the code patterns—combinations or
sequences of computations—that make an application naturally
resilient. In this paper, we present FlipTracker, a framework
designed to extract these patterns using fine-grained tracking of
error propagation and resilience properties, and we use it to
present a set of computation patterns that are responsible for
making representative HPC applications naturally resilient to
errors. This not only enables a deeper understanding of resilience
properties of these codes, but also can guide future application
designs towards patterns with natural resilience.

Index Terms—Fault tolerance, Natural Resilience, High-
Performance Computing, Resilience computation patterns

I. INTRODUCTION

Ensuring execution correctness and result integrity in High-
Performance Computing (HPC) simulations is an urgent need
in extreme-scale systems. As systems scale and the number
of system components grow, the chances of experiencing
errors increases as well [1]. Although most soft errors—
transient faults that are induced by electrical noise or external
high-energy particle strikes—can be detected and corrected
by hardware- and system-level mechanisms, some errors can
escape these mechanisms and propagate to the application.
These silent errors can then generate Silent Data Corruption
(SDC), impacting scientific results without users realizing it.

As the probability of SDC grows, it becomes increasingly
necessary to develop applications that can transparently toler-
ate, or mask, these errors before they affect the application’s
numerical output. Previous work on fault tolerance, which
typically focused on individual applications, demonstrates that
a number of applications have this property and can mask
errors as they appear. Examples of such applications are
algebraic multi-grid solvers (AMG) [2], Conjugate Gradient
(CG) solvers [3], GMRES iterative solvers [4], Monte Carlo
simulations [5], and machine learning algorithms, such as
clustering [6] and deep-learning neural networks [7], [8].

While previous work attributes this natural resilience at a
high-level to either the probabilistic or iterative nature of the
application, the community still lacks the fundamental under-
standing on the program constructs that result in such natural

error resilience. Fundamentally, we do not have clear answers
to questions, such as: Are there any common computation
patterns (i.e., combinations or sequences of computations) that
lead to natural error resilience? If so, how can these patterns
be found? How can future application design benefit from
patterns exhibiting natural resilience? Finding answers to these
questions is critical for error detection and recovery to avoid
overprotecting regions of code that are naturally resilient.

In this paper, we characterize application natural resilience
using common HPC programs and identify six common re-
silience computation patterns. Examples of such patterns are
dead corrupted variables, where sets of corrupted temporal
variables are not used afterwards, and repeated additions, a
pattern that amortizes the effect of incorrect data values.

To capture and extract these patterns, however, a new
method is required. While some methods exist to inject faults
and statistically quantify their manifestation, such as random
fault injection [2], [9], [10], [11], [12], and to use program
analysis [13], [14], [15], [16], [17] to track errors on individual
instructions, these methods miss the fine-grained information
on error propagation as well as the context needed to explain,
at a fine granularity, how errors propagate and consequently
how natural resilient computations occur. In other words,
these approaches do not provide the needed reasoning about
how multiple computations work together to make an error
disappear or to diminish its impact.

To address the above problems, we design FlipTracker,
a framework to analytically track error propagation and to
provide fine-grained understanding of the propagation and
tolerance of errors in HPC applications, and then apply it to a
series of representative HPC applications to extract the patterns
that provide natural resilience.

Our framework has three key features. First, we introduce
an application model that partitions the application into code
regions. Such a model allows us to build a high-level picture
on how an error propagates across code regions, or is tolerated
with the combination of multiple code regions. Second, using
data dependency analysis, we identify the input and output
variables of each code region, which allows us to perform
isolated fault injections at the entry of code regions to study
their resilience in an isolated fashion. Further, it allows us to
quickly track how the corrupted values change across code
regions as caused by their resilience computation patterns.
Third, we track how the number of live, yet corrupted locations
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change within code regions, an approach that reveals resilience
patterns that cannot be easily found by traditional high-level
fault propagation approaches.

We present two use cases to demonstrate how resilience
computation patterns can be used to (1) improve application
resilience during programming and (2) predict the degree of
application resilience.

In summary, the contributions of this paper are

1) An abstract code structure model that enables us to reason
about the natural resilience properties of code segments;

2) The design of a framework that enables fine-grained and
comprehensive analysis of error propagation to capture
application natural resilience;

3) An implementation of the framework, FlipTracker, using
the LLVM compiler and a study of a set of representative
HPC programs on which FlipTracker is demonstrated;

4) An analysis and formal definition of six resilience compu-
tation patterns that we discover in these programs;

5) Two use cases that demonstrate the usage of resilience
computation patterns.

II. BACKGROUND

In this section, we define our fault manifestation model, as
well as the concept of resilience computation patterns.

A. Fault Model

We consider soft errors, also known as transient faults,
that propagate to state visible to the application; by state
we mean mainly machine registers and memory. We do not
consider errors that are detected, and possibly corrected in
hardware, e.g., by hardware-level mechanisms such as memory
scrubbing, ECC, or other techniques. Furthermore, as most
other studies in this area [18], [19], [20], [13], [14], [21],
we only consider single bit flip errors since it is generally
accepted that multi-bit errors are much less likely to occur,
even in larger HPC systems [22].

1) Fault Manifestation Model: We use fault injection to
mimic the effect of real soft errors in the application (Sec-
tion IV-C describes our fault injection scheme). We define
two classes of executions: fault-free runs, on which no fault is
injected, and faulty runs on which a fault is injected. When a
fault is injected, we define three possible fault manifestations:

• Verification Success: in this case, any of two possible
scenarios occur: (a) the program outcome in a faulty-run is
exactly the same as the outcome in a fault-free run; or (b) the
program outcome in a faulty-run is slightly different from
the outcome in a fault-free run, but the program successfully
passes the test in its verification phase, i.e., the application
output is considered correct to the user.

• Verification Failed: the program terminates, but the out-
come does not pass the test in the verification phase. This
is a strong indication of SDC that was not tolerated.

• Crashed: the injected fault generates a crash or a hang.

2) Success Rate: Success rate is a metric that quantifies
application resilience. In a fault injection campaign, where
M fault injection tests are performed (see Section IV-C for
details), the success rate is defined as

suc_rate =
#Verification Success

M
, (1)

where #Verification Success is the number of Verification
Success cases of the campaign. In this paper, we use the
success rate as a metric to quantify application resilience.

B. Resilience Computation Patterns

When a fault propagates to application state, it initially cor-
rupts one (or a few) data locations, i.e., registers and memory
locations. As time passes, instructions that are influenced by
those corrupted locations can also become corrupted, causing
the total number of corrupted locations in the application to
increase over time. Some applications, or code regions of an
application, however, which can tolerate faults, could make
the total number of corrupted locations decrease. The above
phenomena are depicted in Figure 7 in our evaluation section.
If the decrease is sufficient, the fault manifests as Verification
Success. Although some applications, or code regions, that
can tolerate faults do not have such decrease of number of
corrupted locations, they are characterized with a decrease
of error magnitude—the relative error of a faulty value with
respect to its correct value. We say that the above fault tolerant
applications or code regions are naturally resilient.

We define a resilience computation pattern as a series or a
combination of series of computations (or instructions) that
are responsible for contributing to a decrease of the total
number of corrupted data locations or a decrease of error
magnitude in corrupted data values, and for ultimately helping
the program tolerate a fault. In this paper, we are interested in
characterizing the properties of such patterns to answer the
following questions: (a) Why does such a decrease in the
number of corrupted locations or error magnitude occur, and
(b) What are the patterns that cause this effect?

III. DESIGN OF FlipTracker

In this section, we introduce our method to identify re-
silience computation patterns.
FlipTracker takes as input an HPC program, creates

a dynamic execution trace generated using LLVM instru-
mentation, and then uses our novel analysis techniques to
provide a fine-grained representation of error propagation and
error tolerance. This analysis allows us to easily identify the
resilience computation patterns that may exist in the program,
possibly in different code regions of the program.

Our method is based on a top-level characterization of HPC
applications, which we then use to track error propagation and
tolerance at a low level. In particular, we model an application
as a chain of code regions, which work together to produce the
final result of the application. Each of these code regions can
have input, output, and internal variables. Errors can propagate
at any point in time to any of these variables.
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Fig. 1. An overview of FlipTracker.

1 s t a t i c vo id c o n j _ g r a d ( ) { / / c a l l e d from the main loop
2 . . .
3 f o r ( ) { / / a f i r s t−l e v e l inner loop
4 f o r ( ) { / / a second−l e v e l inner loop
5 f o r ( ) { . . . } / / a th ird−l e v e l inner loop
6 }
7 }
8 f o r ( ) { . . . } / / a f i r s t−l e v e l inner loop
9 }

Fig. 2. An example HPC application (CG) with iterative structures.

Based on the above application model, we build a dynamic
data dependency graph (DDDG) from an instruction trace
collected at runtime that allows us to check the value variation
of corrupted variables across code region instances (i.e., the
top level). Using the DDDG, we then build a table, which
we call the alive corrupted locations (ACL) table, that keeps
track of the corrupted locations for each dynamic instruction.
This table allows us to examine the variation of the number
of alive, corrupted variables to identify fault tolerance at the
instruction level (i.e., the bottom level). In the next sections
we give more details of each of these steps (see Figure 1).

A. Application Code Region Model

We characterize HPC applications as sets of iterative struc-
tures or loops. In an HPC application, a main computation loop
usually dominates the application execution time. Within this
main loop, there are a number of inner loops that are typically
used to update large data objects (e.g., a mesh structure in
computational fluid dynamics), and iterative computations are
performed to compute properties of these objects, such as
energy of particles. Figure 2 shows an example of such loop
program abstractions corresponding to CG [23].

Code Regions. Since HPC applications are typically com-
posed of combinations of loops, we model an application as a
chain of code regions delineated by loop structures (Step (a) in
Figure 1). A code region can be either a loop or any block of
code between two neighboring loops. An application can have
multi-level nested loops. We allow the user to decide at which
loop level, code regions are defined. Note that code regions
defined at different loop levels only affect the analysis time
(not the analysis correctness) to identify resilient code regions

and patterns. Code regions defined at the level of innermost
loop tend to be small and easy for fine-grained instruction
level analysis. However, we can have many of such small
code regions, which increases our exploration space. On the
other hand, code regions defined at the level of outermost loop
tend to be large and we have a smaller exploration space of
code regions, but it would be time-consuming for fine-grained
instruction level analysis. In our work, we define each of the
first-level inner loops as a code region.

Code Region Variables. Given a code region, we classify
the variables within the code region as input variables, output
variables, and internal variables. Input variables are those that
are declared outside of the code region and referenced in the
code region. Output variables are those that are written in the
code region and read after the code region. Other variables that
the code region writes to or reads from are internal variables. A
code region can have many dynamic instances, each of which
corresponds to one invocation of the code region at runtime.
The values of input, output, and internal variables can vary
across multiple instances of a code region.

Rationale Behind the Model. Our loop-based model fol-
lows the natural way in which HPC programs are coded and
analyzed; HPC programs are composed of a handful of high-
level loops where the program spends most of its time. Our
loop-based model also enables a divide-and-conquer approach,
where we can identify application subcomponents that may or
may not have resilience patterns. For example, in the error
propagation analysis, if the input variables of a code region
are not corrupted, one can infer that the region is not impacted
by an error and we can skip propagation analysis on it.

B. Tracing Code Region Data

The DDDG allows us to identify input, output, and internal
variables of a code region. We construct a DDDG for each
code region from a dynamic instruction trace of the application
using an algorithm inspired by the construction of a program
dependence graph [24], except that our graph is dynamic rather
than static: vertices are the values of variables obtained from
registers or memory; edges are operations transforming input
values into output values of variables. Using the DDDG as a
code region representation, we identify the input and output
variables of the code region: root nodes represent inputs and
leaf nodes represent outputs. Other nodes are internals.
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Fig. 3. An example of the ACL table.

Within the corresponding DDDG of each code region,
we inject an error into either the input, output, or internal
variables (Steps (b)–(c) in Figure 1). A DDDG allows us to
compare data propagations in regions with and without fault
occurrence, which allows us to detect control flow divergence
by comparing operations. Further, the values of variables are
embedded in the DDDG, which helps us to track how specific
variables change their values across operations; such value
change reveals whether, how, and where fault tolerance occurs.

C. Analyzing Corrupted Variables

We identify variables that, once corrupted, return to their
non-corrupted state and in which dynamic instruction. This
is key in identifying resilience computation patterns since we
need to identify the point in time where the error is tolerated
and its location in the code region (Step (d) in Figure 1).

Using the DDDG, our analysis of corrupted variables gives
us a low-level representation in terms of instructions of how
data propagates in the code region. Since program abstractions,
such as variables, are not explicitly represented at this level, we
need a different way of tracking variable values. We introduce
a method that tracks alive corrupted locations, discussed as
follows. In the following discussion, since a variable value can
be either in a register location or in a memory location, we
use the term location to cover both options.

Alive Corrupted Locations. Traversing through the col-
lected instruction trace, we use the DDDG to build and
dynamically update a table of the alive corrupted locations,
or ACL. Generally speaking, the ACL table stores the number
of alive, corrupted locations after each dynamic instruction.
We call a location “alive” if the value in that location will be
referenced again in the remainder of the computation.

Each row of the table shows whether a specific location is
alive or not after each dynamic instruction, as instructions are
encountered in the trace. Each column of the table shows, for
a specific corrupted location, whether it is alive or not after
a dynamic instruction. Based on the column information, we
can determine the total number of alive, corrupted locations
after each traced instruction.

Figure 3 gives an example of the ACL table. Each table
element has a value of 1 or 0, which indicates whether a
corrupted location after a specific dynamic instruction is alive
or not. We use the first row as an example to explain the table.
The location Loc_1 is corrupted by a fault after instruction 1.
Loc_1 then becomes an alive, corrupted location. Next, Loc_1
remains alive until instruction 5 where the location is updated
and the fault in the location is overwritten by a clean value.
The number of alive, corrupted locations are counted after
each dynamic instruction, shown in the last row of the table.

D. Identifying Resilience Patterns from Code Regions

As we traverse the instruction trace, the DDDG and ACL
table contain the necessary information to detect resilient code
regions. Resilience patterns are extracted from them.

When the DDDG is used to identify resilient code regions,
we compare the values of input and output locations in a
DDDG between faulty and fault-free runs. An input location
can be corrupted directly—an error was directly injected into
the location—or indirectly—an error was injected in a previous
code region, but the error propagates to the input location of
the code region in question. Given a code region, there are
two possible cases when fault tolerance occurs:

• Case 1: the value of any input location in the code region’s
DDDG in a faulty run is incorrect (with respect to the
DDDG from a matching fault-free run), i.e., there is at
least one corrupted input location; however, the values of
all output locations are correct.

• Case 2: at least one of the input locations and one of the
output locations in a faulty run are incorrect (with respect
to the DDDG from a matching fault-free run), but the error
magnitude in at least one corrupted input or output location
becomes smaller after the code region instance. The error
magnitude is defined as

error_magnitude =
|valuecorrect − valueincorrect|

|valuecorrect|
.

(2)

In Case 1, it is reasonable to infer that the code region
in question has natural fault tolerance—the corruption of the
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input location is directly masked within the code region, and
does not impact the output correctness.

In Case 2, the error still exists, i.e., there is some amount
of error in the code region locations; however, the impact of
the error, measured by its magnitude in the input or output
locations, becomes smaller, as a function of the code region.
This means that the target code region may result in an
application outcome that is numerically different from that
of the fault-free executions. However, when such a different
outcome passes the application verification and is acceptable
as a valid result, we say that Case 2 has fault tolerance.

When the ACL is used to identify resilient code regions,
the algorithm to detect resilience patterns given an ACL is as
follows. We identify first if in any column, an alive corrupted
location becomes dead for a given instruction i, where i < N
and N is the last instruction before the application outputs
its result. If this occurs, we mark i as a potential member of
resilience computation patterns. In Figure 3, the instruction
5 consuming the location Loc_1 is a potential member of
resilience computation patterns. Once all of such instructions
are found, we identify their source code locations (file and line
of code) and provide them to the user for further analysis.

IV. IMPLEMENTATION

We implement FlipTracker as a two-step process: first
we use a parallel tracer built on top of LLVM to extract the
instruction traces, and then use these traces to dynamically
generate and update the DDDGs and the matching ACL tables.
We do this for both fault-free runs as well as faulty runs.

A. Parallel Tracing

FlipTracker uses an LLVM instrumentation tool, LLVM-
Tracer [25], to generate a dynamic instruction trace. In this
trace we store metadata for each instruction, such as the
the instruction type, names of registers, and operand values.
In our case, instructions refer to LLVM instructions, which
are generated at the intermediate representation (IR) of the
program and instrumented by LLVM-Tracer. This approach
does not support MPI programs out-of-the-box, which we need
to support our HPC workloads. Thus we extend LLVM-Tracer
to instrument Message Passing Interface (MPI) programs, so
that traces are saved into a file for each MPI process.

Since trace generation is a per-process task, no synchroniza-
tion is required to generate and save per-process traces into
different files. Note also that, in our study, LLVM-Tracer only
instruments program instructions—instructions from the MPI
runtime are not instrumented as we expect that most errors
arise from application computations. This however, is not a
limitation per se—our approach can easily be directed to also
instrument instructions in any parallel runtime. Furthermore,
our current implementation can identify errors that propagate
through MPI communications and then happen in computation,
even though we do not instrument MPI runtime.

Trace Splitting. Traces for an HPC program can be quite
large for processing. Although there is a number of approaches

that handle the problem of large traces (e.g., trace compres-
sion [26], [27]), we take a simple approach that splits a trace
into smaller pieces. Each of small pieces corresponds to an
instance of a code region, which reduces the scope for each
analysis and further allows us to parallelize the analysis.

B. DDDG Generation and Usage

Once the trace is generated, FlipTracker takes the dy-
namic trace as input, and generates a DDDG by examining
the data dependency of the operands in each operation. Our
technique is based on the work of Holewinski et al. [28], who
proposed a methodology to generate DDDG from a dynamic
trace. The generated DDDG is then used to identify the input,
internal, and output locations for the code region instance
using Graphviz [29]. The DDDG is also used to determine
corrupted locations by dynamically building the ACL table.

ACL Table Generation. The algorithm to generate an
ACL table is motivated by dynamic taint analysis in the
security research [30], [31], [32], which focuses on com-
putations affected by contaminated sources. The difference
between taint analysis and our approach is that we exclude
tainted locations that are never used as well as those that
are overwritten by an uncorrupted value from the untainted
location set. In other words, we only consider alive corrupted
locations in application execution. We use a DDDG to acquire
the dynamic data dependence to track the error propagation,
and, simultaneously, we count the number of alive corrupted
locations after each dynamic instruction in the input trace.

C. Fault Injection and Statistical Significance

We implement a fault injection framework based on
FlipIt [9], which allows us to inject a bit flip in the user-
specified population of instructions and operands. Injections
are performed randomly into input and internal locations of
code region instances. Our fault injection uses a uniformly
distributed fault model, similar to [33], [34]. Given an input
or output location for a code region instance, we calculate
the number of fault injection sites by analyzing the dynamic
LLVM instruction trace. Then, we follow the statistical ap-
proach in [34] to calculate the number of fault injection tests
for a target at 95% confidence level and 3% margin of error.

V. EVALUATION

We apply FlipTracker to representative HPC programs
to study their resilience properties and ultimately to extract
naturally resilient patterns that other programs can use.

A. Experimental Setup

We use ten representative HPC programs in our experi-
ments, including eight HPC benchmarks (CG, MG, IS, LU,
BT, SP, DC, and FT from the NAS Parallel Benchmarks in
C [23], [35] with input Class S), an HPC proxy application
(LULESH [36] with input “-s 3"), and a benchmark from
the machine learning domain (KMEANS from the Rodinia
benchmark suite [37] with input “100.txt").

Trace Partitioning and Code Region Selection. HPC pro-
grams can have several static loop structures, and depending on
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TABLE I
RESILIENCE COMPUTATION PATTERNS IN CODE REGIONS OF THE HPC PROGRAMS. DCL, RA, DO REPRESENT DEAD CORRUPTED LOCATIONS,

REPEATED ADDITIONS AND DATA OVERWRITING, RESPECTIVELY.

Program Code
region

Line No. #instr in an
iteration

Pattern
Found?

DCL RA CS Shifting Trunc DO

CG cg_a 434-439 21017 NO
cg_b 440-453 14002 YES

√ √

cg_c 454-460 31755757 YES
√ √

cg_d 461-574 1196022 NO
cg_e 575-584 18202 NO

MG mg_a 425-429 606145 YES
√ √

mg_b 430-437 719 YES
√ √

mg_c 438-456 1019509 YES
√ √

mg_d 457-462 3313305 YES
√ √ √

KMEANS k_a 131-142 1647 NO
k_b 144-153 62 NO
k_c 156-187 2185944 YES

√ √

k_d 190-194 36 YES
√ √

IS is_a 435-472 792630 NO
is_b 473-478 983040 YES

√ √

is_c 500-638 741367 YES
√ √

LULESH l_a 2652-2693 297376 YES
√ √ √

program input, each static loop can generate several dynamic
instances. To keep the number of loop instances manageable
for analysis, we focus on high-level loop structures. Particu-
larly, we define a code region as a section of the program that
is either (a) a first-level inner loop (if there is any inner loop),
or (b) a code block between two neighbor inner loops.

We list the code regions that we analyzed and their corre-
sponding line numbers and the number of instructions within
one iteration of the main loop in Table I.

B. Parallel Tracing Overhead

We measure the overhead of trace gathering for MPI
programs to study the feasibility of our approach. Figure 4
shows that our approach incurs modest overhead: 45% on
average when using 64 processes on 8 nodes, comparing to an
uninstrumented baseline. It is therefore feasible to gather traces
at small/medium scales. For large scales, one can selectively
collect traces for individual functions or use techniques such
as [38]. We leave the challenge of efficiently gathering traces
at very large scale for future work.

Since the resilience computation patterns that we are in-
terested in occur in the computation code regions of the
program (not in the communication part), we focus on the
single process where the fault is injected.

Nondeterminism. MPI nondeterminism can bring difficulty
to match code regions between faulty and fault-free runs.
While in many MPI programs, nondeterminism can be con-
trolled by eliminating application sources of nondeterminism,
such as calls to rand() and/or time(), in other programs
this is difficult because of nondeterminism introduced by
MPI point-to-point communication patterns. To address these
applications, we rely on record-and-replay tools [39], [40], on
which a fault-free run is recorded and it is then replayed in
all subsequent faulty executions.

C. Code Region Fault Injection Results

We inject faults in input or internal locations of code regions
and measure success rate. We perform experiments in two
dimensions: (a) across code regions in a given iteration (See
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Fig. 4. LLVM parallel tracing performance (64 processes on 8 nodes)

“per-code-region” results); (b) in a given code region across
all iterations (See “per-iteration” results).

Per-Code-Region Results. Since different code regions
could have different numbers of instances, to be consistent,
we perform the analysis on the first instance of each code
region, i.e., in the iteration 0 of the main loop (see Figure 5).

In KMEANS we find that, for faults on internal locations
the code region k_d is more resilient than others because many
memory free operations free temporal corrupted locations,
while for faults on input locations, many segmentation faults
cause almost zero success rate. We find a relatively high
success rate in MG—we find cases of repeated addition and
dead corrupted location patterns that account for the fault
tolerance (Section VI explains these patterns in details). In
IS we find that a bit-shift operation that occurs on input
locations masks faults in the is_b code region, which increases
its success rate. In CG, we find two code regions (b and c)
that have higher success rates than others because the error
magnitudes in variables (particularly p[]) become smaller
due to a computation pattern that repeatedly adds values. In
LULESH, there is only one code region—faults frequently
cause application crashes, which explains the low success rate.

Per-Iteration Results. We focus on a single code region
and examine its fault tolerance on several loop iterations. In
particular, we treat the main loop of each program as a single
code region and each iteration of the main loop as one instance
of the code region. Figure 6 shows the results. We find that
the success rates of different iterations can be similar. MG
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Fig. 6. Fault injection results for individual iterations of the main loop.

(internal locations) and CG exemplify this conclusion. The
success rates over multiple iterations can also be very different,
e.g., in IS and LULESH. After examining the DDDGs, we find
that control flow differences between the iterations of the main
loop are the main reason accounting for this difference.

VI. RESILIENCE COMPUTATION PATTERNS

We present a formal description of the resilience computa-
tion patterns. Table I summarizes them in applications.

Pattern 1: Dead Corrupted Locations (DCL)
In this pattern, the values of several corrupted input locations
are aggregated into fewer output locations, with aggregations
being a combination of multiple operations (e.g., additions and
multiplications). While the errors in the corrupted input locations
can propagate to one (or a few) locations, many of these cor-
rupted input locations are not used anymore (they become dead
locations) and the total number of corrupted locations decreases.

We frequently find Pattern 1 in LULESH. Figure 8 shows
the code excerpt extracted from LULESH that accounts for
the decrease of the number of alive corrupted locations within
the routine LagrangeNodal (see 1 and 2 in Figure 7).
The array hourgram[][] is a temporal corrupted location
that is dead after the sample code snippet. The error has
propagated to its elements before the example code. Although
the error propagates from hourgram to temporal variables
hxx[], which are then aggregated into hgfz[], the number
of alive, corrupted variables decreases since the corrupted
elements of hourgram[][] become dead after this code. We
also find this pattern in the MG code.

Pattern 2: Repeated Additions
In this pattern, the value of a corrupted location is repeatedly
added by other correct values. Those correct values amortize the
effect of the incorrect value. This pattern does not necessarily
cause a decrease of alive, corrupted locations (as in Pattern 1),
but over time the corrupted value approaches the correct value
such that the application execution can be successful.
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Fig. 7. A real case of ACL table. It shows the number of ACL-s in LULESH
after a fault is injected into the last third iteration of the main loop.

1 f o r ( I n d e x _ t i = 0 ; i < 4 ; i ++) {
2 hxx [ i ] = hourgam [ 0 ] [ i ]∗ xd [ 0 ] + hourgam [ 1 ] [ i ]∗ xd [ 1 ] +
3 hourgam [ 2 ] [ i ]∗ xd [ 2 ] + hourgam [ 3 ] [ i ]∗ xd [ 3 ] +
4 hourgam [ 4 ] [ i ]∗ xd [ 4 ] + hourgam [ 5 ] [ i ]∗ xd [ 5 ] +
5 hourgam [ 6 ] [ i ]∗ xd [ 6 ] + hourgam [ 7 ] [ i ]∗ xd [ 7 ] ;
6 }
7 . . .
8 f o r ( I n d e x _ t i = 0 ; i < 8 ; i ++) {
9 hgfz [ i ] = c o e f f i c i e n t ∗

10 ( hourgam [ i ] [ 0 ]∗ hxx [ 0 ] + hourgam [ i ] [ 1 ]∗
hxx [ 1 ] +

11 hourgam [ i ] [ 2 ]∗ hxx [ 2 ] + hourgam [ i ] [ 3 ]∗
hxx [ 3 ] ) ;

12 }

Fig. 8. Example of the Dead Corrupted Locations in LULESH

We observe Pattern 2 in the iterative solvers MG and CG.
Figure 9 shows a code excerpt covering this pattern in MG.
Here, we inject a fault in an element of the array u and then
the array element u[i3][i2][i1] is added with new data values
(Lines 6-9). This code is repeatedly executed in the main
computation routine (mg3P ). As a result, the array element
u[i3][i2][i1] is repeatedly added along with new data values.
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1 f o r ( i 3 = 1 ; i 3 < n3−1; i 3 ++) {
2 f o r ( i 2 = 1 ; i 2 < n2−1; i 2 ++) {
3 . . .
4 f o r ( i 1 = 1 ; i 1 < n1−1; i 1 ++) {
5 u [ i 3 ] [ i 2 ] [ i 1 ] = u [ i 3 ] [ i 2 ] [ i 1 ]
6 +c [ 0 ]∗ r [ i 3 ] [ i 2 ] [ i 1 ]
7 +c [ 1 ]∗ ( r [ i 3 ] [ i 2 ] [ i1−1]+ r [ i 3 ] [ i 2 ] [ i 1 +1]
8 + r1 [ i 1 ] )
9 +c [ 2 ]∗ ( r2 [ i 1 ]+ r1 [ i1−1]+ r1 [ i 1 + 1 ] ) ;

10 } } }

Fig. 9. Example of the Repeated Additions pattern in MG

TABLE II
THE REPEATED ADDITIONS PATTERN TAKES EFFECT IN MG

original value corrupted value error magnitude
itr1 0 0.000000059604645 ∞
itr2 -0.004373951680278 -0.004373951059397 6.20880999391282E-10
itr3 -0.004816104396391 -0.004816104262613 1.33777999962448E-10
itr4 -0.004664456032917 -0.004664455968072 6.48450000292899E-11

We examine the value of the array element (u[10][10][10])
where a single bit-flip happens on the 40th bit in the first
invocation of the function mg3P . This function is iteratively
called four times. We examine error magnitude (as defined in
Equation 2, recalling that error magnitude is the relative error
of a faulty value). Table II shows that the error magnitude
becomes increasingly smaller as mg3P is repeatedly called,
reducing the effect of data corruption. Note that although the
error magnitude at the second invocation of mg3P is very
small, it is still not acceptable for the verification phase of
MG. However, as the corrupted value is closer to the correct
value at the fourth invocation of mg3P , the corrupted value
is acceptable by MG and regarded as a correct solution.

1 /∗ f i n d c l u s t e r c e n t e r id with min d i s t to pt ∗ /
2 f o r ( i =0 ; i < n p t s ; i ++) {
3 f l o a t d i s t ;
4 d i s t = e u c l i d _ d i s t _ 2 ( pt , p t s [ i ] , n f e a t u r e s ) ;
5 i f ( d i s t < m i n _ d i s t ) {
6 m i n _ d i s t = d i s t ;
7 i n d e x = i ;
8 }
9 }

Fig. 10. Example of the Conditional Statement pattern in KMEANS

Pattern 3: Conditional Statements
In this pattern, a conditional statement such as an if condition,
which tolerates a fault as long as the result of the statement
in a faulty case remains the same (true/false) as in a fault-
free case, consequently avoiding a control-flow divergence that
otherwise could have occurred. The conditional statement can
cause a decrease in the number of alive corrupted locations.

Although Pattern 3 is simple, it can become a major reason
for fault tolerance in applications. KMEANS exemplifies this
case: Figure 10 shows a code segment where a condition
statement (Line 5) plays a major role to tolerate faults in the
array feature. In essence, the code tries to find the minimum
distance between a target data point and the center data point

1 /∗Determine the number of keys in each bucket ∗ /
2 f o r ( i =0 ; i <NUM_KEYS; i ++ )
3 b u c k e t _ s i z e [ k e y _ a r r a y [ i ] >> s h i f t ] + + ;

Fig. 11. Example of the shifting pattern in IS.

of each cluster based on the feature values of data points.
This conditional statement tolerates errors that happen in the
array feature, which takes most of the memory footprint of
KMEANS. As long as the code segment can find the correct
cluster with the minimum distance to the target point, the
application outcome remains correct.

Besides the above example, we often find Pattern 3 in the
program verification phases of MG and CG, where the final
computation result is compared with a threshold to determine
the result validity and/or to terminate execution.

Pattern 4: Shifting
In this pattern, bits are lost due to bit shifting operations. If the
lost bits are corrupted, fault tolerance occurs and we say that the
pattern completely masks (or eliminates) the faulty bit.

We find Pattern 4 in IS—we show an example in Figure 11.
IS is a benchmark that implements bucket sorting for input
integers (called “keys” in the benchmark). The input integers
are placed into multiple buckets based on their significant
bits. To decide into which bucket a key will be placed, IS
applies a shift operation on the key (Line 3 in Figure 11). If
the data is corrupted in the least significant bits of the key,
the shift operations can still correctly place the key into the
corresponding bucket, hence tolerating faults in the key.

Pattern 5: Data Truncation
In this pattern, corrupted data is not presented to the user when
used as a final result, or corrupted data is truncated.

We find Pattern 5 in LULESH, where in its last execution
phase the computation results of a double data type are
reported in “%12.6e” format (using the printf C function). In
this format, the mantissa of the computation result is partially
cut-off and not fully presented to the user; thus if the cut-off
mantissa is corrupted by a fault, the erroneous value will not
be seen by the user.

Pattern 6: Data Overwriting
In this pattern, corrupted data is overwritten by a correct value,
and the data corruption is consequently eliminated.

We find Pattern 6 in all benchmarks, as it is commonly
found in the output of many instructions. This occurs in
particular when the value of a corrupted location is overwritten
by an instruction that generates a clean uncorrupted value.

Discussion. The effectiveness of some patterns (repeated
additions, conditional statement, shifting, and data truncation)
depends on the program input. For example, the effectiveness
of the shifting pattern is dependent on the number of shifted
bits—the more bits are shifted, the more random bit-flip errors
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can be tolerated. This is different from software design patterns
that are general and independent of program input.

VII. CASE STUDIES

Resilience computation patterns have many potential uses.
We give two use cases. Here, whenever we use fault injection,
we use 99% confidence level and 1% margin of error to decide
the number of fault injection tests based on [34].

TABLE III
RESULTS AFTER APPLYING RESILIENCE PATTERNS TO CG.

Resi. Pattern Applied App. Resi. Exe time (s)/Average (s)
None 0.59 158.659-159.468 / 159.010
DCL and overwrt. 0.78 158.859-159.457 / 159.167
Truncation 0.614 158.605-159.338 / 158.835
All together 0.782 158.574-159.457 / 158.859

A. Use Case 1: Resilience-Aware Application Design

We apply resilience patterns to the CG benchmark, aiming
to improve its resilience. We successfully apply three pat-
terns: dead corrupted location (DCL), data overwriting,
and truncation. The results are shown in Table III, where
the first column shows the resilience pattern(s) applied; the
second column is the application resilience—the success rate
measured by doing fault injection; the third column is the
execution time for one run with or without applying resilience
pattern(s). We report the average execution time for 20 runs
in Table III. Figures 12 and 13 in Appendix A show the code
where we apply the three patterns.

To apply DCL and data overwriting, we introduce two tem-
poral arrays at the beginning of sprnvc() to replace two global
arrays v[] and iv[] referenced in sprnvc() (see Figure 12).
Furthermore, to ensure the program correctness, the updated
values of the two temporal arrays are copied back to v[] and
iv[] at the end of sprnvc(). Because of the copy-back, errors
occurring in v[] and iv[] during the execution of sprnvc() can
be overwritten. Moreover, errors that might occur in the two
temporal arrays become dead (not accumulated as in the global
arrays), after the copy-back. Overall, we improve application
resilience by 32.2% with less than 0.1% performance loss
(caused by a small amount of data movement).

To apply the truncation pattern, we select 10 iterations (340-
350th iterations) of a loop within the function conj_grad(),
which is used to calculate p · q (see Figure 13). We replace
64-bit floating-point multiplications with 32-bit integer multi-
plications (particularly lines 508-510 in the source code). After
applying the pattern, the precision loss (64 bit vs. 32 bit) does
not affect the correctness of the final output. The reason is
as follows. As an iterative solver, CG gradually averages out
the precision loss across iterations. Furthermore, CG uses a
conditional statement that compares the CG output with a
threshold to verify the output correctness. Such conditional
statement can further tolerate the precision loss. Table III
shows that we improve application resilience by 4.1% with
no performance loss. We apply the three patterns together and
improve the application resilience by a total of 32.5% with
less than 0.1% performance loss.

B. Use Case 2: Predicting Application Resilience

The current common practice to quantify the resilience
of an application is to use random fault injection. However,
random fault injection misses the application context that can
explain how errors propagate and consequently are tolerated.
In this case study, we are exploring a way alternative to
random fault injection to quantify application resilience. Since
resilience computation patterns explain application resilience,
we may estimate the resilience of an application by counting
the number of instances of such patterns in the application.
This approach can quantify the contribution of each resilience
pattern to application resilience, which demonstrates the ef-
fectiveness of resilience patterns.

Model Construction. We build a Bayesian multivariate
linear regression model [41] to predict the resilience (i.e.,
success rate) of an application. The model uses the number
of pattern instances for each resilience computation pattern
as input, and outputs a single value Psuc_rate, the predicted
success rate. We model the above idea as follows:

Psuc_rate =

#patterns∑
i=1

βixi + ε. (3)

In Equation 3, xi is the number of pattern instances for a
specific pattern i normalized by total number of instructions
within the application. We name xi the pattern rate (e.g.,
condition rate, shift rate, and truncation rate). We normalize
the number of pattern instances to enable a fair comparison
between applications with different number of instructions. In
total, there are #patterns patterns (#patterns is six in our
modeling). βi is the model coefficients and ε is the intercept.

Experiments and Model Validation. We perform two ex-
periments. In the first experiment, we build the model using all
the patterns from the ten benchmark programs (Section V-A)
to show that the data fits the model well. This experiment
requires running the ten benchmarks, collecting the number
of pattern instances for each pattern, and performing random
fault injection to obtain success rates for each benchmark.

In the second experiment, we train the model using data
from different combinations of nine of the ten benchmarks,
and make a prediction for success rate for the one remaining
benchmark. We then validate the model prediction by measur-
ing its accuracy (i.e., relative error) with respect to the success
rate that is obtained by doing fault injection. This experiment
is to see how accurate the model is in predicting the success
rate of an unseen program.

Experimental Results. For the first experiment, we calcu-
late the “R−square” value of the model. R−square is used
for measuring the fitness of a statistic model. The R−square
value in our experiment is 96.4%, which is close to 1. A value
close to 1 indicates that the model explains the variability of
the prediction result around its mean. The model therefore fits
and explains the data very well.

For the second experiment, the prediction results are shown
as the prediction error rate in Table IV. The average prediction
error excluding the prediction error on DC is 14.3%. The
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TABLE IV
THE QUANTIFICATION OF RESILIENCE PATTERNS AND THE PREDICTION ACCURACY. SR=SUCCESS RATE

Benchmark Condition
Rate

Shift Rate Truncation
Rate

Dead Loca-
tion Rate

Repeat Ad-
dition Rate

Overwrite
Rate

Measured
SR

Predicted SR Prediction
Err. Rate

CG 0.088 2.45E-08 2.185 0.298 2.61E-07 0.999 0.739 0.652 11.8%
MG 0.037 2.74E-03 1.145 0.314 0.000 0.999 0.879 0.810 7.8%
LU 0.022 8.11E-06 0.188 0.319 0.000 0.999 0.575 0.642 11.7%
BT 0.015 0.000 0.074 0.334 0.000 0.999 0.656 0.573 12.7%
IS 0.040 2.86E-02 0.001 0.311 0.000 0.985 0.653 0.712 9.0%
DC 0.139 0.174 0.078 0.302 9.22E-07 0.994 0.578 0.204 64.6%
SP 0.042 0.000 0.428 0.389 4.15E-08 0.999 0.385 0.466 21.0%
FT 0.038 1.99E-03 1.591 0.338 0.000 0.999 0.876 1.000 14.2%
KMEANS 0.079 7.18E-07 2.484 0.375 7.87E-05 0.979 0.843 1.000 18.6%
LULESH 0.048 2.60E-03 0.550 0.378 6.88E-06 0.937 0.926 0.725 21.7%

prediction error on DC is large (64.6%), because the model
does not distinguish error tolerance capabilities of different
instances of repeated additions and conditional statement (see
the limitation discussed below), thus predictions for DC are
affected by this limitation.

Importance of Resilience Patterns: Feature Analysis. We
use standardized regression coefficient [42], an indicator that
presents the importance of predictors, to understand which
resilience patterns are the most important. We compute the
standardized regression coefficients for the model trained in
the second experiment.

On average, the averaged standardized regression coef-
ficients of Shifting, Truncation, Dead Location, Repeated
Addition, Overwriting, and Conditional Statement are 1.48,
1.73, 0.38, 0.25, 0.92, and 1.69, respectively. We conclude that
Truncation (1.73), Shifting (1.48), and Conditional Statement
(1.69), that have the largest coefficients, contribute the most
to resilience. On the other hand, patterns such as Repeated
Addition and Dead Location have less impact.

Limitation and Future Work. Different instances of a
pattern can have different weight into application resilience.
For example, considering different cases of shifting where the
value is shifted to right/left x times. Depending on the value of
x, the error may or may not be masked. While simply counting
the number of pattern instances limits the prediction accuracy
(one should also take into account the value of locations), this
demonstrates a simple but practical use case of the patterns.

VIII. RELATED WORK

Resilience Computation Patterns. A limited number of
previous studies reveal the existence of resilience patterns [11],
[43]; these efforts, however, lack a systematic method to
identify these patterns. In [11], Li et al. identify conditional
statement and truncation for error masking in GPU programs.
In [43], Cook and Zilles identify shift, conditional statement
and truncation. Those research efforts manually examine fault
tolerance cases, while our work is different in several aspects.
First, we introduce a novel framework and methodology to
systematically identify patterns. For complex applications,
manual identification of those patterns is unfeasible. Second,
we identify more complex patterns (e.g., DCL and repeated
additions). Those new patterns require multiple instructions to
take effect. Finding those patterns must be based on a complete
picture on error propagation. The existing work identifies pat-

terns based on the analysis of individual instructions without
sufficient considerations of interactions between instructions,
hence lacking a complete picture to identify patterns.

Error Detector Placement. Existing research uses com-
piler static and/or dynamic instruction analysis to enable
application-level fault tolerance by detecting code vulnerabil-
ities. For example, Pattabiraman et al. use static analysis [15]
and a data-dependence analysis [16] to determine the place-
ment of error detectors in applications. Their work determines
the critical variables that are likely to propagate errors based
on metrics, such as highest dynamic fan-out. Different from
us, their work cannot locate resilience patterns.

Visualization. Recently, techniques that allow visualization
of corrupted application data across loop iterations and MPI
processes have been developed. For example, Calhoun et
al. [17] replicate instructions to track and visualize how errors
propagate within the application. However, their approach
can be expensive when analyzing complex applications. Our
approach, based on the abstract code structure model, can
accelerate tracking error propagation.

IX. CONCLUSIONS

Understanding natural error resilience in HPC applications
is important in creating applications that can naturally tolerate
errors. However, our knowledge on natural error resilience
has been quite limited, mainly because of a lack of system-
atic methods to identify resilience computation patterns. Our
framework, FlipTracker, exposes these patterns by enabling
fine-grained tracking of error propagation and fault tolerance
to enable users to pinpoint resilience computations in HPC
programs. By tracking data flows and value variations based on
a code region model, we identify and summarize six common
resilience patterns, which increase our understanding of how
natural resilience occurs. We also present two case studies of
practical applications of these resilience patterns.
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X. APPENDIX

A. Details of Use Case 1: Resilience-Aware Application
Design

Figure 12 and Figure 13 show two code excerpts extracted
from CG, where dead corrupted location, data overwriting and
truncation are applied, respectively.

For the case of dead corrupted location and data overwriting,
the original code is shown in Figure 12(a) and the new code
is shown in Figure 12(b) (we include some comments to
explain the difference). In particular, we use two temporal
arrays v_tmp and iv_tmp to replace two global arrays v and
iv. We then copy values in the arrays v_tmp and iv_tmp back
to the arrays v and iv after the computation.

Figure 13 shows how we apply the truncation. In particu-
lar, we replace 64-bit floating-point multiplications to 32-bit
integer multiplications (see Lines 11-12 in Figure 13.b).
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1 s t a t i c vo id s p r n v c ( i n t n , i n t nz , i n t nn1 , double v
[ ] , i n t i v [ ] ) {

2 i n t nzv , i i , i ;
3 double v e c e l t , v e c l o c ;
4
5
6
7
8
9

10 nzv = 0 ;
11 whi le ( nzv < nz ) {
12 v e c e l t = r a n d l c (& t r a n , amul t ) ;
13 v e c l o c = r a n d l c (& t r a n , amul t ) ;
14 i = i c n v r t ( vec loc , nn1 ) + 1 ;
15 i f ( i > n ) c o n t i nu e ;
16 l o g i c a l was_gen = f a l s e ;
17 f o r ( i i = 0 ; i i < nzv ; i i ++) {
18 i f ( i v [ i i ] == i ) {
19 was_gen = t r u e ;
20 break ;
21 }
22 }
23 i f ( was_gen ) c o n t in u e ;
24 v [ nzv ] = v e c e l t ;
25 i v [ nzv ] = i ;
26 nzv = nzv + 1 ;
27 }
28
29
30
31
32 }

(a)

1 s t a t i c vo id s p r n v c ( i n t n , i n t nz , i n t nn1 , double v [ ] ,
i n t i v [ ] ) {

2 i n t nzv , i i , i ;
3 double v e c e l t , v e c l o c ;
4 double v_tmp [NONZER+ 1 ] ; / / d e f i n e a temp array
5 i n t iv_ tmp [NONZER+ 1 ] ; / / d e f i n e a temp array
6 f o r ( i =0 ; i <=NONZER; i ++) {
7 v_tmp [ i ] = v [ i ] ; / / i n i t i a l i z a t i o n
8 iv_ tmp [ i ] = i v [ i ] ; / / i n i t i a l i z a t i o n
9 }

10 nzv = 0 ;
11 whi le ( nzv < nz ) {
12 v e c e l t = r a n d l c (& t r a n , amul t ) ;
13 v e c l o c = r a n d l c (& t r a n , amul t ) ;
14 i = i c n v r t ( vec loc , nn1 ) + 1 ;
15 i f ( i > n ) c o n t in u e ;
16 l o g i c a l was_gen = f a l s e ;
17 f o r ( i i = 0 ; i i < nzv ; i i ++) {
18 i f ( iv_tmp [ i i ] == i ) { / / r e p l a c e i v with iv_tmp
19 was_gen = t r u e ;
20 break ;
21 }
22 }
23 i f ( was_gen ) c o n t in u e ;
24 v_tmp [ nzv ] = v e c e l t ; / / r e p l a c e v with v_tmp
25 iv_ tmp [ nzv ] = i ; / / r e p l a c e i v with iv_tmp
26 nzv = nzv + 1 ;
27 }
28 f o r ( i =0 ; i <=NONZER; i ++) {
29 v [ i ] = v_tmp [ i ] ; / / copy back
30 i v [ i ] = iv_tmp [ i ] ; / / copy back
31 }
32 }

(b)

Fig. 12. A code excerpt from the function sprnvc() in CG for the Use Case 1. (a) shows the original code excerpt before patterns are
applied; (b) shows the code excerpt when dead corrupted location and data overwriting are applied.

1 s t a t i c vo id c o n j _ g r a d ( i n t c o l i d x [ ] ,
2 . . .
3 double p [ ] ,
4 double q [ ] )
5 {
6 . . .
7 / / Obtain p . q
8 d = 0 . 0 ;
9 f o r ( j = 0 ; j < l a s t c o l − f i r s t c o l + 1 ; j ++) {

10
11
12
13
14
15 d = d + p [ j ]∗q [ j ] ;
16
17 }
18 . . .
19 }

(a)

1 s t a t i c vo id c o n j _ g r a d ( i n t c o l i d x [ ] ,
2 . . .
3 double p [ ] ,
4 double q [ ] )
5 {
6 . . .
7 / / Obtain p . q
8 d = 0 . 0 ;
9 f o r ( j = 0 ; j < l a s t c o l − f i r s t c o l + 1 ; j ++) {

10 i f ( j <=350&&j >=340) {
11 i n t tmp = p [ j ] ; / / t r u n c a t i o n
12 i n t tmp1 = q [ j ] ; / / t r u n c a t i o n
13 d = d + tmp∗tmp1 ;
14 } e l s e {
15 d = d + p [ j ]∗q [ j ] ;
16 }
17 }
18 . . .
19 }

(b)

Fig. 13. A code excerpt from the function conj_grad() in CG for the Use Case 1. (a) shows the original code excerpt before the truncation
pattern is applied; (b) shows the code excerpt when the truncation is applied.
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