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Abstract—Non-volatile memory (NVM) provides a scalable
solution to replace DRAM as main memory. Because of relatively
high latency and low bandwidth of NVM (comparing with
DRAM), NVM often pairs with DRAM to build a heterogeneous
main memory system (HMS). Deciding data placement on NVM-
based HMS is critical to enable future NVM-based HPC. In this
paper, we study task-parallel programs, and introduce a runtime
system to address the data placement problem on NVM-based
HMS. Leveraging semantics and execution mode of task-parallel
programs, we efficiently characterize memory access patterns of
tasks and reduce data movement overhead. We also introduce
a performance model to predict performance for tasks with
various data placements on HMS. Evaluating with a set of HPC
benchmarks, we show that our runtime system achieves higher
performance than a conventional HMS-oblivious runtime (24%
improvement on average) and two state-of-the-art HMS-aware
solutions (16% and 11% improvement on average, respectively).

Index Terms—Non-volatile memory, runtime, task-parallel,
data management

I. INTRODUCTION

Non-volatile memory (NVM), such as phase change mem-
ory (PCM) and STT-RAM, is promising for future high-
performance computing (HPC). Some NVM techniques have a
higher density than DRAM. This indicates that NVM can have
a larger capacity than DRAM with the same area size. NVM
also offers much lower memory access latency and higher
memory bandwidth (comparing with traditional hard drive and
SSD). Such superior performance in combination with the non-
volatility nature makes NVM a candidate to replace DRAM
as main memory while providing data persistence.

NVM is often paired with a small portion of DRAM as
main memory [1], [2], [3], [4], [5], [6], [7], because NVM
techniques, although promising, still have relatively longer
access latency (4x to 1000x longer [8]) and lower memory
bandwidth (1/5x to 1/50x lower [8]) than DRAM. Without
using DRAM with NVM, HPC applications can have large
performance loss [1], [7]. On a heterogeneous memory system
(HMS) built with NVM and DRAM, we must decide on data
placement: given a data object, should it be placed in NVM
or DRAM? DRAM has better performance but has limited
space, and frequent data movement between NVM and DRAM
may bring large runtime overhead. Existing solutions that
require disruptive changes to hardware [9], [10], [5], [11] or

software [1], [4], [2] can be difficult to be deployed in HPC. In
addition, HPC is highly sensitive to performance. Any solution
that causes large performance loss is not acceptable.

To enable future NVM-based HPC, we must evolve HPC
runtime systems and programming models to accommodate
unique features of emerging HMS (especially NVM-based
HMS). In this paper, we focus on task-parallel programs and
introduce a runtime system to address data placement on
NVM-based HMS.

Task-based programming models for building task-parallel
programs, such as OpenMP tasks, Cilk [12], and Legion [13],
decompose a program into a set of tasks and distribute them
between processing elements. Those programming models im-
prove performance by exposing a higher level of concurrency
than what is usually extracted by compiler and programmer.
Task-based programming models and task-parallel programs
have been widely explored in HPC.

Different from the existing performance optimization work
for task-parallel programs, deciding on data placement on
HMS for task-parallel programs is a new and challenging prob-
lem. First, the existing work for task-parallel programs [14],
[15], [16] studies task movement (e.g., making a task close
to data on a NUMA node), while on HMS, we study data
movement. Moving data to DRAM can be beneficial for
performance on HMS [7], [17], [1], [2], [11], [6] , because of
a relatively big performance gap between DRAM and NVM.
However, data movement is expensive. As a result, we want
to move data that can bring the largest performance benefit
among all data and avoid less beneficial data movement.
Furthermore, a task can have its data distributed on both
DRAM and NVM. Given many possible data distributions for
each task and many tasks in a task-parallel program, it is non-
trivial to make a decision on data placement.

Second, profiling the memory accesses of tasks to decide
data placement is challenging. The existing work commonly
uses online performance profiling [7], [18], [19], [20], [21]
for HPC applications. Leveraging iterative structures in HPC
applications, profiling an execution phase can often make good
performance prediction for the future execution phases. This
profiling method is based on an implicit assumption that the
profiled phase and future execution phases access the same
data. Hence, the profiling result in one phase can be used
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to direct data placement for the same data for the future
execution phases. However, this assumption does not hold for
task-parallel programs: To enable task level and data level
parallelism, different tasks in a task-parallel program often
work on different data. No matter which task is profiled,
the profiling result for one task is not usable to direct data
placement for other tasks, because of the difference in memory
addresses and access patterns between tasks. In essence, the
execution model of task-parallel programs brings this unique
profiling challenge.

In this paper, we introduce a runtime system, Tahoe, to
enable efficient data management (i.e., data placement between
NVM and DRAM) on NVM-based HMS. Leveraging the se-
mantics and execution mode of task-parallel programs, Tahoe
efficiently characterizes memory access patterns, decides data
placement for many tasks, makes the best use of limited
DRAM space, and reduces data movement overhead.

To address the challenge of profiling memory accesses
for many tasks without causing expensive overhead, Tahoe
chooses a few representative tasks to profile and decide the
most accessed pages. Each representative task has similar
memory access patterns to many other tasks. To make the
memory access information generally applicable to other tasks
with different memory pages (addresses), Tahoe leverages
program semantics to transform the information from page
level to data-object level, such that other tasks can decide their
potentially most accessed pages using data object information.

To decide data placement, Tahoe is featured with a hybrid
performance model to predict performance for various data
placement cases. The hybrid performance model combines
the power of both machine learning modeling and analyt-
ical modeling. Predicting the performance of various data
placements must capture complicated (possibly non-linear)
relationships between execution time and many performance
events. A complicated analytical model is possible but would
cause large runtime overhead and present challenges in model
construction, even for simple data placement cases. We reveal
that lightweight machine learning modeling is sufficient to
make the prediction for simple data placement cases. How-
ever, lightweight machine learning modeling lacks flexibility,
as making prediction for complicated data placement cases
increases model parameters by 40%. Such a machine learning
model is difficult to train and heavyweight for runtime. An-
alytical modeling does not have this problem because of its
flexible parameter setting and formulation. Hence, to predict
performance for a task with all of its data placed in one
memory (simple data placement cases), we apply a machine
learning model. To predict the performance for a task with
its data distributed in both NVM and DRAM (complicated
data placement cases), we apply a lightweight analytical model
based on the machine learning modeling result. In essence, the
machine learning model avoids most of modeling complexity,
while the analytical model introduces modeling flexibility.

The primary contributions of this work are as follows:
• We introduce a runtime system for task-parallel programs

to manage data placement on NVM-based HMS;

• We explore how to capture and characterize memory
access information for many tasks;

• We use a hybrid performance model to make data
placement decisions with high prediction accuracy (the
prediction error is less than 7%);

• Evaluating with six benchmarks and one scientific ap-
plication, we show that Tahoe achieves higher perfor-
mance than a conventional HMS-oblivious runtime (24%
improvement on average) and two state-of-the-art HMS-
aware solutions (16% and 11% improvement on average,
respectively).

II. BACKGROUND
A. Task-parallel Programs

A task-parallel program is typically based on a task-based
programming model. In such programming model, the pro-
grammer or compiler identifies tasks (code regions) that may
run in parallel and annotates the memory footprint of task
arguments (i.e., memory addresses of major data objects within
tasks). The runtime system for a task-based programming
model uses memory footprint information associated with
tasks to identify task dependencies and build dependency
graphs at runtime. Tasks without dependency can be imme-
diately scheduled for execution on available processing ele-
ments; tasks with dependency stay in an internal data structure
(e.g., a FIFO queue) within the runtime, waiting for their
dependencies to be resolved. Hence, tasks can be executed out
of order by the runtime scheduler without violating program
correctness.

In this paper, we use two terms, task type and task size. We
define them as follows. Tasks in a typical task parallel program
can run the same code region or different code regions. If some
tasks run the same code region with the same input data size,
we claim those tasks have the same task type. Those tasks are
different instances of the same task type. Task size is related
to task execution time. A task with a small (or big) size has
a short (or long) execution time.

In this paper, we consider the OmpSs programming
model [22], which is a task-based programming model using
syntax similar to the OpenMP task pragma. This programming
model introduces a dependency clause that allows task argu-
ments to be declared as in (for read-only arguments), out (for
write-only arguments), and inout (for read and written argu-
ments). Our runtime, Tahoe, is an extension of Nanos++ [23],
a runtime system that supports OmpSs, OpenMP and Chapel
task-based programming models.

Figure 1 gives an example code from a benchmark (heat)
in the BSC application repository [24] to show task parallel
programs. Lines 15-25 are a code region where a task construct
(Lines 1-11) is enclosed in a parallel region (i.e., a three-level
nested loop). All tasks running the code region have the same
task type.

A task in a task-based programming model can be in
different execution states. In Nanos++, a task can be in the
following four states, and tasks in the state of ready are
placed in a queue (readyQueue). Our runtime leverages the
four states to make data migration. We review the four states as
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follows. (1) Initialized: The task is created and dependencies
are computed. (2) Ready: All input dependencies of the task
are addressed. (3) Active: The task has been scheduled to
a processing element, and will take a finite amount of time
to execute. (4) Completed: The task terminates, and its state
transformations are guaranteed to be globally visible. The task
also frees its output dependencies to other tasks.

1 # pragma omp t a s k \
2 i n ( ( [ r e a l N ] o l d P a n e l ) [ 1 ; BS ] [ 1 ; BS ] . . . ) o u t ( . . . )
3 vo id j a c o b i ( l ong rea lN , long BS , \
4 do ub l e newPanel [ r e a l N ] [ r e a l N ] , \
5 do ub l e o l d P a n e l [ r e a l N ] [ r e a l N ] ) {
6 f o r ( i n t i =1 ; i <= BS ; i ++) {
7 f o r ( i n t j =1 ; j <= BS ; j ++) {
8 newPanel [ i ] [ j ] = 0 . 2 5 ∗ ( o l d P a n e l [ i −1][ j ] \
9 + o l d P a n e l [ i + 1 ] [ j ] + o l d P a n e l [ i ] [ j−1] \

10 + o l d P a n e l [ i ] [ j + 1 ] ) ;
11 } } }
12

13 vo id main ( ) {
14 . . .
15 # pragma omp t a s k w a i t
16 f o r ( i n t i t e r s =0; i t e r s<L ; i t e r s ++) {
17 i n t c u r r e n t P a n e l = ( i t e r s + 1) % 2 ;
18 i n t l a s t P a n e l = i t e r s % 2 ;
19 f o r ( l ong i =BS ; i <= N; i +=BS) {
20 f o r ( l ong j =BS ; j <= N; j +=BS ) {
21 j a c o b i ( rea lN , BS , \
22 ( m t ) &A[ c u r r e n t P a n e l ] [ i −1][ j −1] , \
23 ( m t ) &A[ l a s t P a n e l ] [ i −1][ j−1] ) ;
24 } } }
25 # pragma omp t a s k w a i t
26 . . .
27 }

Fig. 1. Code snippet from a task parallel benchmark (heat).

B. Architecture for NVM-Based HMS
In this paper, we assume that NVM and DRAM are

constructed as separate NUMA nodes within a machine.
DRAM shares the same physical address space as NVM (but
with different addresses). This assumption has been widely
used in the existing work [17], [1], [2], [3], [6]. Because
DRAM resides in a regular NUMA node, the DRAM space
is manageable at the user level by the runtime, and data
migration between NVM and DRAM can be implemented at
the user level by using the existing system mechanism for
NUMA (e.g., move pages() and mbind). The virtual addresses
of data objects after migration remain the same. Hence, such
architecture can avoid disruptive changes to the operating
system (OS) and application for data management on HMS.
In this paper, we migrate data at the granularity of memory
pages using move pages() at the user level. In addition, we
use the term “data migration” interchangeably with the term
“page migration”; “memory page” and “memory address“ in
the rest of the paper refer to “virtual memory page” and
“virtual memory address”. NVM endurance is out of the scope
of this paper and can be handled by memory controllers [25],
[26]. Many related works focus on performance, not on NVM
endurance [1], [4], [7], [17].

It is possible that NVM-based HMS uses an architecture
different from the above. For such case, OS may be changed
to accommodate data migration requests from the runtime. For
such case, we assume that OS exposes an API that allows
the runtime to migrate data between NVM and DRAM at the

user level and guarantees the availability of data migration
destination (NVM or DRAM).

III. DESIGN
The design goal of Tahoe is to automatically manage data

placement (or migrate data) on NVM and DRAM for tasks
with minimum runtime overhead. Initially, all data objects (or
memory pages) in all tasks are on NVM, but Tahoe moves
data objects between NVM and DRAM before task execution
to improve task performance. We describe the design of Tahoe
in details in this section.
A. Overview

Tahoe is built with four basic components for data man-
agement, including task metadata and profiling, performance
modeling, data migration, and DRAM space management. In
addition, Tahoe has three optimization techniques for per-
formance improvement. We explain the typical workflow of
Tahoe to briefly introduce the four basic components. Figure 2
generally depicts the workflow.

Tahoe decides if a task is scheduled to immediately run,
based on task metadata. Before a task (named as the “target
task” in the rest of the discussion) to run, Tahoe determines
which memory pages of the task should be migrated from
NVM to DRAM. Tahoe makes such decision based on the
information provided by the components of DRAM space
management and task profiling.

The task profiling component collects task execution in-
formation and memory access information by running rep-
resentative tasks. A representative task has the same task
type as the target task. Using the representative task, we
avoid the necessity of profiling every task. The memory
access information is collected by performance counters in the
sampling mode, such that we can attribute memory accesses
to memory pages. The memory access information is compact
to enable good performance.

To handle the cases where multiple target tasks are sched-
uled to immediately run and the DRAM space must be parti-
tioned between those tasks, we introduce a hybrid performance
model to predict what is task execution time when some
memory pages of a task is on DRAM, while other pages
of the task are on NVM. Using the performance model, the
data migration component makes the best use of DRAM for
performance improvement.

The DRAM space management component provides infor-
mation on page residency on DRAM. This component also
migrates memory pages from DRAM to NVM based on the
recency of task execution. The DRAM space management
component ensures that DRAM does not run out of space.

We describe the above components in details as follows.
B. Task Metadata and Profiling

Our runtime leverages task metadata associated with each
task to facilitate data migration. Also, data migration for each
task is based on performance profiling on representative tasks.
We describe those details in this section.

Task metadata. Task metadata is critical for data migration.
In Nanos++, each task has metadata created during task
creation. The metadata includes (1) task execution state and
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Fig. 2. The typical workflow of Tahoe

(2) data object information for task execution. The data object
information includes data addresses (starting addresses) and
data sizes for data objects referenced in the task. The data
addresses and data sizes information are useful for Nanos++
to identify data dependency between tasks. Nanos++ also has
a FIFO queue (i.e., readyQueue). This queue saves those tasks
that already resolve data dependency and are ready to run.

Tahoe leverages the existing task execution state in Nanos++
to decide when to trigger data migration. A task with the
execution state as Initialized means that the task has the
memory information ready, and Tahoe can use performance
modeling (Section III-D) to decide which data should be
migrated. A task with the execution state as ready is ready
to migrate its data, but the data migration must finish before
the runtime sets the task as active. A task with completed state
is ready to release its data for migration by Tahoe.

Tahoe leverages the existing data object information in
Nanos++ to determine which task should wait because of data
migration of other tasks. Tahoe also calculates virtual page
numbers by the aligned data addresses and data sizes. The
virtual page numbers are needed to profile page-level memory
access information for tasks (see below).

Task profiling. To decide which memory pages should be
migrated for each task, we must collect task execution infor-
mation and memory access information for memory pages.
The task execution information of a task includes number of
instructions, last level cache miss rate, and execution time
when all data of the task are on NVM. Such task execution
information is necessary for using our performance model
(Section III-D). The memory access information includes the
number of memory accesses to memory pages of the task.

To collect the above information, Tahoe profiles one in-
stance (i.e., a representative task) of each task type, and then
uses the profiling information to direct data placement for the
other instances of the same task type. This profiling method
is based on the observation that all instances of the same task
type often perform the similar computation and have similar
memory access patterns.

The task execution information can be easily measured with
common performance counters in processors. To collect the
memory access information, we use the common sampling
mode in performance counters (e.g., Precise Event-based Sam-
pling from Intel or Instruction-based Sampling from AMD).

TABLE I
THE NUMBER OF TASK TYPE FOR EVALUATION BENCHMARKS.

FFT BT Strassen CG Heat RandomAccess SPECFEM3D
6 23 10 10 1 1 22

Such a sampling mode allows us to take a sample of a
performance event (e.g., last level cache miss or first-level
cache hit) every n of such events. The sampling mode allows
us to correlate the sample with a memory address whose
associated memory reference causes the performance event.
Using the memory address and task metadata (particularly
data object addresses), we can know which memory page is
accessed and which data object is accessed.

The number of last level cache miss can indicate the
number of main memory accesses [7], [27]. Although other
events, such as prefetching and cache coherence, can also
cause main memory accesses, there is no common method
to measure those events. To measure the number of main
memory accesses, we use the approach in [27] by adding the
number of hits in the first-level cache to the number of last
level cache misses as main memory accesses, because the first-
level cache loads include accesses to prefetched data. Using
the above sampling mode, we can estimate the number of
memory accesses to all memory pages of a task and decide
the most accessed pages.

Profiling overhead analysis. The runtime overhead is
an important concern when attributing memory samples to
memory pages. In our design, such runtime overhead is
small, because of the following reasons. First, the number of
representative tasks is typically small and each task type has
many instances, which means we do not have many pages
for profiling. Studying all benchmarks (17 benchmarks) from
the BSC application repository [24], we find that the average
number of task type per benchmark is 7 (23 at most). We list
the number of task types for those benchmarks used in our
evaluation in Table I. Each task type can have at least 30,
and sometimes more than 1000 instances. Also, we observe
that in many benchmarks, each representative task has a small
memory footprint (less than a few megabytes) and the size
of the memory footprint is independent of the input problem
size of benchmarks. Having such task with a relatively small
memory footprint is due to the nature of task-parallel HPC
programs, which is to decompose computation into many fine-
grained tasks and encourage task-parallelism.

Representation of memory access information. To reduce
storage overhead of recording the number of memory accesses
to each memory page of a representative task and quickly
locate the most accessed pages, we use the following method:
we coalesce memory pages with continuous virtual addresses
and with a similar number of memory accesses (less than 10%
difference) into a memory group. The number of memory
groups in a task is much less than the number of memory
pages. The number of memory accesses for each page within
a memory group is the average number of memory accesses
of all pages within the group. The memory access information
is represented as a list of items, each of which includes the
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Fig. 3. Mapping memory access information from page level to data object
level.

number of memory accesses and starting address for either a
memory group or a memory page.

The memory access information is collected for the rep-
resentative task and cannot be directly used by other tasks,
because different tasks can use different virtual addresses for
their data objects. To solve this problem, we map the mem-
ory access information from page level to data object level.
Leveraging data semantics, the memory access information at
the data object level is generally applicable to any task with
the same task type as the representative task.

We use Figure 3 to further explain the idea. In this figure,
the task i has a memory page frequently accessed. Mapping
the memory access information from page level to data object
level, we know that this page is filled with elements of a
data object a[]. Hence, those elements of a[] are frequently
accessed. The task j has the same task type as the task i. Based
on the profiling information at data object level in task i, we
reason that those elements of a[] in task j will be frequently
accessed and the corresponding memory page will also be
frequently accessed.

Putting it all together. Tahoe maintains a hashmap, named
as a profiling database. The profiling database uses the task
type as the key and the profiling information (task execution
information and memory access information) as the value. A
task type is represented by a concatenation of the following
items: (1) the address of the first instruction in the code region
of the task type; and (2) the size of each data object listed in
the dependency clauses of the task.

Tahoe picks up tasks from readyQueue one by one to decide
data placement and run tasks. For each task, Tahoe queries
the profiling database to decide if a task with the same task
type has been executed before. If not, Tahoe will not make
any data migration for the task. Instead, the task will be
scheduled to run as usual with its data on NVM. The task
is a representative task for any instance of the same task type.
The profiling information is collected during the execution of
the representative task and saved into the profiling database.
If such a type of the task has been executed before, then the
profiling information is loaded from the profiling database for
deciding data migration and performance modeling.

Similarity of memory access patterns between tasks.
Tahoe uses a single task as a representative task for a task
type, based on the assumption that all tasks with the same task
type have similar memory access patterns. However, we find a
couple of cases, e.g., the benchmarks heat and RandomAccess
(see Table IV), that violate the assumption. Nevertheless, the

profiling result from the representative task still provides better
guidance for data placement than an HMS-oblivious runtime
(see Figure 4 and 5). Also, profiling multiple representative
tasks (instead of one) for a task type can make such guidance
even more useful.

C. Data Migration
Whenever there is a processing element ready to run a

task, a task at the front of readyQueue will be scheduled to
immediately run. Right before the task runs, Tahoe decides
which memory pages of the task should be migrated from
NVM to DRAM.

We must handle the following issues for data migration.
Deciding which memory pages to migrate. A task can

reference many memory pages. Given the limited DRAM ca-
pacity, not all memory pages can be migrated. We must decide
migrating which memory pages bring the largest performance
benefit. We make such decision using two steps.

First, we decide how many memory pages can be migrated.
Based on the DRAM space management (Section III-E), we
can know which memory pages of the task are already in
DRAM. Combining such information with the availability
of DRAM space, we can decide how many memory pages
can be migrated from NVM to DRAM. Second, based on
the profiling information (Section III-B), we decide the most
accessed memory pages to migrate and then update the DRAM
information in the DRAM space management.

Data migration for multiple tasks. When there are mul-
tiple processing elements ready to co-run multiple tasks, we
must partition the available DRAM space between the tasks
to maximize performance benefit of data migration. We use a
performance model to decide the partition.

Assume that we have K tasks to co-run. After deciding
the DRAM space partition, a task i (1 ≤ i ≤ K) has mi

pages on DRAM and its performance is perfi. To maximize
the system throughput to process tasks, we have the following
formulation, where size is the available DRAM space and
Perf is the execution time to finish all K tasks:

K∑
i=1

mi = size (1)

Perf = max
1≤i≤K

perfi (2)

To know perfi, we use a performance model (Equation 4).
To solve the above equations, we use dynamic programming.
To avoid the overhead of dynamic programming, when co-run
tasks have the same task type, we evenly partition available
DRAM space between co-run tasks without using dynamic
programming. This method is based on the observation that
tasks with the same task type have similar memory access
patterns in most cases.

Handling conflicting decisions on page migration. A
memory page can be referenced by more than one task, and
multiple tasks can make conflicting decisions on the placement
of a page. For such a case, we always place the page on
DRAM, because those tasks that decide to place the page
on NVM do not lose performance when the page is actually
placed on DRAM.
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D. Performance Modeling

Performance modeling is used to decide the DRAM space
partition between multiple tasks, when those tasks are ready to
be run by multiple processing elements. To achieve the above
modeling goal, our performance model aims to predict the
performance for a task when a part of its memory pages is on
DRAM and the other part is on NVM (i.e., perfi for task i
in Equation 2).

Our performance model has two parts. The first part uses a
machine learning model to predict the performance of a task
with all of its memory pages on DRAM (we name such a case
as complete data placement). The second part is based on the
first one and predicts the performance when some (not all)
of the task’s memory pages are placed on DRAM (we name
such case as partial data placement). The second part is an
analytical model.

We have the following requirements for our performance
modeling. (1) Application generality: the model must work
for a large variety of applications; (2) Complexity: the model
must be simple enough to have low runtime overhead; (3)
Usability: the model must have low programmer involvement;
(4) Hardware generality: the model must be easily extensible
to different hardware platforms. We describe our performance
model in details as follows.

1) Performance Modeling for Complete Data Placement:
We introduce a performance model based on machine learning.
We do not use analytical modeling because when capturing
the sophisticated relationship between execution time and
performance events, the analytical modeling tends to be com-
plex (e.g., [28]). It can bring large runtime overhead and
construction difficulty, violating the above requirements (2)-
(4).

Given a task, the machine learning model uses the following
information as input: (1) last level cache miss rate, and (2)
IPC (instructions per cycle) when all memory pages of the
task are on NVM. The model outputs (predicts) IPC for task
execution when all memory pages of the task are on DRAM.
The input of the model can be obtained from the profiling
database. In particular, using the task type as a key, we can get
the task execution information collected from a representative
task from the database. Based on this information, we calcu-
late the model input. With the model output (i.e., predicted
IPC), we calculate the task execution time of complete data
placement, using the number of instructions obtained from the
profiling database.

We choose last level cache miss rate and IPC as the model
input, because they are highly correlated with performance
variation across different cases of data placement, and hence
can serve as important performance indicators. In particular,
the last level cache miss rate reflects how intensively main
memory is accessed. The performance of an application with
a high last level cache miss rate could be sensitive to the
change of main memory bandwidth and latency. IPC can
reflect main memory access intensity and overlapping between
computation and memory access. The performance of an

TABLE II
TRAINING TIME AND PREDICTION ACCURACY. NVM BANDWIDTH IS 1/X

BANDWIDTH OF DRAM (x = 4, 8, AND 16).

Multiple LR model ANN model
NVM bandwidth 1/4 1/8 1/16 1/4 1/8 1/16

Average training time
per epoch (s)

25.3 23.5 22.4 32.4 31.7 33.8

Total training time (s) 207.2 191.4 195.0 254.9 249.6 262.3
Average prediction er-
ror

10.9% 26.4% 45.9% 3.6% 4.1% 5.1%

Prediction error vari-
ance

0.2 57.2 4.7×
103

0.007 0.016 0.017

application with high IPC may not be sensitive to the change
of main memory bandwidth and latency.

We explore two common supervised machine learning tech-
niques to build our models and meet the modeling require-
ments: multiple linear regression analysis (LR) and artificial
neural network (ANN).

Multiple LR analysis. Our regression model is as follows.
y = β1x1 + β2x2 + ε (3)

where x1, and x2 are IPC and last level cache miss rate,
respectively. y is the predicted IPC. β1, β2 and ε are modeling
coefficients we learn through model training.

ANN. A typical ANN has a number of neurons. Each
neuron receives inputs from other neurons or ANN input,
and produces an output via activation functions. Neurons,
connected with weights and organized as layers, constitute the
network structure of ANN.

In our model, we use a three-layer, fully-connected ANN
containing one input layer with ten input neurons, one hidden
layer with five neurons, and one output layer with one output
neuron. We use such simple ANN to avoid large runtime
overhead when making online performance prediction. We use
Rectified Linear Unit (ReLu) as the activation function in our
ANN.

Model training and validation. We use seven task par-
allel benchmarks (see Table IV) from the BSC application
repository [24] for model training and validation. In particular,
we choose every six benchmarks of the seven task-parallel
benchmarks to build two models (LR and ANN), and use
the one remaining benchmark for validation (training and
validation use different data sets). In total, we build seven
LR models and seven ANN models for cross-validation. For
each model, we have at least three million tasks from six
benchmarks for training, and use at least 0.7 million of tasks
from one remaining benchmark for validation.

The training data is collected in a machine described in
Section IV. On this machine, we configure our NVM emu-
lation with three different bandwidth (1/4, 1/8, and 1/16 of
DRAM bandwidth). Hence, we have three NVM cases, and
for each case, we collect the training data to train the two
models (LR and ANN). The average training time of those
models is summarized in Table II. Overall, the training time
is short less than five minutes for all cases.

Performance modeling accuracy. Table II shows the pre-
diction accuracy and reveals that the ANN model achieves high
prediction accuracy (less than 6% prediction error on average)
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for the three different NVM cases. LR, however, does not
predict well (e.g., 45.9% prediction error on average, when the
NVM bandwidth is configured as 1/16 of DRAM bandwidth).
Hence we use the ANN model in Tahoe.

Modeling complexity. Our ANN model is simple. The
model training happens offline, and to make a prediction
at runtime, the model uses 76 floating point multiplications
and 75 floating point additions. As a result, the modeling
complexity is low.

In summary, our ANN model meets our modeling require-
ments: it has good application generality and is simple and
usable. The model training time is also short.

However, the machine learning-based performance model-
ing is not suitable for making performance prediction for par-
tial data placement (more complicated data placement cases),
because we have to introduce at least two more input (one for
DRAM and the other for NVM) to represent and distinguish
cases with different numbers of memory pages on DRAM
and NVM and possibly a couple more input to characterize
memory access patterns to improve modeling accuracy. This
increases model parameters by at least 40% (considering just
two more input). Such a model is not only difficult to train
but also brings large runtime overhead, which violates the
model requirements on complexity, usability, and generality.
This problem, in essence, comes from the lack of flexibility
to build and use the machine learning model.

2) Performance Modeling for Partial Data Placement: We
introduce an analytical model to make performance prediction
for partial data placement. The model uses the prediction result
of the complete data placement and uses simple formula-
tion and parameters to capture the performance relationship
between complete and partial data placement. The model
avoids the problem of model training and concerns on runtime
overhead in the machine learning model.

The analytical model is based on the following rationale.
Assume that Tc NVM and Tc DRAM are the execution times
with complete data placement on NVM and DRAM, respec-
tively. We have performance difference (Tc NVM−Tc DRAM ),
and the performance difference between partial data placement
(Tp) and complete data placement on DRAM (Tc DRAM )
should be less than (Tc NVM − Tc DRAM ). In general, more
NVM accesses in partial data placement result in a larger
performance difference between partial data placement and
complete data placement on DRAM. Such a performance
difference should be related to the ratio of NVM accesses
to total memory accesses (including both DRAM and NVM
accesses).

Tp = (Tc NV M − Tc DRAM )×
p nvm acc

tot mem acc
+ Tc DRAM (4)

Equation 4 shows the model based on the above rationale
and predicts the performance for partial data placement (Tp).
Tc NVM in the model is measured and obtained from the
profiling database. Tc DRAM is the predicted execution time
with the ANN model. (Tc NVM − Tc DRAM ) is the perfor-
mance difference for complete data placement, which is the

TABLE III
PERFORMANCE PREDICTION ERROR FOR PARTIAL DATA PLACEMENT

Benchmarks FFT BT Strassen CG Heat RA SPECFEM3D

p nvm acc 5.7×
107

1.9×
108

7.7×
106

4.3×
107

5.2×
107

1.0×
108

7.4×
107

tot mem acc 1.2×
108

4.1×
108

1.6×
107

7.4×
107

2.2×
108

2.7×
108

1.45×
108

p nvm acc
tot mem acc 0.48 0.46 0.48 0.58 0.24 0.37 0.51
Prediction error 6.9% 3.6% 3.0% 1.5% 3.0% 3.0% 6.5%

largest performance difference we can have. The performance
difference for partial data placement scales the largest per-
formance difference by (p nvm acc/tot mem acc), where
p nvm acc is the number of NVM accesses in partial data
placement and tot mem acc is total number of memory
accesses in complete data placement. p nvm acc is the model
input and can be leveraged to explore the performance of
various data placement as in Equation 2. tot mem acc is
measured and obtained from the profiling database.

To verify the modeling accuracy, we test the seven bench-
marks listed in Table IV. We use a machine with two NUMA
nodes to emulate NVM based on Quartz [29] emulator. Sec-
tion IV has more details on our test platform. We do not set
the limitation on DRAM size. Both DRAM and NVM can
hold all memory pages of the benchmarks. We collect the
execution times and the number of memory accesses on NVM
and DRAM under three configurations: (1) placing all memory
pages on NVM, (2) memory is allocated using a round robin
approach on both NVM and DRAM, and (3) placing all
memory pages on DRAM. The model makes performance
prediction for the second configuration, and uses the first
and third configurations as model inputs. We compare the
measured time and predicted time for the second configuration,
and compute the prediction error shown in Table III. In
summary, the prediction error is less than 7%, demonstrating
the effectiveness of our model.

E. DRAM Space Management
DRAM space management has two functionalities: (1)

recording which memory pages are in DRAM; (2) migrating
memory pages from DRAM to NVM when DRAM runs out
of space and there is a task pending to execute.

To implement the first functionality, Tahoe represents
DRAM pages as a list of memory regions. Each memory
region is represented as the starting address and size of the
region. Each memory region is a set of memory pages with
continuous addresses. If a task wants to check which pages
of the task are on DRAM, it sends the address ranges of
its memory pages, and compares its address ranges with the
address ranges in the list of memory regions.

All memory pages are initially allocated on NVM and no
memory page is on DRAM. As memory pages are migrated
from NVM to DRAM, DRAM can run out of space, and we
must migrate some page from DRAM to NVM to accommo-
date new memory pages from the upcoming task executions.

To decide which DRAM pages should be migrated to NVM,
we could use an LRU policy and migrate those pages that
are the least used. However, this would require the runtime to
continuously track memory references to DRAM pages, which
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is costly. To avoid large runtime overhead, we migrate those
DRAM pages that are used by the least recently executed task.
In particular, Tahoe maintains a FIFO queue with a length
of ten to record DRAM memory footprints of the last ten
executed tasks. If DRAM runs out of space, DRAM pages
referenced by the task at the end of the queue are moved out
of DRAM.

In other words, we migrate memory pages from DRAM to
NVM based on the recency of task execution, not the recency
of memory usage. This method has some limitation, however.
A memory page used by the least recently executed task can
still be referenced by recently executed tasks, and it is possible
that the memory page will be accessed by the upcoming tasks
too. To reduce this limitation, before migrating pages from
DRAM to NVM, we quickly examine readyQueue to check
if the most upcoming task is going to use the pages pending
to migrate from DRAM to NVM. We do not migrate those
DRAM pages that are going to be used by the most upcoming
task.
F. Performance Optimization

We introduce several techniques to improve performance.
Using helper thread to reduce data migration cost. After

migrating data for the task at the front of readyQueue, it is
possible that DRAM still has space. For such case, Tahoe will
proactively migrate data for the task after the front task in the
queue. Such proactive data migration is implemented with a
helper thread running in parallel with Tahoe, overlapping with
task computation and minimizing data migration cost.

Performance optimization for data migration. Calling the
page migration function (i.e., move pages()) involves flushing
translation lookaside buffer (TLB). Migrating multiple pages
of a task with one invocation of move pages() often triggers
TLB flush multiple times. TLB flushing is known for causing
a large performance overhead [30], [31]. Hence, we combine
multiple TLB flushes in one invocation of move pages() into
one TLB flush. Such a method reduces the number of TLB
flushes, hence improve performance.

Note that an invocation of move pages() only migrates
pages for one task, not for multiple tasks, because a task
cannot execute until the page migration function finishes.
An invocation of move pages() for multiple tasks delays the
execution of multiple tasks and reduces system throughput.

Optimization of task scheduling. Tasks with the same
parent usually perform the same computation and work on
overlapped memory pages. Based on such observation, we
slightly change scheduling orders of tasks in readyQueue, such
that those tasks with the same parent are scheduled one after
another. Such a task scheduling strategy maximizes DRAM
page reuse before DRAM pages are evicted out of DRAM.
G. Discussions

NVM has asymmetric memory read and write latencies.
However, we do not distinguish memory read and write,
because using software techniques (e.g., using mprotect to
make memory pages read-only and trigger a signal when write
occurs) to collect read and write information for pages can be

very costly. Most runtime designs for NVM rely on hardware
mechanisms [32], [11], [33] to consider latency difference of
read and write. The existing runtime solutions [1], [2], [3],
[4], [7] do not consider such difference.

When profiling tasks and using performance models, we do
not consider performance interferences between tasks. Those
interferences can cause cache conflict misses and memory
accesses. Due to the dynamic scheduling nature of task
parallel programs, quantifying and predicting those perfor-
mance interferences require runtime to infer possible task
execution scenarios, which greatly increases runtime overhead
and complicates runtime design. Hence, we do not consider
performance interferences in our runtime.

IV. EVALUATION

Experiment methodology. We use a 16-core machine with
two eight-core Xeon E5-2630 processors and 32GB DDR4
(two NUMA memory nodes). We use this machine for model
training and validation in Section III-D. We use Quartz [29]
for NVM emulation. Quartz can emulate NVM with a range
of latency and bandwidth, and offer high emulation accuracy.
With Quartz, one NUMA node of the machine is used as
NVM, while the other is as DRAM. We use six benchmarks
from the BSC application repository [24] and one production
code SPECFEM3D [34]. Appendix A has more details for
benchmarks. For performance profiling, we use the sampling-
based approach with sample rate as 1000. Such sampling
rate offers high modeling accuracy with tolerable runtime
overhead [7].

We use six systems for evaluation: HMS with Tahoe, un-
managed HMS with default Nanos++ (i.e., the HMS-oblivious
runtime), DRAM-only (no NVM) with Nanos++, NVM-only
(no DRAM) with Nanos++, HMS with X-mem [1], and HMS
with Unimem [7]. With the unmanaged HMS, Linux allocates
memory with no knowledge of the underlying memory types
but is restricted by a limited DRAM size. X-mem and Unimem
are two recent software-based solutions for data placement on
HMS. X-mem uses offline profiling to characterize memory
access patterns and make the decision on data placement.
Unimem makes data placement decision at the granularity of
execution phases delineated by MPI operations. Because five
of our benchmarks do not have MPI, we delineate execution
phases by task code regions for evaluating Unimem. Unless
otherwise indicated, we use eight threads for evaluation and
use the performance of the unmanaged HMS for performance
normalization, and NVM is configured with 1/4 DRAM
bandwidth. Unless otherwise indicated, we choose 128MB as
DRAM size, which is the same as recent work [35], [7], [33],
[36]. Such DRAM size is smaller than the total size of all data
objects of the benchmarks, such that not all memory pages of
the benchmarks are on DRAM. We list the ratio of the DRAM
size to the total size of data objects of each benchmark in
Table IV.

Basic performance tests. We first compare the performance
(execution time) of the six systems. NVM has 1/4 DRAM
bandwidth (Figure 4) or 4x DRAM latency (Figure 5).
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Fig. 4. Performance (execution time) comparison between unmanaged HMS,
NVM-only, X-mem, Unimem and Tahoe. The performance is normalized to
that of unmanaged HMS. NVM has 1/4 DRAM bandwidth.

Fig. 5. Performance (execution time) comparison between Unmanaged HMS,
NVM-only, X-mem, Unimem and Tahoe. The performance is normalized to
that of unmanaged HMS. NVM has 4x DRAM latency.

Using the performance of the unmanaged HMS as the
baseline, X-mem, Unimem and Tahoe reduce execution time
by 5%, 11% and 21% on average respectively, when NVM has
1/4 DRAM bandwidth. When NVM has 4x DRAM latency, X-
mem, Unimem and Tahoe reduce execution time by 10%, 14%
and 26% on average, respectively. The unmanaged HMS does
not know underlying memory types in HMS. Thus, it does not
make good use of DRAM. Tahoe outperforms X-mem and
Unimem by 16% and 11% on average, respectively. Tahoe
performs better than X-mem, because X-mem uses offline
profiling and uses the same data placement decision for all
tasks. X-mem avoids frequent data movement, but lacks the
flexibility of data movement to maximize performance benefit
of using DRAM. Unimem does not have the problem of X-
mem, but it performs worse than Tahoe, because Unimem
lacks a good capability to migrate large data objects from
NVM to make best use of DRAM.

Detailed performance analysis. We quantify the contribu-
tion of our three optimization techniques to total performance
improvement in Figure 6. The three techniques are (1) using
helper thread for proactive data migration (labeled as “Using
helper thread”), (2) performance optimization for data migra-
tion (labeled as “Optimized migration”), and (3) optimization
of task scheduling (labeled as “Optimized scheduling”).

We perform our analysis with the following method. We
first remove the three techniques from Tahoe. The performance
result of this case is labeled as “Preliminary Tahoe”. We
then compute performance difference between the preliminary
Tahoe and unmanaged case. Such performance difference is
the performance contribution of the preliminary Tahoe. We
then add the three techniques one by one. In particular, we
apply (1), and then apply (2) to (1), and then apply (3) to
(1)+(2). We measure performance variation for each case. Such
performance variation is the performance contribution of each

Fig. 6. Quantifying the performance contributions of the three optimization
techniques.

optimization technique. We normalize the performance con-
tributions of all cases by the performance difference between
the full-featured Tahoe and unmanaged case.

Figure 6 shows the results. We notice using helper thread for
proactive data migration particularly works well for CG and
Strassen, because the two benchmarks have many tasks with
small data sizes. Those tasks cannot make best use of DRAM,
hence brings opportunities for proactive data migration. The
technique of optimized migration makes big contributions to
FFT, because FFT has a relatively large number of page migra-
tion requests shown in Figure 9. The technique of optimized
scheduling makes limited contributions (comparing with other
techniques), except in the benchmarks FFT, Strassen, and
BT. Those benchmarks often use recursive task parallelism,
thus have many tasks with the same parents, which provides
opportunities for applying optimized scheduling.

Performance sensitivity analysis. We change NVM band-
width and latency, number of threads, number of nodes and
DRAM size to study how Tahoe responses with the various
system configurations. In this section, we present the results
for changing the number of threads, but leave the other results
in Appendix B.

When changing the number of threads, our machine can
only offer 8 threads at most because of Quartz emulation. To
enable better performance study, we use the Edison super-
computer at Lawrence Berkeley National Lab (LBNL). Each
node of Edison has two 12-core Intel Ivy Bridge processors
(2.4 GHz) with 64GB DDR3 (two NUMA nodes). On this
platform, we leverage its NUMA architecture to emulate NVM
instead of using Quartz, because Quartz requires the user
to have privilege access to the test system, and we do not
have such access on Edison. On the Edison nodes, threads
run on one processor using the processor’s local attached
NUMA node as DRAM and the remote NUMA node as NVM.
The latency and bandwidth difference between the remote
and local NUMA nodes emulates the difference between
NVM and DRAM. The emulated NVM has 60% of DRAM
bandwidth and 1.89x of DRAM latency. Because of such
NVM emulation, the Edison node can offer up to 12 threads.

Figure 7 shows the results when we change the number
of threads (from 1 to 12 threads) on an Edison node. We
only report average performance of all benchmarks, because
of limited paper space. Tahoe performs well consistently in
all cases. In particularly, FFT (not shown in Figure 7) has
only 2% performance variance when we change the number
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Fig. 7. Tahoe performance (execution time) sensitivity to the number of
threads on a single Edison node. Performance is average performance of all
benchmarks. Performance is normalized to that of unmanaged HMS.

Fig. 8. Memory access breakdowns. The number of memory accesses is
normalized by that of the unmanaged cases.

Fig. 9. Comparing different systems in terms of number of page migrations
per second.

of threads. RandomAccess (not shown in Figure 7) has the
largest performance difference (only 6%).

Memory utilization analysis. Figure 8 shows the number
of main memory accesses for DRAM and NVM, normalized
by the numbers with the unmanaged cases. Tahoe has larger
numbers of DRAM memory accesses than other systems, and
hence effectively utilizes DRAM space. This result is aligned
with Figures 4 and 5, where Tahoe performs consistently better
than other systems.

Figure 9 shows number of page migrations per sec. The
unmanaged and NVM-only do not have page migration. X-
mem does not have either, because it is not a runtime solution.
The page migration is more frequent in Tahoe than in Unimem,
because Tahoe and Unimem work on different data granulari-
ties (page vs. data object). The finer-grained data migration as
in Tahoe triggers more frequent data migration and makes the
best use of DRAM, which transforms to better performance.

V. RELATED WORK

Data management on HMS. Software-based solutions are
summarized as follows. Du et. al [4] develop an offline profil-
ing tool to analyze memory accesses to guide data placement.
Lin et. al [3] introduce an OS service for asynchronous
memory movement on HMS. Dulloor et. al [1] introduce a data
placement runtime based on classification of memory access

patterns. Giardino et. al [2] rely on OS and application co-
scheduling data placement. Wu et.al [7] introduce MPI runtime
for data placement. Yu et. al [17] propose three bandwidth-
aware memory placement policies. Perarnau et.al [37] study
data migration performance with user-space memory copy and
Linux kernel-based memory migration. They demonstrate the
importance of choosing a good ratio of worker threads to
migration threads for performance.

Different from the prior efforts, our work does not require
offline profiling as in [1], [4] nor programmer involvement
to identify memory access patterns as in [2]. Our work also
supports data migration for large data objects which is not
fully supported in [7]. Furthermore, our work does not require
the modification of OS, which is different from [3], [17]. We
do not use user-space memory copy as in [37], because that
may involve extensive application modification to use new data
addresses after data copy.

Hardware-based solutions are summarized as follows. Yoon
et al. [11] dynamically determine data placement based on row
buffer locality. Wang et al. [5] use static analysis and memory
controller to determine replacement on GPU. Wu et al. [6]
use numerical algorithms and hardware modification to decide
data replacement. Agarwal et al. [38] introduce a bandwidth-
aware data placement on GPU. The major drawback of those
solutions is hardware modifications. Some work, such as [9],
[10], [5], [11], ignores application semantics and triggers data
movement based on temporal memory access patterns, which
could cause unnecessary data movement. Our work avoids
hardware modification and leverage application semantics.

Performance optimization for task parallel programs.
Papaefstathiou et al. [39] modify hardware to prefetch task
data and guide the replacement decision in caches. Ni et
al. [40] uses a runtime based on Charm++ to prefetch data
into fast memory. This work, however, cannot decide optimal
data placement for multiple ready tasks. Pan and Pai [41] in-
troduce a runtime to instruct hardware to prioritize data blocks
with future reuse. This work needs application and hardware
modifications. Li et al. [16] adopt machine learning to estimate
scheduling performance for task parallel programs. However,
they cannot predict performance for various data placement
cases. Our work is different from the existing efforts, and we
are the first one to study performance optimization for task
parallel programs on NVM-based HMS.

VI. CONCLUSIONS
Using runtime of a programming model to direct data

placement on HMS is promising. In this paper, we introduce
a runtime system for task parallel programs. It leverages task
metadata and representative tasks to collect memory access
information and make data migration decisions. It uses a
hybrid performance model to decide optimal data placement
for multiple tasks. Our runtime system effectively uses DRAM
space for performance improvement.
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APPENDIX A
BENCHMARK INFORMATION

In the evaluation, we use six task parallel benchmarks
from the BSC application repository [24] and one production
code SPECFEM3D [34]. Table IV summarizes their input
parameters and the ratio of the DRAM size (128 MB) to the
total size of data objects of each benchmark.

TABLE IV
BENCHMARKS FOR EVALUATION. SIZE RATIO IS THE RATIO OF DRAM

SIZE TO THE TOTAL SIZE OF ALL DATA OBJECTS.

Benchmark Input Parameter Size ratio
FFT 4096× 4096 double matrix 1:15

BT-MZ (BT) CLASS=C NPROCS=1 1:10
Strassen 4096× 4096 double matrix 1:5

CG 4096× 4096 double matrix 1:6
Heat (Jacobi) 4096× 4096 double matrix 1:10

RandomAccess (RA) 1024MB memory with 1000 tasks 1:9
SPECFEM3D (SF3D) NEX XI=128 NEX ETA=128 1:11

APPENDIX B
ADDITIONAL STUDY FOR PERFORMANCE SENSITIVITY

Except for the experiments presented in the evaluation
section (Section IV), we perform other sensitivity study. In
particular, we change NVM bandwidth and latency, number
of nodes and DRAM size to study how Tahoe responses with
the various system configurations. Except Figure 12, we report
average performance of all benchmarks in this section, because
of limited paper space.

Figure 10 shows the results when NVM has 1/4, 1/8 and
1/16 DRAM bandwidth. Tahoe brings larger performance
gains (from 21% to 29%) as NVM bandwidth decreases
from 1/4 to 1/16 DRAM bandwidth. This result is especially
pronounced in RandomAccess (not shown in Figure 10): The
performance gain increases from 32% to 86% as the NVM
bandwidth decreases from 1/4 to 1/8 DRAM bandwidth.

Fig. 10. Tahoe performance (execution time) sensitivity to NVM bandwidth.
The performance is average performance of all benchmarks. Performance is
normalized to that of unmanaged HMS.

The performance results are slightly different when we
increase NVM latency from 4x to 16x DRAM latency (Fig-
ure 11). Tahoe has only 4% performance variance when NVM
latency increases. The biggest improvement (from 28% to
37%) happens in CG (not shown in Figure 11).

Figure 12 shows the results when we use different number
of nodes (up to 64 nodes). We perform strong scaling tests. We

Fig. 11. Tahoe performance (execution time) sensitivity to NVM latency.
The performance is average performance of all benchmarks. Performance is
normalized to that of unmanaged HMS.

Fig. 12. Tahoe performance (execution time) sensitivity to the number of
nodes on Edison. Performance is normalized to that of unmanaged HMS.

Fig. 13. Tahoe performance (execution time) sensitivity to DRAM size.
Performance is average performance of all benchmarks. Performance is
normalized to that of unmanaged HMS.

only use BT and SPECFEM3D, because other benchmarks do
not have MPI support. For each test, we use one MPI process
per node, and each MPI process uses either 4 or 8 threads. For
BT, we use CLASS D as input problem; For SPECFEM3D, we
use NEX XI = 256 and NEX ETA = 128. As the system scale
becomes larger, the performance gain of Tahoe decreases from
10% to 3% and from 16% to 4% for BT and SPECFEM3D,
respectively (comparing with the unmanaged case), because
the memory footprint size per node becomes smaller and more
data objects can be placed into DRAM by the unmanaged
case. Tahoe performs well in all cases no matter how large
the memory footprint size is.

Figure 13 shows the results when we change the DRAM
size. Overall, Tahoe brings performance benefit in all cases
(comparing to the unmanaged case), but as the DRAM size
becomes bigger, the benefit decreases from 21% to 15%,
because a larger DRAM provides better opportunities to place
data on DRAM for the unmanaged case.
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