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Abstract—Training neural network (NN) often uses a machine
learning framework such as TensorFlow and Caffe2. These
frameworks employ a dataflow model where the NN training
is modeled as a directed graph composed of a set of nodes.
Operations in NN training are typically implemented by the
frameworks as primitives and represented as nodes in the
dataflow graph. Training NN models in a dataflow-based machine
learning framework involves a large number of fine-grained
operations whcih present diverse memory access patterns and
computation intensity. Managing and scheduling those operations
is challenging, because we have to decide the number of threads
to run each operation (concurrency control) and schedule those
operations for good hardware utilization and system throughput.

In this paper, we extend an existing runtime system (the
TensorFlow runtime) to enable automatic concurrency control
and scheduling of operations. We explore performance modeling
to predict the performance of operations with various thread-
level parallelism. Our performance model is highly accurate
and lightweight. Leveraging the performance model, our runtime
system employs a set of scheduling strategies that co-run opera-
tions to improve hardware utilization and system throughput.
Our runtime system demonstrates a significant performance
benefit. Comparing with using the recommended configurations
for concurrency control and operation scheduling in TensorFlow,
our approach achieves 36% performance (execution time) im-
provement on average (up to 49%) for four neural network
models, and achieves high performance close to the optimal one
manually obtained by the user.

I. INTRODUCTION

Neural networks (NN) have been adopted by a wide range
of application domains. NN models employ increasingly larger
number of parameters and data sets. Training such complex
models demands immense computation and memory resources
and time. Training NN models have been becoming a killer
application in large-scale data centers.

Training NN models often use a machine learning
(ML) framework, such as TensorFlow [1], Caffe2 [2] and
MXNet [3]. These frameworks employ a dataflow model
where the NN training is modeled as a directed graph com-
posed of a set of nodes. Operations, such as array concatena-
tion, matrix multiplication and 2D convolution, are typically
implemented by the frameworks as primitives and represented
as nodes in the dataflow graph. In the dataflow graph, edges
between nodes capture dependencies between nodes. An op-
eration is ready to run, as long as its dependencies (data or
control dependencies) are resolved.

Training NN models in an ML framework such as Tensor-
Flow involves a large number of fine-grained operations [4].

For example, our profiling results on training a common NN
model (Inception v3) using TensorFlow reveal that training
this NN model easily includes 16,000 operations in a single
training step. Those operations have diverse memory access
patterns and computation intensity. How to manage and sched-
ule the operations is challenging due to the following reasons.

First, running those operations often needs to decide appro-
priate thread-level parallelism. For each operation, we must
choose an appropriate number of threads to parallelize the
operation. In other words, we must decide intra-op paral-
lelism for each operation. Some operations do not have good
scalability, because of caching effects and thread spawning
overhead. Using the largest number of threads on a manycore
machine to run those operations does not necessarily result in
the best performance [5]. The problem of intra-op parallelism
is coupled with the thread affinity problem (i.e., deciding the
binding between threads and cores) [6], which makes this
concurrency control problem even more challenging.

Second, we must decide how to co-run operations. When
operations do not have unresolved dependency and each
individual operation does not sufficiently utilize hardware
resources (e.g., physical cores), co-running operations may
improve hardware utilization and increase system throughout.
Co-running operations decide which operations should co-run
and the execution order of those operations. In other words,
we must decide inter-op parallelism for better performance.
In essence, co-running operations is a scheduling problem.

Decisions on intra-op parallelism and intra-op parallelism
for operations are often coupled. Given a manycore machine
with tens of cores, we have a large search space to make
the decisions. Currently, there is no a systematic approach to
efficiently control operations concurrency and schedule those
large amount of operations in a NN training workload. The ex-
isting runtime system in machine learning frameworks simply
uses the same intra-op parallelism for all operations and sched-
ule operations simply according to operation dependency [7].
Although the ML frameworks give the user flexibility to set
intra-op and inter-op parallelisms for operations, manually
deciding them for all operations is impractical and often leads
to poor performance [8].

We envision that optimizing concurrency and scheduling
those operations will become more challenging, because the
future NN models could involve more diverse and larger
number of operations. This trend is driven by the necessity
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of using deeper and more complex models to improve model
accuracy and the necessity of enabling dynamic interaction
with execution environment to improve model usability [9].

In this paper, we extend the TensorFlow runtime to enable
automatic selection of intra-op parallelism for each operation
and schedule operations for better performance of co-running
operations. Our runtime is driven by performance models
which aim to predict performance for operations with various
intra-op parallelism. We explore two performance modeling
methods. In the first method, we employ regression models
that use performance events collected by hardware counters
as input features. The runtime collects those features by
dynamically profiling operations for a few times with different
intra-op parallelisms. Our results show that this method does
not provide good prediction accuracy and cannot effectively
guide the selection of intra-op parallelism for operations. In the
second method, we use a hill climbing algorithm to explore the
shortest execution time and corresponding number of threads
for each operation. Leveraging the execution history of the hill
climbing approach, we predict the execution time of operations
with various intra-op parallelisms. The hill climbing approach
is very lightweight and causes high prediction accuracy (95%
with an appropriate configuration).

Based on the hill climbing algorithm-based performance
model, our runtime system explores a set of scheduling
strategies. In particular, we avoid frequent change of operation
concurrency, because that causes performance loss due to
cache thrashing and thread management overhead. We co-run
multiple operations based on the performance model to max-
imize hardware utilization. We also leverage hyper-threading
to allow multiple operations to share the same physical cores
to improve system throughout.

The major contributions of the paper is the following:
• We explore performance modeling to predict performance

of operations with various intra-op parallelism; Our per-
formance model is highly accurate and lightweight, hence
can be effectively leveraged by the runtime to decide
intra-op and inter-op parallelism of operations.

• We study scheduling strategies that co-run operations to
improve hardware utilization and system throughput.

• We extend the TensorFlow runtime and demonstrate a sig-
nificiant performance benefit of our approach. Comparing
with the default configuration of intra-op and inter-op
parallelisms for NN training in TensorFlow, our approach
achieves 36% performance improvement on average (up
to 49%) for four NN models, and achieves performance
close to the optimal one manually obtained by users.

II. BACKGROUND

A. Neural Network Training

NN training could be expensive, because it is an iterative
process involving large training data sets. Many NN take
hours or even days for training, even on the state-of-the-
art GPU [10]. Although using GPU to train neural network
is common, using multi/many-core processors (e.g., Intel
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Fig. 1: Performance variance of three operations with different
intra-op parallelisms. The reported execution time is the total
execution time of one thousand runs.

Knights Landing) to train neural network is also becoming
common [11], [12].

Training an NN often involves a large number of iterative
steps (thousands and even millions of steps). In each step,
a batch of samples is fed into the NN. Except the first step
which is often used for performance profiling to determine
appropriate data layout [13], initialize data based on device
configuration, and estimate performance by a cost model
empirically or analytically [1], all other steps have the same
computation and memory access patterns. Performance of each
step (particularly execution time and the number of main
memory accesses) remains stable across steps. The above
characteristics allow us to build performance models based on
dynamic profiling of the first few steps and use the profiling
results to improve performance of the following steps.

Note that the word “performance” in this paper refers to the
execution time, not modeling accuracy of NN.

B. Dataflow-Based Machine Learning Framework

The state-of-the-art ML frameworks, such as TensorFlow,
Caffe2 and MxNet, decompose an ML model into fine-grained
operations. Similar to task-based parallel programming mod-
els [14] such operation-based ML frameworks greatly improve
hardware utilization and system throughput [1]. Within a
training step of NN training, there can be tens of different
operations, and each operation can be invoked hundreds of
times, each of which is an operation instance. Different
instances of an operation can have different input data sizes.

TensorFlow allows users to control operation concurrency.
The operation concurrency includes inter-op parallelism and
intra-op parallelism. However, such control of operation con-
currency has to be manually decided by the user. Furthermore,
the intra-op parallelism is enforced uniformly on all opera-
tions, ignoring the scalability difference between operations.

C. Motivation Examples

We study the performance characteristics of operations to
motivate our concurrency control and operation scheduling.
We perform our study from three perspectives: (1) Operation
performance variance with different thread-level parallelisms;
(2) Impact of the input data size on operation performance;
(3) Performance impact of co-running operations.

2



TABLE I: Study the performance of NN models with different
inter-op and intra-op parallelisms. The performance baseline
for calculating speedup is the performance with the configura-
tion recommended by the TensorFlow programming guide (68
threads for intra-op parallelism and 1 for inter-op parallelism).

Parallelism ResNet-50 DCGAN
Inter-op Intra-op Time (ms) Speedup Time (ms) Speedup

1 34 1414 0.98 484 1.21
1 68 1382 1.00 524 1.00
1 136 2257 0.61 1045 0.50
2 34 1088 1.27 411 1.28
2 68 1213 1.14 501 1.04
2 136 4017 0.34 1238 0.42
4 34 1169 1.18 434 1.21
4 68 3048 0.45 565 0.93
4 136 4782 0.29 1469 0.36

TABLE II: Study the impact of input data size on operation
performance. The performance baseline for calculating perfor-
mance variance is the performance with using 68 threads. The
reported time is the total execution time of one thousand runs.

Operation Type Input data size Time (s) Intra-Op Parallelism Performance Variance

Conv2DBackpropFilter
(32,8,8,384) 7.2 26 17.3%

(32,17,17,384) 11.1 42 10.2%
(32,8,8,2048) 20.3 68 0%

Conv2DBackpropInput
(32,8,8,384) 5.8 36 9.8%

(32,17,17,384) 8.7 56 2.3%
(32,8,8,2048) 19.6 68 0%

Conv2D
(32,8,8,384) 4.7 45 11.1%

(32,17,17,384) 7.4 63 3.5%
(32,8,8,2048) 14.8 66 2.0%

Hardware platform. We use Intel Knights Landing (KNL)
processor (Xeon Phi 7250) as a manycore example in the rest
of the paper. Several leadership supercomputers are based on
KNL, including Cori at Lawrence Berkeley National Lab and
Theta at Argonne National Lab. KNL provides strong com-
putation capabilities to train and deploy neural networks [15].
We use KNL processors at Cori for our study.

A KNL processor can contain 68 cores, each of which
supports four hardware threads (in total 272 hardware threads).
68 cores are organized into 34 tiles (i.e., two cores per tile).
Two cores in the same tile share a 1 MB L2 cache (the last
level cache). KNL has a 16GB on-package high-bandwidth
memory. This memory can be configured as a transparent,
direct-mapped hardware cache. This configuration is called
“cache mode”. The cache mode is the most common mode
in a KNL-based HPC. All the tests in this paper use the cache
mode of KNL. With the cache mode, all data sets of NN
models in our tests are placed in the high-bandwidth memory
and there is no effect of non-uniform memory access (NUMA).

We use TensorFlow (v1.9) in our study. We develop a per-
formance profiling framework by leveraging TensorBoard [16]
and Intel VTune [17] to collect timing and hardware counter
information of operations. The default intra-op and inter-op
parallelisms in Tensorflow are set as the number of logical
cores of the hardware platform (272 in KNL). However, the
TensorFlow performance guide [7] recommends the user to
set the inter-op parallelism as the number of sockets (which
is one in our platform) and set the intra-op parallelism as the
number of physical cores, which is 68 in our platform.

1) Performance Variance with Different Concurrency: We
change the intra-op and inter-op parallelisms when running a

couple of NN models (particularly ResNet-50 and DCGAN).
Table I summarizes the results. There is a significiant per-
formance variance across different cases. The default case (68
threads for intra-op parallelism and 1 for inter-op parallelism),
which is our baseline, does not result in the best performance.
There is up to 28% performance difference between the default
case and the most performant case, as shown in Table I.

Furthermore, we change the number of threads to run
individual operations (i.e., not the whole NN model). When
running each operation with multiple threads, we put those
threads with data sharing into the same tile for best perfor-
mance (threads resident in the same tile share the last level
cache). We do not use hyper-threading for the tests. When we
run those individual operations, we develop a series of scripts
to run them as standalone operations to avoid any performance
interference between operations as in the NN model training.

Figure 1 shows the execution times of three opera-
tions, Conv2DBackpropF ilter, Conv2DBackpropInput
and Conv2D with different number of threads. The three
operations are common and among the most time-consuming
operations in NN training [4]. For those three operations, we
use certain input data sizes in the NN model Inception-v3 [18].

Figure 1 reveals that we achieve the best performance, when
we use 26, 36 and 45 threads to run the three operations
respectively. There is up to 17.3% performance difference
between the default concurrency (i.e., 68 threads) and the best
case. The scalability of the three operations with the given
input data size is limited on KNL due to thread spawning
overhead and non-parallelizable code regions.

Observation 1. The intra-op parallelism must be chosen
differently for different operations, in order to achieve the best
performance of individual operations.

2) Impact of Input Data Size: An NN model can in-
volve many instances of an operation in a training step.
Different instances of the operation can use different in-
put data sizes. For example, in Inception-v3, the operation
Conv2DBackpropF ilter has 42 instances in a training step,
each of which uses different input data sizes.

We study three operations from Inception-v3, which
are Conv2DBackpropF ilter, Conv2DBackpropInput and
Conv2D. We change the input data sizes of the three op-
erations. For each input data size, we change the intra-op
parallelism to find the best performance. Table II shows the
results. The table shows that as we change the input data sizes,
we need to use different numbers of threads to achieve the best
performance. For example, for Conv2DBackpropF ilter with
the input data size par input as (32,8,8,384), we need to use
26 threads to achieve the best performance, while with the
input data size par input as (32,17,17,384) and par input
(32,8,8,2048), we need to use 42 and 68 threads, respectively.

Observation 2. The best concurrency (in terms of the
optimal number of threads per operation) changes, as we
change the input data size of the operation.

3) Co-Running Operations: We study the performance of
co-running operations. We use three strategies to run two op-
erations. First, we run them in serial, and each operation uses
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TABLE III: Co-running two operations with three strategies.
The performance baseline for calculating speedup is perfor-
mance of serial execution of two operations. The reported time
is the total execution time of one thousand runs.

Strategies #Threads Time (s) Speedup
Serial execution 68 41.1 1

Co-run with hyper-threading 68+68 39.9 1.03
Co-run with threads control 34+34 29.8 1.38

68 threads. This strategy would be used by the TensorFlow
runtime by default. Second, we leverage two hardware threads
(hyper-threading) in each core to allow the two operations to
co-occupy 68 cores (i.e., each operation uses 68 cores and
there is one hardware thread per core for each operation).
Third, we evenly partition 68 cores between the two operations
(i.e., each operation uses 34 core; only one hardware thread
per core). The performance of co-running the two operations is
the time span from launching them to finishing both of them.

Table III summarizes the results of co-running
Conv2DBackpropF ilter and Conv2DBackpropInput.
The input size for the operations is par input (32,8,8,2048).
Given this input size, the number of threads to achieve the
best performance for the two operations is 68.

Table III reveals that the third strategy achieves the best
performance. Comparing with the first strategy, the third
one has 38% performance improvement, although individ-
ual operations have performance loss (25% and 17% for
Conv2DBackpropF ilter and Conv2DBackpropInput re-
spectively). Hyper-threading (the second strategy) is helpful in
this study: we have 3% performance improvement (comparing
with the first strategy).

Observation 3. Co-running operations are helpful for over-
all performance improvement, even though individual opera-
tions may have performance loss when co-running them.

III. DESIGN
A. Overview

Our motivation examples demonstrate the necessity of dy-
namically changing concurrency (intra-op and inter-op par-
allelisms) and scheduling operations to reduce training time.
Driven by the motivation examples, we use a performance
model-driven approach to extend the TensorFlow runtime.
Figure 2 generally depicts our runtime and its workflow.

In particular, we explore two performance models to predict
performance (execution time) of each operation with different
intra-op parallelisms. We study the performance modeling ac-
curacy and model portability across architectures and operation
implementations. We further extend the TensorFlow runtime
to schedule operations to enable co-running operations.

Our two performance models are based on dynamic profil-
ing. The performance models use a few training steps (the pro-
filing steps) to profile operations and then make performance
prediction on operations with various intra-op parallelisms.

Our first performance model uses machine learning models
(a set of regression models) to make the performance predic-
tion. Those models use characteristics of operations as input
features. We characterize computation and memory access
patterns of operations by collecting performance events during

NN Training 
Workloads Training
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Training
Step N

Training
Step N+1

Training
Step TS

Profiling

Performance
Model

Performance
Prediction Results

Training
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Strategies:
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Ø Co-running operations
Ø Hyper-threading

Dynamic
Scheduling

Fig. 2: Our runtime framework and its workflow. The notation
“TS” is the total number of training steps.

the profiling steps. However, the machine learning models
have low prediction accuracy because execution times of some
operations are short and collecting performance events with
hardware counters within such short times is not accurate.
Furthermore, the regression models are architecture dependent
and have to be re-trained on a new platform.

Our second performance model is based on the hill climbing
algorithm [19]. Our hill climbing algorithm aims to find the
best performance (the shortest execution) and corresponding
number of threads to run an operation with a given input
data size. The algorithm starts with a certain number of
threads to run the operation, then attempts to find another
number of threads with a shorter execution time by making
an incremental change to the number of threads. If the change
produces a shorter execution time, another incremental change
is made to the number of threads until no further execution
time is reduced. When running the hill climbing algorithm, the
runtime tests a few cases (i.e., the profiling cases) and measure
their execution times. To predict the performance of any
untested case, we use linear interpolation to predict the perfor-
mance of the untested case based on the measured performance
of two profiling cases. The hill climbing algorithm-based
performance model is lightweight and accurate. Different from
the first performance model, it is architecture-independent and
require no knowledge of operations. Hence, we use the second
performance model to guide the runtime.

Our runtime system decides (1) the optimal intra-op par-
allelism for each operation and (2) which operations to co-
run to increase system utilization. The performance model
determines the optimal number of threads for an operation
that results in the shortest execution time. To avoid frequent
changes of operation concurrency, which may lead to sub-
optimal overall performance, we optimize operation concur-
rency for the largest input size, which yield overall better per-
formance. Furthermore, our runtime decides which operations
should co-run and how they should interleave. We analyze
a set of candidate execution scenarios and select the one that
best suits the current execution flow to increase overall system
throughput and hardware utilization under the constraints
of available computing resources. Our runtime system also
leverages hyper-threading to allow multiple operations to share
the same physical cores to improve system throughout. In the
following, we describe our design in detail.
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B. Regression Model-Based Performance Model

Our first performance models, which are regression-based,
predict performance for 68 cases, each of which has a specific
number of threads. For each case, we have a performance
model to make prediction (68 performance models in total).
For each prediction case, there is only one thread per core. We
do not predict the cases with multiple threads per core (i.e.,
using hyper-threading), because hyper-threading often causes
performance slowdown, when running a single operation.

Among the 68 prediction cases, 34 of them have at most one
thread in each tile. In other words, those 34 cases do not have
any cache sharing between threads. The remaining 34 cases
have either two threads or no threads in each tile. In other
words, those 34 cases have cache sharing between threads. For
those 34 cases, we only use even number of threads. We do not
consider odd number of threads, because that makes some tile
have only one thread, causing load imbalance between tiles.

Note that we use 68 performance models to predict 68 cases.
We do not try to build a single model to predict performance
of the optimal case (the case with the shortest execution time),
because the runtime system needs to know the performance of
many cases to decide which operations to co-run. We also do
not try to build a single model to predict performance of 68
cases, because of the complexity of model training and low
prediction accuracy (as low as 25% according to our study).

Each performance model collects a set of workload features
as model input, using a few training steps. We consider thread
affinity while collecting features. Thread affinity decides the
binding between threads and cores. For those threads with
large data sharing, we want to bind them into the same tile,
such that those threads can reuse data in the L2 cache of the
tile. Given the number of threads per tile and total number
of threads to run an operation, different thread affinity can
result in different performance. Our model aims to predict
performance with the best thread affinity.

When running operations with a specific number of threads
and measuring the execution times of those operations, we
carefully choose which two threads should share a tile. In
particular, we put the threads with continuous IDs into the
same tile. For example, threads 1 and 2 share a tile, and threads
3 and 4 share a tile. This method is based on the following
observation: The multi-threading mechanism (i.e., OpenMP)
used in TensorFlow on KNL is implemented in the Intel MKL-
DNN library, and this mechanism parallelizes operations by
assigning iterations of the major computation loop to threads
in order, and neighbor iterations tend to access the same data
set, hence the threads with continuous IDs that work on the
neighbor iterations tend to have data sharing.

The above method provides a lightweight and practical solu-
tion to enforce thread affinity for best performance. There are
other solutions that involve compiler and runtime analysis [20],
but they are expensive.
Feature Selection. We use performance events collectible by
hardware counters, and the execution time of the operation, as
features. In total there are 27 features.

TABLE IV: Prediction accuracy of a set of regression models.
#Sample (N ) Metrics Gradient Boosting K-Neighbors TSR OLS PAR

1 Accuracy 61% 56% 37% 27% 18%
R2 0.961 0.818 0.779 0.981 0.196

4 Accuracy 57% 67% 17% 21% 14%
R2 0.957 0.592 0.539 0.951 0.175

8 Accuracy 51% 56% 26% 31% 18%
R2 0.972 0.589 0.965 0.977 0.177

16 Accuracy 34% 26% 13% 14% 11%
R2 0.959 0.585 0.852 0.892 0.159

On KNL, there are 26 performance events collectible by
hardware counters. Using all of them as features is problem-
atic due to the following reasons. First, those performance
events cannot be collected at the same time. We need at
least four training steps to collect those events separately,
which increases the number of training steps for profiling.
Second, some features are not informative, discriminating and
independent. For example, the number of branch instructions
and number of conditional branch instructions are correlated
and redundant, and should not be selected together.

We employ the decision tree estimator to select features. We
choose four features: number of CPU cycles, number of last
level cache misses, number of last level cache accesses and
number of level 1 cache hits. We also normalize the numbers
of performance events by the total number of instructions
to make the feature values independent of total number of
instructions. The normalization makes the performance model
usable for workloads with different number of instructions.
Feature collection. We collect features using N sample cases.
Each sample case uses a specific number of threads to run a
training step. All operations in this training step use the same
number of intra-op parallelism. In the training step, we run the
operations in serial to avoid performance interference among
multiple operations and ensure accuracy of feature collection.

We choose sample cases by evenly sampling the search
space of possible intra-op parallelisms with the consideration
of cache sharing. Using those sample cases is meant to be
representative of all cases.

To decide the number of sample cases (N ), we change N
to study its impact on modeling accuracy. The results are
summarized in Table IV. The results reveal that N has a
significant impact on modeling accuracy, but a large N is
not helpful for improving modeling accuracy. Also, using a
large N can cause large runtime overhead, because of frequent
counting performance events for a large number of operations.
In our test with ResNet-50, when N = 16, the runtime
overhead is up to 20%.
Regression models. We experiment with ten regression mod-
els and compare their accuracy, including random forest, k-
nearest neighbors, gradient boosting, ε-support vector machine
regressions (ε-SVR) with linear, poly and RBF kernels, deci-
sion tree, Bayesian automatic relevance determination (ARD),
ordinary least squares (OLS), passive aggressive regression
(PAR), multiple layer perceptron (MLP) with sgd, lbfgs and
adam kernels and Theil Sen Regression (TSR).
Training Data Set. For training data set, we collect operation
information from three common NN models with TensorFlow
(particularly ResNet-50 with CIFAR-10 dataset, DCGAN [21]
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with MNIST dataset and Inception-v3 with ImageNet dataset.
To increase training data set, we vary batch size from 16 to
256. When we run those operations in the three NN models
, we develop scripts to run them as standalone operations,
similar to what we do in the motivation examples (Section II).
Model Testing. We test model accuracy with DCGAN. Ta-
ble IV shows the results. We use two metrics, modeling accu-
racy and R2 (the coefficient of determination). The modeling
accuracy is defined as 1− 1

nt

∑∣∣∣ ŷi−yi

yi

∣∣∣ where nt is the size
of the test data set, and ŷi and yi are the predicted and actual
execution times, respectively.

Table IV shows that the regression-based performance
models do not present good accuracy for the selection of
operation concurrency. Using the most accurate regression
model (k-neighbors) to direct NN model training (ResNet-50
in particular), we have performance loss (30%).

We attribute those prediction inaccuracy to possible inac-
curacy in hardware counters to collect performance events.
Using hardware counters can be inaccurate. Furthermore, the
regression model-based performance models are architecture-
dependent. The regression models need to be re-trained on a
platform with different hardware counters.

Because of the above reasons, we propose to use a hill
climbing algorithm to direct the selection of intra-op paral-
lelism for operations.

C. Hill Climbing Algorithm-Based Performance Model

We describe our hill climbing algorithm as follows. Sim-
ilar to the regression-based performance models, we use N
training steps to run operations in serial with different number
of threads. In particular, we first use one thread to run each
operation and measure execution time in one step. Then, we
increase the number of threads by x (named as interval) to run
each operation and measure its execution time. By increasing
the number of threads, the execution time can decrease. We
further to increase the number of threads by x in the following
steps, until one of the following two cases happens: (1) the
execution time increases; (2) we reach the maximum number
of cores to run threads. If (1) happens, then we stop changing
the number of threads for this operation and claim that we
find the best number of threads to run the operation in the last
time step. If (2) happens, then the best number of threads to
run the operation is the maximum number of cores.

We consider thread affinity in the above hill climbing
algorithm. In particular, given a specific number of threads to
run an operation, we run the operation twice with two training
steps: one step with cache sharing between threads, and the
other without cache sharing between threads.

The output of the above hill climbing algorithm includes not
only the shortest execution time and corresponding number of
threads, but also the execution time of those sampling cases
in the N training steps. To predict the performance of those
cases that are not tested in the N steps, we simply use linear
interpolation. For example, if we measure the execution time
of using one and four threads for an operation (x = 3 in
this example), then the execution time of using two and three

TABLE V: Performance prediction accuracy for four NN
models based on the hill climbing-based performance model.

Intervals
Models 2 4 8 16

ResNet-50 98.13% 95.45% 83.42% 31.12%
DCGAN 97.16% 94.43% 51.54% 10.14%

Inception-v3 97.91% 94.22% 73.21% 21.21%
LSTM 95.56% 90.45% 41.34% 11.03%

threads will be approximated based on a linear interpolation
between the execution times of using one and four threads.
N (the number of training steps to run sample cases) is

related to x. Assuming that the maximum number of cores
is C, then N is at most C/x × 2 (we have “2”, because we
consider both cache-sharing and no-cache-sharing cases.)

Performance prediction accuracy. We run ResNet-50,
DCGAN, Inception-v3 and LSTM. and use the hill climbing
algorithm-based performance model to predict performance
of those cases not executed in the N steps. We change x
from 2, 4, 8 to 16. Table V shows the prediction accuracy.
The prediction accuracy is the average prediction accuracy for
all operations. In general, we achieve very high prediction
accuracy (up to 98.13% with x = 2 and 95.45% with x = 4),
much higher than regression model-based performance models
(Section III-B).

Discussion. Using the hill climbing algorithm has two po-
tential problems. First, the “shortest execution time” found by
the hill climbing algorithm may be a “local optimum” solution,
not a “global optimum” solution. However, after extensive
evaluation of operation performance (1025 operations in four
NN models) with different number of threads, we observe
that the local optimum is always the global optimum. As the
number of threads changes, the variance of execution time is
shown as a convex function.

Second, if the interval x is large, it is possible that the
hill climbing algorithm may skip the optimum. For example,
assuming that the hill climbing algorithm has tested the case
of eight threads, x = 4, and the optimum is the case of 10
threads, then the hill climbing algorithm will only test the case
of 12 threads and skip the optimum. The case of 12 threads is
incorrectly selected as the optimum. However, our evaluation
reveals that the optimum found by the hill climbing is pretty
close to the real optimum. With the evaluation of four NN
models (ResNet-50, DCGAN, Inception-v3 and LSTM) and
x = 4, the performance difference between the two optimums
is less than 2%.

In conclusion, the performance model based on hill climbing
is a practical and effective approach for performance profiling
and prediction. Comparing with the regression model-based
performance models, the hill climbing has the following
advantages: (1) No need of performance model training; (2)
architecture independence; (3) no need of considering opera-
tion characteristics, hence can accommodate any future change
of operations in TensorFlow; and (4) better accuracy.
D. Runtime Scheduling

The runtime decides (1) intra-op parallelism for each opera-
tion, and (2) which operations to co-run. The existing runtime
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system in TensorFlow employs a first-in-first-out policy to
schedule operations: The operations that are ready to run are
simply executed in the order they put into the operation queue.
All operations use the same intra-op parallelism and inter-
op parallelism defined by the user before the training starts.
Such scheduling strategy loses performance without sufficient
consideration of operation scalability and hardware utilization.
Our runtime avoids this problem and schedules operations
based on the following strategies.

Strategy 1: Deciding intra-op parallelism for individual
operations based on the performance model. After running
the hill climbing algorithm in the first few steps, the runtime
runs each instance of each operation using the number of
threads that can lead to the shortest execution time. This
indicates that different operations may use different number
of threads; This also indicates that different instances of an
operation with different input data sizes may also use different
numbers of threads.

Strategy 2: Avoiding frequent change of operation con-
currency. In practice, Strategy 1 might not lead to better
performance than the execution with the default TensorFlow
configuration. The reason is because of frequent change of
operation concurrency, which causes cache thrashing and large
thread management overhead (e.g., thread spawning or binding
to cores). In Strategy 2, the runtime avoids frequent change of
operation concurrency. In particular, the operation, no matter
what input data size it uses, always use the same number of
threads, but different operations can still use different number
of threads. The number of threads to run the operation is
determined by the operation instance with the largest input
data size (the most time-consuming instance), such that the
execution time of this operation instance is the shortest.

Strategy 3: Co-running operations to maximize hard-
ware utilization. To decide which operations should co-run
and how they should co-run, we use the following algorithm.
For any operation ready to run, we use three different numbers
of threads as candidates to run the operation (The “three”
is an empirical number). The three candidates should be
the most performant ones (i.e., the ones with the shortest
execution times). Whenever some physical cores are idling,
either because an operation is just finished or because we just
start the training, we examine those operations ready to run.
For each of those operations, we check if any of its three
candidates can fit into the idling cores without decreasing
system throughput. We decide whether system throughput will
be decreased by ensuring that the candidate does not take
longer execution time than ongoing operations in busy cores.

For example, an operation ready to run has three candidates,
which are (1) using 18 threads (no cache sharing) that takes
1.5 seconds; (2) using 20 threads (no cache sharing) that takes
1.3 seconds; and (3) using 16 threads (no cache sharing) that
takes 2.1 seconds. We have 20 idling cores, and the remaining
48 cores run an ongoing operation that needs 1.9 seconds
to finish. We choose the candidate (1) to co-run with the
ongoing operation, because it takes shorter execution time
than the ongoing operation (1.5 vs. 1.9 seconds), and can

fit into the 20 idling cores. We do not use 20 threads to
fit into the 20 idling cores, because using 18 threads can
release two idling cores to run another operation and we
want to maximize operations co-running to increase system
throughput. An argument to support using 20 threads is that
we finish the operation earlier and then run another operation.
However, according to our experience, maximizing operations
co-running (using 18 threads) is helpful to system throughput
and hence more beneficial for performance. Note that the
above execution times for operations are predicted based on
the performance model.

If we cannot find any operation that can fit into the idling
cores without decreasing system throughput, we choose the
most time-consuming operation to run.

Strategy 3 should not conflict with Strategy 2. If the number
of threads to run an operation based on Strategy 3 is quite
different from the number of threads chosen by Strategy 2 (the
difference in the number of thread is larger than 2 and “2” is
an empirical value), then we will use the number of threads
chosen by Strategy 2 to run the operation. This method avoids
disruptive changes to intra-op parallelism for each operation.

Strategy 3 is lightweight and can make a quick decision on
how to co-run operations, such that the runtime overhead is
small. Based on our profiling on four neural networks (ResNet-
50, DCGAN, Inception-v3 and LSTM), we seldom have more
than five operations ready to run. Hence, Strategy 3 does not
need to explore a lot of operations to make the decision.

Strategy 4: Leveraging hyper-threading to run multiple
operations. Some scalable operations can take all 68 cores
and never allow any operation to co-run. However, we find
that running small operations using hyper-threading along
with the time-consuming, scalable operations can be beneficial
for performance. This means that the small operations share
physical cores with the time-consuming operations, enabling
another type of co-run.

At runtime, when the runtime finds an operation using 68
cores, the runtime then tries to co-run small operations. The
small operations are defined as those operations that have
shortest serial-execution time in the operation-ready queue.

Putting all together. The runtime uses Strategies 1-2 to
decide the number of threads to run for each operation
based on the performance model. This can be done right
after running the hill climbing algorithm in the first few
training steps (the profiling steps). After that, the runtime
decides how to co-run operations based on Strategies 3-4. The
runtime repeatedly uses the four strategies until all operations
are finished. Note that to minimize runtime overhead, some
decisions based on Strategy 3 to co-run operations can be
reused without repeatedly running Strategy 3.

Discussion. Our performance model is used to predict
performance for individual operations, and does not capture
performance interference between operations when co-running
them. Hence, when we use the performance model to di-
rect operations to co-run, the performance loss of individual
operations can be unexpected low because of performance
interference. Our runtime can record such cases and avoid co-
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running such operations in the future train steps. In practice,
we do not find significant performance slowdown in individual
operations when co-running them.

IV. EVALUATION

A. Experiment Setup

Training models, data set and framework. We employ
CIFAR-10, MNIST, ImageNet and PTB training dataset for
ResNet-50, DCGAN, Inception-v3 and LSTM respectively.
The batch sizes of ResNet-50, DCGAN, Inception-v3 and
LSTM are 64, 64, 16 and 20, respectively. We adopt Ten-
sorFlow (v1.9) as our NN training framework. We use the
implementation of ResNet-50, Inception-v3 and LSTM from
the TensorFlow software package [22] and DCGAN from [23].
In TensorFlow, the default intra-op and inter-op parallelisms
are set as the number of logical cores of the hardware platform
(272 in KNL). As discussed in Section II, the TensorFlow
performance guide recommends to set the inter-op parallelism
as the number of sockets (which is one in our platform) and
set the intra-op parallelism as the number of physical cores,
which is 68 in our platform. Since the performance of the
TensorFlow default configuration is much worst (more than
10 times slower) than the recommended configuration from
the TensorFlow performance guide, we use the recommended
configuration as the baseline in our evaluation. The perfor-
mance with the recommended configuration is annotated as
“Recommendation” in Figure 3 and Table VI.

The performance reported in this section is the execution
time of one training step. Recall that the performance of one
training step remains stable across training steps, hence the
execution time of one training step is good for performance
evaluation. In addition, there is no accuracy loss in NN
models with our runtime, because our runtime does not make
any change to the input data sizes of operations, does not
change any NN model parameters, and does not violate any
dependency between operations.

Hardware platform. We use a machine with an Intel
Knights Landing (KNL) processor (Xeon Phi 7250) at the Cori
supercomputer at Lawrence Berkeley National Lab as our test
platform. Section II-C has more details for KNL.

Controlling intra-op parallelism. On Intel KNL, Tensor-
Flow uses operations implemented in both MKL-DNN and
Eigen. Dynamically changing intra-op parallelism for those
operations implemented in the Eigen causes large runtime
overhead (larger than 10%), because the Eigen decomposes an
operation into a large number of tasks, and changing intra-op
parallelism of an operation causes frequent task-pushing into
and task-popping out of a queue associated with each thread.
MKL-DNN uses OpenMP threads to parallelize operations,
and there is negligible overhead to change intra-op parallelism
for those operations implemented in MKL-DNN. Hence, in
our evaluation, we only change intra-op parallelism for those
operations implemented in MKL-DNN. Those operations take
more than 70% of total NN training time.

To enable dynamic change of intra-op parallelism for a few
operations (e.g., batch normalization in DCGAN), we have

to make small changes to the operation implementation. For
example, we have to allocate a larger memory space for some
variables during operation initialization. However, the changes
are minor and have no impact on operation performance.

In general, the implementation of our runtime incurs limited
overhead (less than 1%). Also, the number of profiling steps
is small (less than 0.05% of total training steps). Hence, the
profiling overhead is negligible.
B. Results

Figure 3.d compares the performance of our runtime system
with that of the recommended TensorFlow configuration (la-
beled as “recommendation”) and of manual optimization. For
manual optimization, we manually change intra-op and inter-
op parallelisms uniformly enforced on all operations, aiming
to find the best configuration. The manual optimization is not
a scalable solution, because we have to exhaustively test every
possible combination of intra-op and inter-op parallelisms to
find the best configuration.

Figure 3.d reveals that our runtime leads to the best per-
formance in all tests. Our runtime performs at least 17%
(Inception-v3) and up to 49% (ResNet-50) better than the
recommendation. Our runtime performs even better (at least
2%) than the manual optimization for three NN models
(ResNet-50, DCGAN and LSTM), and performs similar (2%
worse) to the manual optimization (Inception-v3).

The above results demonstrate the superior performance of
our runtime system. To further understand the performance
contributions of four runtime strategies, we apply them one
by one. The results are shown in Figure 3.a-Figure 3.c.

Applying Strategies 1 and 2 (concurrency control for
individual operations) Figure 3 shows that applying Strate-
gies 1 and 2 alone, we have 14% performance improvement
for LSTM, 12% for DCGAN and 2% for ResNet-50 and
Inception-v3.

Table VI shows the execution times of the top five most
time-consuming operations of four NN models with the recom-
mended TensorFlow configuration and with Strategies 1 and
2 in place. The table reveals that we have better performance
for all operations, up to 34% performance improvement.

Some operations do not have performance improvement af-
ter applying Strategies 1 and 2, however these operations (e.g.,
Conv2D in ResNet-50) with our runtime can use less number
of threads than with the recommendation, while achieving the
same performance. Using less number of threads introduces
opportunities to co-run operations.

Applying Strategy 3 (co-running operations). To isolate
the effects of co-running operations from Strategy 4, we apply
Strategy 3 after using Strategies 1 and 2 without Strategy 4.

Figure 3.b shows the results. The performance reported in
the figure is normalized by the performance of applying Strate-
gies 1 and 2. By using Strategy 3, ResNet-50 achieves 35%
performance improvement. LSTM achieves 25% performance
improvement. DCGAN and Inception-v3 achieve 15% and 7%
performance improvement, respectively.

Applying Strategy 4 (hyper-threading). To isolate the
effects of Strategy 4 from other strategies, we apply Strategy
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Fig. 3: Quantifying the contribution of the four strategies. Comparing the performance of our runtime, manual optimization,
and the recommendation by TensorFlow.

TABLE VI: Performance improvement of the top five most time-consuming operations in four NN models by recommendation
and by applying Strategies 1 and 2. The performance baseline for calculating speedup is the performance with the configuration
recommended by the TensorFlow programming guide (68 threads for intra-op parallelism and 1 for inter-op parallelism).

Operations Execution Time (ms) Speedup Operations Execution Time (ms) Speedup
Recommendation Applying Strategies 1 and 2 Recommendation Applying Strategies 1 and 2

ResNet-50 DCGAN
Conv2DBackpropFilter 158 146 1.08 Conv2DBackpropInput 164 144 1.14

InputConversion 131 122 1.07 Conv2DBackpropFilter 133 110 1.21
Tile 107 105 1.02 ApplyAdam 84 72 1.17
Mul 103 100 1.03 BiasAddGrad 26 23 1.17
ToTf 79 78 1.01 FusedBatchNorm 15 14 1.03

Inception-v3 LSTM
AvgPool 759 730 1.04 SparseSoftmaxCross 11.71 8.76 1.34

Tile 539 532 1.01 BiasAddGrad 2.03 1.98 1.03
Conv2DBackpropFilter 479 475 1.01 Mul 1.36 1.09 1.25

MaxPooling 455 422 1.08 AddN 1.02 0.87 1.17
InputConversion 416 413 1.01 MatMul 0.95 0.93 1.02

4 after applying Strategy 3 (this implicitly indicates that we
also apply Strategies 1 and 2).

Figure 3.c shows the results. The performance reported in
the figure is normalized by the performance of applying Strate-
gies 3. ResNet-50, DCGAN, and Inception-v3 achieve 8%,
4%, and 7% performance improvement, respectively. LSTM
has no performance improvement, because almost no operation
in LSTM needs all of cores to achieve best performance, hence
there is few opportunity to apply Strategy 4.

To further study the effectiveness of Strategy 4, we record
the number of co-running operations along with the NN
training. In particular, whenever there is an operation finished
or launched, we record the number of co-running operations
at the moment. Finishing or launching an operation is an
event. Figure 4 shows the number of co-running operations
whenever an event happens. There are a large number of
events (sometimes millions of events), in just one training step.
Presenting the number of co-running operations for all events
makes the figure very intensive and difficult to read. Hence, we
present the number of co-running operations for 6000 events
in Figure 4. The events happen in the middle of one step.
Figure 4 does not show the results for LSTM, because there
is no change in co-running operations after applying Strategy
4.

Figure 4 shows that with Strategy 4 in place, the number
of co-running operations is larger than that without Strategy
4 (but with Strategy 3). The average number of co-running
operations for 6000 events with Strategy 4 in place for three
NN models are 1.89, 2.04, and 1.74, while without Strategy 4
(but with Strategy 3), the average number is 1.61, 1.62, and
1.52. Hence, Strategy 4 enables a larger number of co-running

operations.
In general, we notice both Strategies 3 and 4 can dynami-

cally change the number of co-running operations, instead of
fixing the number of inter-op parallelism as in the traditional
TensorFlow (shown as red lines in Figure 4).

Putting all together. Figure 3.d shows the performance
after applying all strategies together and compares it with the
performance of the recommendation and manual optimization.

We observed that ResNet-50 achieves the largest perfor-
mance improvement (49%) among the four NN models. Such a
large performance improvement largely comes from applying
Strategy 3. Many operations in ResNet-50 are not scalable,
which brings a lot of opportunities to apply Strategy 3 to
co-run operations. Furthermore, ResNet-50 has many small
operations which can run together with those time-consuming
operations, by applying hyper-threading (Strategy 4).

Comparing with the manual optimization. Figure 3.d
compares the performance of the manual optimization and
our runtime. We observed that the performance of ResNet-
50, DCGAN and LSTM by our runtime can achieve 8%, 7%
and 2% performance improvement than the manual optimiza-
tion, respectively. Our experiments show that for ResNet-50,
manual optimization sets intra-op and inter-op parallelisms as
16 and 4. For DCGAN, manual optimization sets them as 34
and 2. For LSTM, manual optimization sets them as 2 and 2.

For Inception-v3, our runtime performs 2% worse than
the manual optimization. The manual optimization sets intra-
op and inter-op parallelisms as 68 and 2, respectively. Such
configuration is closing to the configurations chosen by our
runtime for most of operations. Hence our runtime performs
similar to manual optimization. Our runtime has slight perfor-
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mance loss (2%). We suspect that the slight performance loss
comes from changing intra-op parallelism across operations.

V. DISCUSSIONS

Multi-KNL. Although our work focuses on concurrency
control and operation scheduling within a single KNL, our
work can work for multiple KNLs. To use multiple KNLs for
NN training, the users usually employ either data parallelism
or model parallelism [24].

The data parallelism duplicates the NN model on multiple
KNLs, and distributes training data between multiple KNLs.
Our runtime system can work on individual KNLs without any
change for the data parallelism.

The model parallelism partitions the NN model into multiple
groups, each of which is distributed to one KNL. In each KNL,
the number of operations available for scheduling is smaller
than that in the case of using the single KNL. This indicates
that we have less opportunities to co-run operations, but our
control over intra-op parallelism should remain the same.

No matter whether the users employ data parallelism or
model parallelism, our runtime does not need to be changed.
We leave the evaluation of multiple KNLs as our future work.

VI. RELATED WORK

Performance optimization for dataflow-based frame-
works. Recent works explore performance optimization for
dataflow-based frameworks [4], [25]–[28]. Mirhoseini et
al. [25], [26] propose a method that first schedules the op-
erations to groups and then places those groups onto devices.
Hafner et al. [27] allow the TensorFlow execution engine
to parallelize computation to improve training performance.
Liu et al. [4] propose a software and hardware co-design
of heterogeneous processing-in-memory system that schedules
NN training operations across compute resources to improve
hardware utilization.

Our work is different from the existing efforts. We propose
runtime scheduling strategies that co-run operations to im-
prove hardware utilization and system throughput on manycore
platforms. We also explore performance modeling to predict

performance of operations with various intra-op parallelisms,
which is not explored in the existing efforts.

Thread concurrency throttling. Previous work explores
dynamic thread concurrency throttling to achieve the opti-
mal performance [29]–[31]. Pusukuri et al. [30] develop a
framework to dynamically determine an appropriate number
of threads that identifies near optimal number of threads with
OpenMP to achieve the optimal performance. Sanzo et al. [29]
proposes a self-regulation approach that predicts the scalability
of applications to improve performance.

Our concurrency throttling approach differs from them, in
that we not only study concurrency for individual operations,
but also study inter-op concurrency control by co-running
operations with various runtime scheduling strategies.

VII. PRELIMINARY STUDY ON GPU AND FUTURE WORK

Since using GPU is a common method for NN training, we
explore the possibility of employing our method for GPU. In
this section, we present our preliminary study on GPU and
discuss our future work.

A. Preliminary Study on GPU
We study the performance of operations on GPU from two

perspectives: (1) performance variance with different intra-op
parallelisms; (2) performance impact of co-running operations.
We use an Nvidia Tesla P100 GPU and CUDA 9. Tesla P100
contains 3584 cores, 56 Streaming Multiprocessors (SMs)
and 4MB L2 cache size. TensorFlow uses cuDNN (v7.0 in
our study) to execute many operations on GPU. cuDNN
is not open-source, and we cannot manipulate the intra-op
parallelism for those operations. Hence, in our study, we focus
on the GPU operations that are not implemented in cuDNN.
For each operation, we develop a script to run it standalone
as in Section II. Furthermore, we use input data sizes in the
NN model Inception-v3 to study performance of operations.

Study of intra-op parallelism. For each operation, we can
change either the number of threads per thread block or the
number of thread blocks to change the intra-op parallelism.

We first change the number of threads per thread block,
while using the TensorFlow’s default number of thread blocks
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TABLE VII: Co-running operations on GPU. The reported
execution time is total execution time of ten thousand runs.

Operations Strategies Time (s) Speedup

Conv2DBackpropFilter Serial execution 9.8 1.00
Co-run 5.5 1.78

Conv2DBackpropInput Serial execution 18.2 1.00
Co-run 9.9 1.84

Conv2D Serial execution 17.4 1.00
Co-run 9.1 1.91

BiasAdd Serial execution 11.8 1.00
Co-run 6.6 1.79

MaxPooling Serial execution 12.6 1.00
Co-run 7.2 1.75

(56 in our system). By default, TensorFlow uses 1024 threads
per thread block. We study two common and time-consuming
operations, BiasAdd and MaxPooling. Figure 5.a shows the
results. The figure reveals that there is a big performance
variance across different cases. The case using the default
intra-op parallelism in TensorFlow does not result in the
best performance. There is up to 18% performance difference
between the default case (i.e., 1024 threads per thread block)
and the case with the best performance.

Furthermore, we change the number of thread blocks to
run the two operations, while using the TensorFlow’s default
number of threads per thread bock (1024 in our platform).
Figure 5.b shows the results. The figure shows there is up to
11% performance difference between the default case (i.e., 56
thread blocks) and the case with the best performance.

Study of inter-op parallelism. To co-run operations in a
GPU, we concurrently run two processes, each of which uses
one CUDA stream to run an operation. Note that TensforFlow
only supports one CUDA stream to run operations per GPU,
hence we cannot simply use the existing CUDA stream in
TensorFlow to co-run operations. When co-running operations,
we use the optimal intra-op parallelism for each operation. We
also use cuDNN to run each operation for best performance.

Table VII summarizes the results of five operations,
Conv2DBackpropF ilter, Conv2DBackpropInput,
Conv2D, BiasAdd and MaxPooling. These operations
take more than 70% of total training time of ResNet-50,
DCGAN and Inception-v3 models. For each operation, we
run two instances of it to enable co-run tests, as in common
ML models. The table compares the performance of co-run
cases with that of serial cases. Each serial case runs the two
instances of an operation in serial. The serial case is the
default execution mode in TensorFlow. Table VII shows that
co-running operations achieves better performance than serial
execution in all cases. Co-running operations leads to up to
90% performance improvement.

Conclusions. Using the default concurrency control in Ten-
sorFlow, we cannot achieve the best performance on GPU.
This result is consistent with what we observe on CPU. There
is a room for us to study on GPU.

B. Future Work

Runtime concurrency control and operations scheduling on
GPU faces a couple of challenges: First, there is a large
search space to decide the optimal intra-op parallelism for
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Fig. 5: Performance variance of two operations with different
intra-op parallelisms on GPU. The reported execution time is
the total execution time of ten thousand runs.

an operation. Using the hill climbing algorithm, we may
need to run a large number of sample cases, which increases
performance overhead. Second, the cuDNN library is not open-
source, which brings a challenge to control intra-op parallelism
for each operation.

We plan to address the above challenges as our future work,
but we discuss our solutions as follows.

To address the first challenge, we must narrow down the
search space. There is a two-dimensional space to control
intra-op parallelism on GPU: the number of threads per thread
block and the number of thread blocks. This leads to a search
space of O(n2), where n is the number of configurations
in each dimension. We observe that the optimal number of
thread blocks seems to be independent of the optimal number
of threads per block. This observation allows us to consider
the two dimensions independently, and reduces the search
space to O(2n). Furthermore, we observe that there is little
performance difference between a large number of threads per
block and a small one. For example, there is little performance
difference (less than 3% for BiasAdd and MaxPooling)
between using 10 threads per block and 100 threads per block.
This allows us to use a rather large interval to further reduce
the number of sample cases.

To address the second challenge, we can replace some time-
consuming operations (e.g. convolutions) in cuDNN with op-
erations from an open-source library with better or comparable
performance (e.g., ISAAC [32]) such that we can control intra-
op parallelism at runtime.

VIII. CONCLUSIONS

The new generation of ML frameworks such as TensorFlow
and Caffe2 embraces a dataflow model and represents compu-
tation by a directed graph composed of operations. Training
an NN model based on such ML frameworks can generate
a lot of operations, which brings challenges to manage them
for best performance. We expect such challenges will be more
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pronounced in the future NN models. In this paper, we study
how to automatically decide intra-op parallelism for each op-
eration and how to co-run operations to improve performance.
We use a performance model-driven approach to guide the
runtime system to parallelize and schedule operations. Guided
by the performance model, we introduce a set of practical
and effective scheduling strategies. Applying the performance
model and scheduling strategies to the TensorFlow runtime,
we achieve great performance improvement. Our work reveals
many opportunities to improve the performance of NN training
through concurrency control and operation scheduling.

IX. ACKNOWLEDGEMENT

This work was partially supported by U.S. National Science
Foundation (CNS-1617967, CCF-1553645 and CCF-1718194)
and Chameleon Cloud. This work was also partially supported
by the U.S. Department of Energy, Office for Advanced Scien-
tific Computing (ASCR) under Award No. 66150: ”CENATE:
The Center for Advanced Technology Evaluation”. Pacific
Northwest National Laboratory (PNNL) is a multiprogram
national laboratory operated for DOE by Battelle Memorial
Institute under Contract DE-AC05-76RL01830.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
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