Exploring Non-Volatility of Non-Volatile Memory
for High Performance Computing Under Failures

Jie Ren
University of California, Merced
jren6 @ucmerced.edu

Abstract—Hardware failures and faults often result in applica-
tion crash in HPC. The emergence of non-volatile memory (NVM)
provides a solution to address this problem. Leveraging the non-
volatility of NVM, one can build in-memory checkpoints or enable
crash-consistent data objects. However, these solutions cause
large memory consumption, extra writes to NVM, or disruptive
changes to applications. We introduces a fundamentally new
methodology to handle HPC under failures based on NVM. In
particular, we attempt to use remaining data objects in NVM
(possibly stale ones because of losing data updates in caches) to
restart crashed applications. To address the challenge of possibly
unsuccessful recomputation after the application restarts, we in-
troduce a framework EasyCrash that uses a systematic approach
to automatically decide how to selectively persist application
data objects to significantly increase possibility of successful
recomputation. EasyCrash enables up to 30% improvement (20 %
on average) in system efficiency at various system scales.

I. INTRODUCTION

The extreme-scale HPC systems face a grand challenge on
system reliability. Hardware failures and transient hardware
faults often result in application failures (application crashes).
Application crashes lose application’s work and decrease sys-
tem efficiency. A typical HPC system nowadays has a mean-
time between failure (MTBF) of tens of hours [1]-[4], even
with hardware- and software-based protection mechanisms. It
is expected that the failure rate could further increase in the
future, as the complexity and scale of HPC systems increases.
This indicates that a larger portion of computation cycles will
have to be used to handle application failures [5], [6].

Byte-addressable non-volatile memory (NVM) technolo-
gies, such as Intel Optane DC persistent memory DIMM [7],
are emerging. NVM provides higher density and power effi-
ciency than DRAM while providing DRAM-comparable per-
formance. Recent efforts have demonstrated the possibility of
using NVM as main memory [8]-[10] with load/store
instructions and for future HPC [11]-[13]. The emerging NVM
provides new opportunities to handle HPC under failures.

Leveraging the non-volatility of NVM as main memory, we
can recover data objects and resume application computation
(recomputation) after the application crashes. However, with
write-back caching, stores may reach NVM out of order. Data
objects cached in the cache hierarchy and stored in NVM may
not be consistent during application crash. Such inconsistency
persists after the application restarts and impacts application
execution correctness. Consequently, many existing work [8],
[9], [14] studies how to ensure that data objects stored in
NVM can be recovered to a consistent version for successful
recomputation, a property referred to crash consistency.

978-1-7281-6677-3/20/$31.00 © 2020 IEEE

Kai Wu
University of California, Merced
kwu42 @ucmerced.edu

Dong Li
University of California, Merced
dli35 @ucmerced.edu

To enable crash consistency, the existing solutions use in-
memory checkpoint/restart (C/R) [10], [15] or build crash-
consistent data objects [9]. However, those solutions have
limitations when applied to NVM and HPC. (1) Using NVM
as a fast persistent media to implement in-memory C/R creates
bottleneck in memory capacity and worsens the endurance
problem faced by NVM. In particular, creating checkpoints
in NVM (used as main memory) can double or even triple
memory footprint of the application. For those scientific sim-
ulations with large data sets, reducing the effective capacity of
NVM constrains the simulation scale that scientists can study.
In addition, NVM has limited endurance and can tolerate a
limited number of writes (even with wear-leveling techniques
in place [10], [15]). Since in-memory checkpoints are written
to NVM, checkpointing causes a number of additional writes
in NVM. (2) Building crash-consistent data objects can cause
large modifications to applications. In order to enable crash
consistency, the existing efforts record updates to data objects
by creating undo/redo logs [8], [16] or metadata [17], which
often introduce new data structures and memory synchro-
nization. Such disruptive modifications are difficult to be
adopted by legacy HPC applications, which are often large
and dominate scientific simulations in HPC data centers.

In conclusion, high requirements of HPC on memory con-
sumption, performance and code stableness call for a new
solution to explore non-volatility of NVM to handle failures.

In this paper, we introduce EasyCrash, a framework that re-
laxes the requirement on crash consistency and leverages error
resilience intrinsic to HPC applications to handle application
crashes. EasyCrash employs a fundamentally new methodol-
ogy: It does not create data copy or record modifications to
data objects for high crash consistency; Instead, it attempts to
use remaining data objects in NVM (possibly inconsistent ones
because of losing data updates in caches) to restart crashed
application, based on the prevalent characteristics of error
resilience in HPC applications.

Relaxing the requirement on crash consistency raises a risk
of unsuccessful recomputation. The random occurrence of
crashes can leave data objects in NVM in any inconsistent state
with no guarantee on successful application recomputation. To
address this challenge, we perform crash tests and characterize
how the success of application recomputation is sensitive to
data consistency of data objects at various execution phases.
Based on the study, we use analytical models to decide where
to persist data objects to enable high application recomputabil-
ity. To minimize runtime overhead of cache flushing, we use
correlation analysis to decide which data objects are the most
critical to successful application recomputation. EasyCrash
only flushes cache blocks of those data objects at specific
execution phases. Such selective cache flushing constrains

the relaxed crash consistency (but not too much), hence
increasing application recomputability with high performance.
To ensure 100% of application recomputation, EasyCrash is
built upon the traditional checkpointing on storage to handle
unsuccessful recomputation. However, with EasyCrash, we can
reduce checkpoint frequency, because EasyCrash makes many
crashes successfully recompute without rolling back to the
last checkpoint. Reducing checkpoint frequency is critical to
improve system efficiency. It was reported that up to 50% time
in HPC data centers is spent in checkpointing [18], [19].

EasyCrash is based on three observations. First, many HPC
applications are characterized with large data sets and most
of them may not be in caches during application execution,
because of limited cache capacity. This indicates that using
cache flushing (instead of making data copy) to persist data
objects can potentially reduce a large number of writes and
memory consumption.

Second, many HPC applications have intrinsic error re-
silience, which indicates that computation inaccuracy because
of relaxed consistency is tolerable by HPC applications. In
particular, many popular HPC applications, such as iterative
solvers (e.g., the preconditioned conjugate gradient method,
Newton method, and multigrid method), Monte Carlo-based
simulations [20] and some machine learning workloads (e.g.,
Kmeans and CNN training), have natural error resilience
to localized numerical perturbations, because they require
computation results to converge over time. As a result, they
can intrinsically tolerate computation inaccuracy [21]-[23].

Third, many HPC applications have application-specific
acceptance verification based on physical laws and math in-
variant. Leveraging the verification, the application can detect
whether computation results are acceptable before delivering
them to end users. For example, large-scale computational
fluid dynamics simulations examine result correctness by
making a comparison to exact analytical results [24]. Those
applications with acceptance verification reduces the probabil-
ity of producing incorrect results.

EasyCrash persists some data objects at certain execu-
tion phases of the application. Once a crash happens, the
application immediately restarts using remaining consistent
and inconsistent data objects in NVM. Application-specific
acceptance verification checks if the recomputation result is
correct. If the application cannot recompute successfully, then
the application goes back to the last checkpoint.

EasyCrash meets high requirements of HPC to handle
failures, and addresses the limitation in the existing efforts.
First, EasyCrash does not create data copy, hence saving
memory capacity and enabling scientific simulation with larger
memory footprint. Second, EasyCrash flushes cache blocks
using special instructions (e.g., CLWB), which do not write
back cache lines ! to main memory, if the corresponding cache
blocks are clean or not resident in caches; Hence EasyCrash
reduces unnecessary writes to NVM. Saving writes to NVM is
beneficial for the performance of persisting data objects. Third,
EasyCrash does not change data structures and involves few
changes to the application; Hence, EasyCrash brings a feasible
and highly beneficial solution to HPC.

In summary, this paper makes the following contributions:

'We distinguish cache line and cache block. The cache line is a location in
the cache, and the cache block refers to the data that goes into a cache line.

« A methodology for HPC under failures, by leveraging NVM
and error resilience intrinsic to many HPC applications;

o Characterization of HPC application recomputability after
crashes; Theoretical analysis to provide guidance on per-
sisting data objects with guarantee on high performance and
system efficiency;

o EasyCrash transforms 54% of crashes that cannot correctly
recompute into correct computation, while incurring 1.5%
performance overhead (on average); 77% of crashes suc-
cessfully recomputes. As a result, EasyCrash enables up to
30% improvement (20% on average) in system efficiency.

II. BACKGROUND
A. Cache Flushing for Data Persistence

To ensure persistency and consistency of data objects in
NVM, the programmer typically employs ISA-specific cache
flushing instructions (e.g., CLFLUSH, CLFLUSHOPT and
CLWB). To persist a large data object, the current common
practice is to flush all cache blocks of the data object [16],
even when some of them are not in the cache. This is because
we do not have a performant and cost-effective mechanism to
track dirty cache lines and whether a specific cache block is
resident in the cache. However, flushing a clean cache block
or a non-resident cache block is less expensive than flushing a
dirty one resident in the cache, because there is no writeback.

B. Terminology and Problem Definition

Data objects. We focus on heap and global data objects, but
not on stack data objects. Choosing those data objects is based
on our survey on 60 HPC applications [25]: Major memory
footprint and most important data objects (important to exe-
cution correctness) in HPC applications are heap and global
ones. Our observation is aligned with the recent work [26],
[27]. We study data objects (but not the whole system state) for
recomputation study, because of two reasons: (1) The current
main-stream NVM programming models [8], [14], [16] focus
on persisting data objects for easy restart; (2) persisting the
whole system state can cause large performance overhead.

Application recomputability. We define application re-
computability in terms of application outcome correctness. In
particular, we claim an application recomputes successfully
after a crash, if the final application outcome is correct.
The outcome is deemed correct, as long as it is acceptable
according to application semantics. Depending on application
semantics, the outcome correctness can refer to precise numer-
ical integrity (e.g., the outcome of a multiplication operation
must be numerically precise), or refer to satisfying a minimum
fidelity threshold (e.g., the outcome of an iterative solver must
meet certain convergence thresholds). Leveraging application-
level acceptance verification, we can determine correctness
of application outcome and execution. We define application
recomputability with a high requirement on performance. In
particular, for an HPC application with iterative structures,
we claim that it recomputes successfully when its outcome
is correct and it does not take extra iterations to finish.

Application recomputability quantifies the possibility that
once a crash happens, the application recomputes successfully.
To calculate application recomputability, one has to perform a
number of crash tests to ensure statistical significance. Each
test triggers a random crash and restarts the application. We
use the ratio of the number of tests that successfully recompute
to total number of tests as application recomputability. All

of the crash tests to calculate application recomputability
form a crash test campaign. We distinguish “restart” and
“recompute”. After the application crashes, the application
may resume execution, which we call restart. If the application
outcome is correct and there is no need of extra iterations to
finish, we claim the application recomputes.

System efficiency is defined as the ratio of accumulated
useful computation time to total time spent on the HPC
system. The total time includes time for useful computation,
checkpoint, lost computation because of crashes, and recovery.

Application target. We focus on HPC applications. The
effectiveness of EasyCrash is affected by the acceptance verifi-
cation and error resilience characteristics of those applications.

The acceptance verification can happen at the end of the
application [28] or during application execution [29], which
detects whether the application state is corrupted before de-
livering results to users. Typically it is the programmer’s
responsibility to write the acceptance verification to ensure
that computation results do not violate application-specific
properties (e.g., convergence conditions or numeric tolerance
for result approximation). The application-level acceptance
verification is common in HPC applications, and increasingly
common, because of the strong needs of increasing confidence
in the results offered by HPC applications. The application-
level acceptance verification has been commonly employed in
the existing work to determine execution correctness of HPC
applications [21]-[23], [30], [31].

A large number of HPC applications are characterized
with an iterative structure (a main computation loop dom-
inating computation time) and acceptance verification. Our
comprehensive survey on 60 HPC applications from various
scientific and engineering fields support the above conclu-
sion [25]. Many of those HPC applications are known to be
naturally resilient to computation inaccuracy [21], [32]. They
are promising to be recomputable after crashes, because they
work by improving the solution accuracy step by step, which is
helpful to eliminate errors. For example, a convergent iterative
method can tolerate data inconsistency during the convergence
process. Because of the prevalence and importance of those
applications, the recent work on approximate computing also
focuses on those applications [33], [34]. We expect those
applications become more common in the future, in order to
enable higher performance and energy efficiency [35], [36].

Failure model. We focus on application failures which
could be caused by power loss, hardware failures or faults.
We do not consider application failures caused by software
bugs, because those bugs can prevent recomputation. After
application failure, NVM is still accessible for restart [8], [14].

Optane DC persistent memory module. The recent release
of Intel Optane DC persistent memory module (DCPMM) is
used as main memory and promising for future HPC [37]. We
put our discussion in the context of this hardware to make
our work more useful. DCPMM can be configured as either
memory mode or app-direct mode. With the memory mode,
DCPMM does not provide data persistency, hence not relevant
to our work. We assume that DCPMM uses app-direct mode.
With this mode, DCPMM is provisioned as persistent memory
with byte addressability. The application can directly access it
using load/store instructions, and flushing CPU caches makes
data persistent in Optane DCPMM. To locate data objects in
DCPMM after a failure, the user leverages a memory-mapped
file-based mechanism. This mechanism is commonly used in

1

double u[NR];

static

static double r[NR];
; void main(int arge, char =xargv) {
4 int 1t;
5 initialize ();
for (it = 1; it <= nit; it++) {//main comp loop

for () { // a first—level inner loop;

9 f.‘(.).r() {...}// a second—level inner loop

lor () { // a first—level inner loop;

“cache_block_flush (u, NRxsizeof (double));

15 cache_block_flush(r, NR«sizeof (double));

16

19 // result

}
cache_block_flush(&it, sizeof(int));

verification

(a) Persisting data objects during MG execution.

double u[NR];
double r[NR];

static
static

s void main(int arge, char sxargv) {

4 int

it ,it_old;

5 initialize ();

load_value (u,NR«sizeof (double));
load_value (r ,NRxsizeof (double));

8 load_value(&it_old ,sizeof (int));

9 for

(it = it_old; it <= nit; it++) {//main loop

/./”flush cache blocks

// result verification

(b) Restart MG.
Fig. 1: Study recomputability of MG with NVCT.
the exiting NVM-aware programming models [8], [38].

C. Study Application Recomputability

To study application recomputability in NVM, we use a
PIN-based crash emulator, NVCT [39]. NVCT includes a sim-
ulated multi-level, coherent cache hierarchy and main memory,
and a random crash generator. Different from the traditional
cache simulator, NVCT not only captures microarchitecture
level, cache-related hardware events such as cache misses
and invalidation, but also records the most recent values of
data objects in the simulated caches, which allows the user
to calculate data inconsistent rate after a crash happens. To
calculate the data inconsistent rate for a data object, NVCT
counts the total number of dirty bytes in the data object and
then divides the number by the data object size.

An example. Figure 1 gives an example of how we study
application recomputability using NVCT. This is a multi-grid
(MG) numerical kernel from the NAS benchmark suite [40]
(NPB). Like many HPC applications, MG has a main compu-
tation loop, within which we persist two global data objects
and a loop iterator 2 (Lines 14-15 and 17 in Figure 1a). After a
crash happens, we restart MG using Figure 1b. To restart, the
application re-initializes computation (Line 5 in Figure 1b),
loads the values of the two data objects and old loop iterator
(Lines 6-8) from NVM, and restarts the main computation
loop from the iteration where the crash happens (Line 9). We
run MG to completion and verify the application correctness.

%In the rest of the paper, we always persist a loop iterator to bookmark
where the crash happens. This makes restart easier. Persisting just one iterator
has almost zero impact on application performance.

100%

80%

60%

40%

20%

Application responses
after restart

0%
MG IS BT (1Y) SP EP botsspar LULESH kmeans
Fig. 2: Apphcatlon responses after crash and restart. Figure anno-

tation: S1 - successful recomputation without using extra iterations,
S2 - successful recomputation with extra iterations, S3 - Interruption,
and S4 - verification fails.

III. CHARACTERIZATION OF APPLICATION
RECOMPUTABILITY

A. Experiment Setup

Benchmarks for evaluation. We use all benchmarks from
NPB. To enrich our benchmark collection, we add botsspar
from SPEC OMP 2012 [41], kmeans from Rodinia [42] and
LULESH [43]. These benchmarks are chosen, because of
their representativeness and explicit code structures to verify
application correctness. Table I summarizes them.

System configuration. We simulate a three-level cache (L1
cache: 32KB and 8-way; L2 cache: 1IMB and 12-way; L3
cache: 19.25MB and 11-way), 64B cache line, write-back,
write-allocation and LRU policy. We use both single and 4
threads to run benchmarks, and present the results of 4 threads.

Crash tests. To ensure statistical significance, for each
benchmark, we run a sufficient number of crash and re-
computation tests (usually 1000-2000 tests), such that further
increasing tests does not cause big variation (less than 5%) in
evaluation results. This method ensures that our evaluation is
sufficient and results are statistically correct. During applica-
tion execution, we randomly stop it for crash tests, and the
time of stopping follows a uniform distribution. This method
is common in the fault tolerance research [21], [30].

B. Experiment Results

We observe four application responses after a crash and
restart. (1) Successful recomputation without performance
overhead: the application successfully passes acceptance veri-
fication, and uses no extra iteration to finish; (2) Successful re-
computation with performance overhead: the application suc-
cessfully passes the acceptance verification, but takes at least
one more iterations to finish; (3) Interruption: the application
cannot run to completion; (4) Verification fails: the application
cannot pass the acceptance verification, even after taking two
times as many iterations as in the original execution.

Figure 2 and Table I show the results. We notice that some
applications show strong recomputability (e.g., 88% and 67%
for SP and BT respectively). Some (e.g., IS, LU, and EP) are
the opposite: They cannot restart, or have segmentation faults.

Analysis. (1) SP and BT has high recomputability because
they can isolate propagation of data inconsistency. In partic-
ular, SP and BT, aiming to solve 3-dimensional compressible
Navier-Stokes equations [44], decouple computation along X,
y and z dimensions. Each dimension employs an iterative
numerical solver which tolerates data loss after crashes [45],
and most of data inaccuracy is constrained to one dimension
without propagation, because of the decoupling of dimensions.
(2) LU has low recomputability, because it does not decou-
ple computation along 3 dimensions. Although LU performs
similar numerical simulation as SP and BT, data inaccuracy
is propagated throughout the whole computation and fails the
verification eventually. (3) IS has low recomputability, because

100% 100%

84%
75% 63% 75% 63% 63% 63%
50%

I70%
0% II I I

25%
m.l. R1 R2 R3 R4

50%
27%
25%

27% 28%
~ NN l
orig. it

(a) (b)

Fig. 3: The recomputability of MG after (a) persisting three different
data objects in MG; and (b) persisting v in different code regions.
“orig.” stands for the recomputability without persisting anything.

m.l.” stands for the case of persisting u at the end of each iteration
of the main loop without considering code regions.

Recomputability
Recomputability

it is characterized with rich pointer arithmetic. Crash and
restart easily cause segfaults. (4) EP has low recomputability,
because it has a small memory footprint. Crash and restart
leave most of data objects in stale states, violating application
requirement on data correctness.

Conclusion 1. Applications have quite different recom-
putability, because of code structures (e.g., in IS and EP) and
algorithms (e.g., in SP and LU).

To study how to improve application recomputability, we
selectively persist data objects and examine its impact on
application recomputability. We do not persist all data objects,
because it can cause large performance overhead. Figure 3a
shows the results for MG. We choose three data objects (it,
u and r) for study. We persist them at the end of each
iteration of the main computation loop. By persisting u, the
recomputability is improved to 63%; However, persisting it
and r, the recomputability is barely improved.

Analysis. (1) it is a single variable (4 bytes) and used only
once in each iteration of the main loop. Without flushing it, it
is highly likely that it is evicted out of the cache at the end
of the iteration because of cache conflicts. Hence, persisting
it is not helpful to improve recomputability. (2) v and r are
large arrays; a set of stencils are applied to them over many
iterations. r are dominated by read, while w are by intensive
writes. Hence, persisting r is not helpful while persisting w is.

Conclusion 2. Persisting different data objects has different
implications on application recomputability, because of data
access patterns (e.g., data reuse and write/read pattern).

We further study the impact of where to persist data objects
on application recomputability. MG has four first-level inner
loops shown as R1-R4 in Figure la. They represent four
execution phases. They all update u. We persist u at the
end of an execution phase (code region). Figure 3b shows
the result. Persisting u at R3, we have 21% improvement in
recomputability, while persisting it at other code regions, we
only have less than 7% improvement.

Analysis. MG is a hierarchical multi-grid method that
approximates the solution to a discrete Poisson equation. R3
is the solving phase on a coarse grid to accelerate computation
convergence [21]. Data inconsistency in R3 easily causes
significant computation errors in multiple finer grids, leading
to verification failure. Persisting u in R3 constrains data incon-
sistency caused by crashes, leading to higher recomputability.
Other code regions work on a finer grid where the impact of
data inconsistency on outcome correctness is limited. Hence
persisting v at other code regions is not helpful.

TABLE I: Benchmark information. “DO” = *“data object”, “iter” = “iterations”.
Benchmarks Description # of code input Memory footprint Candi. of Critical Ave. # of extra iter. to Total # of iter. in the
regions critical DO size DO size restart (restart overhead) original app i

CG Sparse linear algebra 6 CLASS C 94TMB| 5.7MB 2.3MB 9.1 75
MG Structured grids 4 CLASS C 3.4GB 2.3GB 1.2GB 0 20
FT Spectral method 4 CLASS C 5.1GB 4.0GB 4.0GB 0 20

IS Graph traversal (sorting) 8 CLASS C 1.0GB 264MB 4KB N/A(segfault) 10
BT Dense linear algebra 15 CLASS C 1.43GB 525.6MB 361.2MB 0 200
LU Dense linear algebra 4 CLASS C 1.4GB 599MB 164MB N/A (the verification fails) 250
SP Dense linear algebra 16 CLASS C 1.47GB 561MB 394MB 0 400
EP Monte Carlo 2 CLASS C IMB IMB 80B N/A (the verification fails) 65535
botsspar Sparse linear algebra 4 m=120, n=501 (ref) 3.74GB 3.36GB 3.36GB 0 200
LELUSH Hydrodynamics modeling 4 s=100 1.41GB 25IMB 20MB 0 3517

kmean Data mining 1 100000_34.txt 222MB 20B 20B 18.2 36

Conclusion 3. The application shows different recom-
putability when persisting data objects at different code re-
gions, because the execution correctness of those code regions
has different impact on application outcome correctness.

Insight. Persisting all data objects throughout code regions
may not be useful and efficient. Selectively persisting data
objects at some code regions can effectively bound data errors
caused by data inconsistency and lead to higher application
recomputability, while paying less performance overhead.

IV. DESIGN

Motivated by the above observations, we introduce Easy-
Crash, a framework that can increase application recom-
putability with an ignorable runtime overhead and offers
higher system efficiency than C/R without EasyCrash. Easy-
Crash automatically decides which data objects should be per-
sisted (Section IV-A) and where to persist them to maximize
application recomputability (Section IV-B).

A. Selection of Data Objects

We name data objects selected to be persisted, critical data
objects in the rest of the paper. To select data objects, we
choose those data objects with the following properties as
candidates: (1) Their lifetime is the main computation loop;
and (2) They are not read-only. Except the candidates, the
other data objects are either temporal or read-only, and not
treated as the candidates. When the application restarts, the
other data objects are not read from NVM. Instead, they are
restored by either the initialization phase of the application
or being re-computed based on the candidates of critical
data objects. When the application restarts, the candidates are
directly read from NVM. There is a large search space to select
data objects out of the candidates: There could be hundreds
or thousands of candidates in an HPC application. We use
statistical correlation analysis to efficiently select data objects.

Our method is based on the following observation. When a
crash happens, data objects in NVM can have different degrees
of inconsistency. For example, a data object of 128MB could
have 16MB of inconsistent data, giving an inconsistent rate of
16/128 = 12.5%, while some data object could have an in-
consistent rate of 50%. Application recomputability correlates
with the inconsistent rate of some data objects, meaning that
if these data objects have high inconsistent rate, application
recomputability is low. They should be selected as critical
data objects. Application recomputability is not sensitive to the
inconsistent rate of some data objects. Persisting them does not
matter to application recomputability. Hence, the sensitivity
of application recomputability to the inconsistent rate of data
objects can work as a metric to select data objects.

We use Spearman’s rank correlation analysis [46] to statis-
tically quantify the correlation between the inconsistent rate
of data objects and application recomputability. The analysis
result is an coefficient (R;), which quantifies how well the
relationship between two input vectors can be described using

W S1: Do not persist any DO [3S2: Persist selected DO N S3: Persist all candidate DO
100%

6
%
- I—§ J—g
0%
G MG T s BT 1 P

Fig. 4: Application recomputability under three strategies to persist
data objects. Figure annotation: “DO” stands for data objects.

a monotonic function. Furthermore, we use the p-value of R,
to ensure statistical significance of our analysis. The p-value
is the probability of observing data that would show the same
correlation coefficient in the absence of any real relationship
between the input vectors.

To use the Spearman’s rank correlation analysis, we build
two vectors for each candidate data object, using the results
from a crash test campaign: One vector is composed of data
inconsistent rates; The other is composed of Boolean values
(i.e., whether the application recomputes successfully or not).
Each component of the two vectors is collected in one crash
test. The vectors are used as input to the correlation analysis.

Based on the Spearman’s rank correlation analysis, we use
two criteria to select data objects. (1) A critical data object
should have a negative value of R, which indicates decreasing
data inconsistent rate improves application recomputability. (2)
The p-value of R should be smaller than a threshold. We use
0.01 as the threshold, because it is common [46] and less than
it statistically shows a very strong correlation in our study.

Verification of the selection of data objects. We evaluate
application recomputability with three strategies: (1) Do not
persist any data object; (2) Persist selected data objects;
(3) Persist all candidate data objects. Figure 4 shows the
results. The figure shows that the difference in application
recomputability between (2) and (3) is less than 3% in all
cases. This verifies the effectiveness of our selection method.

@
9 Q
X R

Recomputability
=
8

EP botsspar LULESH kmeans

B. Selection of Code Regions

In this section, we first introduce code regions in typical
HPC applications. Then we formalize our problem of selecting
code regions, and introduce an algorithm to solve it.

Application code regions. We characterize HPC applica-
tions as a set of iterative structures or loops. In particular, there
is usually a main computation loop in an HPC application.
Within the main loop, there are a number of inner loops
typically used to update data objects iteratively. This code
structure is commonly used in HPC applications. A number
of existing efforts are based on this code structure [15], [30],
[31], [47], [48]. Figure 1a shows an example from MG.

We model an application as a chain of code regions delin-
eated by loop structures. A code region is either a first-level
inner loop or a block of code between two adjacent, first-
level inner loops. We use the above definition of code regions,
because it easily represents computation phases. Persisting

data objects in a code region ensures that the most recent
computation results in a phase are persistent in NVM, and
can effectively improve application recomputability. A similar
definition of code regions is in [30].

Problem formulation. Among all code regions, we want
to select code regions to satisfy two performance goals. (1)
The runtime performance goal: the application with critical
data objects persisted at the selected code regions should have
runtime overhead smaller than a threshold #,. 5 is set by the
user (in our study, t; = 3% of application execution time
without any crash). (2) The system efficiency goal for long-
running applications: the system efficiency with EasyCrash
(including successful and unsuccessful recomputation) should
be better than that with traditional C/R without EasyCrash.
Achieving this goal requires that the recomputability of the
application should be high enough (higher than a threshold
7). Section VI discusses how to decide 7.

We name the selected code regions “critical code regions”
in the rest of the paper. In the following discussion, we assume
that there is only one critical code region, in order to make
our formalization easy to understand. But our formalization
can be easily extended to any number of critical code regions.

Assume that there are W code regions in an application
and Y is the application recomputability without persisting
any data objects. The recomputability of a code region i is
¢;. The recomputability of a code region is the possibility
that when a crash happens during the execution of the code
region, the application is successfully recomputed. Based on
the definition of recomputability (Section II-B), the application
recomputability Y is a weighted sum of the recomputability
of code regions; A weight for a code region is the ratio of
execution time of the code region to total execution time of the
application. We formulate Y based on the above discussion.

Y = Z a; X C1 (1)

where a; is the weight of a code region ¢. In other words, a;
is the ratio of the accumulated execution time * of the code
region % to total execution time of the application.

Assume the code region k£ (1 < k < W) is selected as
a critical code region. After persisting critical data objects
at k, the recomputability of the application and code region
becomes Y’ and ¢}, respectively. We have performance loss I,
because of persisting critical data objects in k. [; is the ratio
of absolute performance loss to total execution time.

Y’ is calculated based on ¢}, for the code region k. ¢; for
the other code regions (1 < ¢ < W and i # k) remains the
same. Y’ is formulated in Equation 2.

Y = Zazxcl)+ak><ck+z (a; x ¢;) 2)

=1 i=k+1

where @) and) are new performance ratios (weights) with
the consideration of the persistence overhead.

Our two performance goals are formulated as follows. We
want to select a code region to meet the two goals.

Y' >r1)

Our algorithm to solve the problem. To determine if the
selection of a code region meets Equation 3, we need to

3A code region can be repeatedly executed. Hence we count the accumu-
lated execution time.

estimate the performance loss (I;) caused by persisting critical
data objects. Based on I, we easily get a, (the weight).
li is estimated by measuring the overhead of flushing one
cache block and the total number of cache blocks to flush. To
determine if the selection of a code region k£ meets Equation 4,
we first estimate ¢), without doing extensive crash tests (recall
that ¢, is the recomputability of the code region k after
persisting data objects). Then, based on Equation 2 and ¢}, we
calculate Y (recall that Y is the application recomputability
after persisting data objects at the code region k) and use
Equation 4 to decide if we reach the system efficiency goal.
¢, depends on how frequently we persist data objects in
the code region. (1) If the code region k is a loop structure,
we can persist data objects at every iteration of the major
loop to maximize recomputability (¢}**”, and ¢}, = ¢]'*%), or
persist them every x iterations (z > 1) (the corresponding
recomputability of the code region is ¢}, and ¢}, = cf). If we
do not persist data objects at all, then the recomputability of
the code region is not changed (still ¢;), and the code region
is not selected. (2) If the code region is not a loop structure,
we flush cache blocks at the end of the code region to reach
cpr*®, or do not flush at all with no change of recomputability.

To measure c;'** for a code region k, we persist data
objects at every iteration of the major loop in k * to maximize
recomputability of the code region. Then we trigger crashes
during the execution of the code region k, and then measure
the application recomputability as c;**”. However, given W
code regions to measure recomputability, this approach has to
perform W crash test campaigns, which can be expensive. We
use the following method to address this problem.

We use only one crash test campaign to measure best
recomputability of all code regions (including the region k).
In particular, we persist data objects at each iteration of major
loop in each code region. This ensures best recomputability
of each code region. In the crash test campaign, crash tests
still randomly happen. We use those crash tests that trigger
crashes during the execution of a code region to calculate the
best recomputability of that code region.

To calculate ¢} (recall that ¢f, is the recomputability of the
code region k when we persist data objects every x iterations
of major loop in the code region k), we use Equation 5.

g = (e —ex) x S o %)
In essence, Equation 5 estimates cj, based on a linear interpola-
tion between ¢;'** and ¢y, (recall that ¢, is the recomputability
of the code region k& without persisting any data object).

Using the above formulation, we are able to know the appli-
cation recomputability (c},) for any code region. To illustrate
the above modeling process, Figure 5 runs an example where
we have three code regions, and the algorithm tries to decide
if the code region 2 should be selected and how frequently to
persist data objects there.

We can generalize our method to select any number of code
regions (not just one as above) and decide how frequently to
persist data objects in each code region. In particular, to meet
the two performance goals, we choose those code regions
in which persisting data objects with certain frequencies do
not cause performance loss larger than ts. Also, application
recomputability after persisting critical data objects in the
selected code regions with selected cache flushing frequencies

4If there is no loop, we persist data at the end of the code region k.

(" determine flushing)
\frequency to calculate 5

the weight T~
the recomputability of code region

Legend

‘ measure cJ'%* ‘ measure c;

;ﬁ

enumerate x to calculate c5 ‘

Y=a; X ¢+ az;x c;+az X c3

l select code region 2?

Y' =laj Xe; + a5 X ¢y + laz X ¢3

No //—"/’/L"*'———;,,
NV ch the two gg@]jé}::>

O,

=2 i e 1Yes

Yes|

{ skip code region 2 J { select code region ZJ
Fig. 5: An example of using our algorithm to decide whether a code
region (code region 2) in a program should be selected. The program
has three code regions.

is larger than 7 (meeting the system efficiency goal). We also
want to maximize application recomputability. This is a variant
of the 0-1 knapsack problem [49] with each code region as
an item, performance loss as the item weight, and application
recomputability as the item value. This problem can be solved
by the dynamic programming in pseudo-polynomial time.

Discussions. When estimating l;,, we assume every cache
block of data objects is in the cache, which overestimates
cache flushing overhead. However, overestimation is harmless,
because it ensures that runtime overhead is smaller than ¢,.

To calculate Y’, we use one campaign of crash tests to
measure the recomputability of each code region, by persisting
critical data objects at each code region. However, to accu-
rately measure the recomputability of a specific code region,
we should persist critical data objects only at that code region
(not each code region). Our method, although avoids massive
crash tests, ignores the propagation of computation inaccuracy
from one code region to another, which makes the measured
recomputability smaller than the real recomputability. This
means EasyCrash should result in larger recomputability and
larger performance benefit in reality, which is good.

C. How to Use EasyCrash

To use EasyCrash, we need to know the performance loss
l;, for each code region. Different frequencies of persisting
data objects lead to different performance losses. We estimate
the performance loss based on the overhead measurement of
flushing one cache block, total number of cache blocks and
flushing frequency. Note that certain cache flushing instruc-
tions (CLFLUSH and CLFLUSHOPT) invalidate cache lines
after cache flushing. This means that cache blocks need to
be reloaded into the cache when they are re-accessed, which
causes extra performance loss. To account for such cases,
we double our estimation on the overhead of flushing cache
blocks. The whole workflow of EasyCrash includes 4 steps.

Step 1: Running a crash test campaign without persisting
data objects. We collect the data inconsistent rate of candidates
of critical data objects and calculate corresponding application
recomputability. We also measure the recomputability of each
code region (i.e., cx, 1 < k < W) in this test campaign.

Step 2: Selection of data objects. We calculate the cor-
relation between the inconsistent rate of data objects and
application recomputability to decide critical data objects.

Step 3: Selection of code regions. We run another crash test
campaign that persists critical data objects at each code region
with highest frequency to measure the best recomputability of
each code region (c;'**,1 < k < W). The output of this step

is the selection of code regions and how frequently to persist
data objects in the selected code regions.

Step 4: Production run. Just run the application, and Easy-
Crash automatically manages cache flushes.

Application preparation. The above steps introduce minor
changes to the application. The application changes include
two parts: (1) Allocating data objects that are updated in the
main computation loop with an EasyCrash API. Those data
objects are candidates of critical data objects, and their ad-
dresses are passed into EasyCrash for potential cache flushing
during production runs. (2) Identifying the end of first-level
inner loops with an EasyCrash API. Those places delineate
code regions. We describe the APIs and show an example on
how to use them in [25] and [50]. For (1) and (2), the
compiler can annotate the application with the APIs, freeing
the programmer from changing the application.

Ease of using EasyCrash. EasyCrash includes tools [50]
to automate the selection of data objects and code regions and
crash tests. Without crash tests, it usually takes a few tens of
seconds; With crash tests, it only takes about 10 minutes or
so in our evaluation, with a technique in Section VII.

V. EVALUATION

We study whether EasyCrash can effectively improve ap-
plication recomputability and what is the runtime overhead
of EasyCrash. In Section VI, we evaluate system efficiency in
large scale systems in the context of C/R mechanisms. We use
benchmarks in Table I. To calculate application recomputabil-
ity, we use the method in Section III-A for crash tests.

We use a platform with Optane DCPMM (1.5TB) and two
Xeon 8260L processors. We set ts as 3% in this section.
We also use t; = 2% and 5% for the sensitivity study. In
all tests, the runtime overhead is effectively bounded by ¢.
But a smaller ¢4 leads to less frequent persistence operations.
As a result, a few benchmarks (e.g., FT) cannot meet the
recomputation requirement imposed by 7. We show the results
of t, = 3% in this section. We do not present EP, because its
inherent recomputability is 0. Even with EasyCrash, its recom-
putability is less than 3%, and EasyCrash cannot bring benefit
in system efficiency according to our model (Equation 4).

Recomputability improvement. Figure 6 shows applica-
tion recomputability after using EasyCrash. To reveal the
effectiveness of selecting data objects and code regions, we
first measure recomputability without using them, shown as
“without EasyCrash” in the figure. Then we select data objects
and persist them at the end of each iteration of the main
computation loop, shown as “selecting data objects”. We then
select code regions to persist the selected data objects with
selected frequencies, shown as “selecting code regions”.

To show EasyCrash effectiveness, we also compare the best
recomputability with the recomputability after using Easy-
Crash. The best recomputability is obtained by persisting crit-
ical data objects at each code region (if the code region has a
loop structure, we persist critical data objects with the highest
frequency, i.e., persisting them at the end of each iteration of
the loop). Note that the method to get the best recomputability
is very costly (see Table II), which is not a practical solution.
In addition, we do not show results of persisting all data
objects, because Section IV shows that persisting critical data
objects can achieve very similar recomputability as persisting
all data objects. Figure 6 leads to two observations.

(1) EasyCrash achieves high recomputability. Except for
CG, the recomputability after applying EasyCrash is close to

W Without EasyCrash [Selecting data objects R Selecting code regions O Best recomputability
100%
>

80%
60%
40%
20%

%

ECBest ECBest ECBest ~ ECBest ECBest EC Best EC Best
G MG FT 15 BT w P

Recomputabilit
g 8 8

1

ECBest ECBest

LULESH

EC Best

botsspar kmeans

Fig. 6: Application recomputability with different techniques.

TABLE 1II: Normalized execution time. “Norm” = “normalized”.
“EC” = “EasyCrash”. “best” = “the best recomputability”
. . . Norm. Norm. Norm. exe.
Time for persisting # of persistence exe. time exe. time {ime achieving
critical data for once operations L y
with EC without EC the best.
CG <0.001 s 75 1.004 1.20 1.24
MG 0.045 s 40 1.018 1.37 1.31
FT 0.043 s 80 1.023 1.42 1.36
IS 0.041 s 10 1.018 1.31 1.74
BT 0.042 s 100 1.018 1.31 1.63
SP 0.041 s 100 1.021 1.41 1.77
LU 0.049 s 125 1.021 1.42 1.80
botsspar 0.041 s 200 1.029 1.58 1.77
LULESH 0.039 s 293 1.027 1.54 1.73
kmeans <0.001 s 36 1.000 1.00 1.00
Average ~ 0.034 s 106 1.018 1.26 1.54

the best one, with a difference of only 5% on average. For
CQG, there is a big difference (49%), because many successful
recomputation tests require extra iterations, which is not
acceptable in EasyCrash due to the concerns on performance
loss. Note that even with the difference, EasyCrash still brings
4% improvement in system efficiency for CG (Section VI).

(2) EasyCrash significantly improves application recom-
putability. This fact is especially pronounced in MG, botsspar
and kmeans. We see 56%, 77%, and 93% improvement for
them respectively. The average recomputability of all bench-
marks after using EasyCrash is 75%, while it is 28% before us-
ing EasyCrash. EasyCrash is able to transform 47% of crashes
that cannot correctly recompute into correct computation.

Performance study. We measure runtime overhead of
persisting critical data objects at critical code regions with
EasyCrash but with no crash triggered. We leverage CLWB
for best performance of cache flushing. Table II summarizes
execution time of persisting critical data objects for once
(i.e., performing one persistence operation), the number of
persistence operations with EasyCrash, and total execution
time with persistence operations. In the rest of this section,
the total execution time is normalized by the execution time
without any persistence operation.

In general, the runtime overhead is no larger than 2.9%
(bounded by t, = 3%). For comparison purpose, we show the
overhead of persisting all candidate data objects at the end of
each iteration of main computation loop (shown in the fifth
column of Table II), which is a case without the selection of
data objects and code regions. This case causes 26% overhead
on average, much larger than EasyCrash. We also evaluate the
overhead of achieving the best recomputability by persisting
critical data objects with the highest frequency. The runtime
overhead is 54% on average, much larger than EasyCrash.

Write Reduction. We compare EasyCrash and in-memory
C/R mechanism in terms of number of extra writes. For
EasyCrash, the extra writes come from persisting critical data
objects at critical code regions. As discussed in Section II-A,
when cache blocks of critical data objects are clean or not
resident in the cache, flushing them does not cause any
write in NVM. For C/R mechanism, the extra writes come
from (1) making a copy of data objects and (2) cache line
eviction because of loading checkpoint data into the cache
when making data copy [15]. We use NVCT to measure the
number of writes in NVM. Whenever a dirty cache block is

M EasyCrash [C/R for critical data objects

N

\

N
IS

BT LU SP
Fig. 7: Normalized number of NVM write.

written back to NVM, we count the number of writes by one.
To enable a fair comparison with EasyCrash, we perform
C/R in two ways: (1) We checkpoint critical data objects,
and (2) we checkpoint all data objects (excluding read-only
ones). We assume that checkpoint happens only once. This is
a conservative assumption favoring the checkpointing mech-
anism. The checkpoint could happen more often (depending
on system failure rate and application execution time), causing
more writes. We consider system failure rate and application
execution time to evaluate checkpoint effects in Section VI.
Figure 7 shows the number of write normalized by total
numbers of writes in NVM without EasyCrash and C/R. On
average, EasyCrash adds 16% additional writes, while C/R
adds 38% and 50% using the two checkpointing methods
respectively. Also, for those benchmarks with large data ob-
jects (e.g., FT, SP and LU), EasyCrash is especially beneficial
since the number of extra writes in a persistence operation
is bounded by the last level cache size. A larger data object
indicates that EasyCrash flushes more non-resident cache
blocks or clean cache lines without causing actual writes. For
benchmarks with small data objects (e.g., CG with data objects
smaller than or similar to the last level cache size), EasyCrash
is not beneficial to reduce writes, but writing those small data
objects does not usually cause serious endurance problems.

C/R for all data objects

N N

S o B &
o

Normalized # of write
=

J/777777777)

o

botsspar LULESH kmeans

VI. END-TO-END EVALUATION

We evaluate EasyCrash in the context of large-scale systems
running time-consuming HPC applications with a C/R mech-
anism. To enable convincing evaluation, we need different
system scales with various configurations, which is expensive
to achieve. We develop an emulator based on performance
models and Section V.

Basic assumptions. We assume that the checkpointing
process does not have any corruption. This is a common
assumption [22], [51]. We model coordinated checkpointing,
which is the most common C/R commonly used in the recent
work [22], [52], [53] (we model uncoordinated checkpionting
in [25] for the completeness of our study. In general, Easy-
Crash improves system efficiency by 1% to 60% for uncoordi-
nated checkpointing). With the coordinated checkpointing, all
nodes take checkpoints at the same time with synchronization.
The checkpoints are saved in fast local storage and then
asynchronously moved to remote storage nodes. When a crash
happens in one node and the application cannot successfully
run to the completion or pass the acceptance verification after
restarting using EasyCrash, all nodes will go back to the last
checkpoint. Note that with EasyCrash, the application has a
high probability to successfully recompute after restart. Hence,
the checkpoint interval with EasyCrash is longer.

Performance modeling. Our emulator includes system and
application related parameters. We summarize the system
related parameters as follows.

1) MTBF: Mean time between failures of the system without
EasyCrash. MT BFgqsycrash 18 MTBF with EasyCrash.

Since the average application recomputability with Easy-
Crash is 77% (Section V), we have MTBFgp.sycrash =
MTBF/(1 — T7%).

2) T _chk: The time for writing a system checkpoint. The
checkpoint on each node is written into local SSD (not
in NVM main memory) and then gradually migrated to
storage nodes (the data migration overhead is not in T_chk).
This multi-level checkpoint mechanism is based on [52].
The checkpoint should not be written to main memory,
because it greatly reduces memory space for applications.

3) T_r: The time for recovering from the previous checkpoint.
Similar to the existing work [51], we assume T_r = T_chk.

4) T_sync: The time for synchronization across nodes. We use
the assumption in [22]: The synchronization overhead is a
constant value, and we use 50% of the checkpoint overhead
as T_sync.

5) T: The checkpoint interval, based on Young’s formula [54],
T = 2 x T_chk x MTBF. This formula has been shown
to achieve almost identical performance as in realistic
scenarios [55].

6) T _vain: The wasted computation time. When the appli-
cation rolls back to the last checkpoint, the computation
already performed in the checkpoint interval is lost. As
proved by Daly [56], on average, half of a checkpoint in-
terval for computation is wasted (i.e., T _vain = 50% x T).
We summarize the application related parameters.

1) Rgasycrash: The application recomputatbility with Easy-
Crash.

2) ts: The runtime overhead introduced by EasyCrash because
of persisting critical data objects (e.g., 3% in Section V).
Based on the above notations, we use performance mod-

els to evaluate system efficiency. The system efficiency is

the ratio of the accumulated useful computation time (u)

to total time spent on the system (7otal_Time), which is

(u/Total_Time). We assume that the accumulated useful

computation takes checkpoints NV times; and during the whole

computation, the crash happens M times.

Equation 6 models the total time without using EasyCrash.
The equation includes useful computation and checkpoint time
(N x (T + T_chk)), and the cost of recovery using the last
checkpoint (M x (T_vain+T_r+T_sync)). The number of
crashes (M) is estimated using Equation 7.

Total_Time = N X (T + T_chk) + M x (T_vain + T_r + T_sync) (6)
Total_Time
= T MTBF

EasyCrash improves system efficiency by avoiding recov-

ery from the last checkpoint and increasing the checkpoint

interval. Equation 8 models the total execution time with

EasyCrash, where N’ and T" are the number of checkpoints

and their interval when using EasyCrash, and M’ is the

number of crashes that use the last checkpoint for recovery,

and M" is the number of crashes that use EasyCrash to
recompute successfully.

()]

Total_Time = N' x (T' + T_chk) +
M’ x (T_vain/ + T_r 4+ T_sync) + ®)
M" x (T_r' + T_sync)

M’ =M x (1 — RpasyCrash), M'" = M X Rpasycrash (9

With EasyCrash, the checkpoint interval (T") becomes longer
(T" > T), and also should include a small runtime overhead
(ts). As a result, the number of checkpoints (N’) becomes

W without-EasyCrash O with-EasyCrash

1
§ 0.9
08
§ 0.7 H
0.6
o5 l|_| | | |
32s 320s 3200s 32s 320s 3200s 32s 320s 3200s
FT SP Avg

Fig. 8: System efficiency without and with EasyCrash when the
system MTBF is 12 hours. The x-axis shows different checkpointing
overhead. “Avg” stands for “average”.

-+-CG CG-EasyCrash 09 —+CG CG-EasyCrash
..097 :
>
o 507
< 093 ‘\1\‘ S
@ Los5
2 0.89 S
& o3
0.85 0.1

100000 200000 300000 400000 100000 200000 300000 400000
(a) T_chk = 32s. (b) T_chk = 3200s.

Fig. 9: System efficiency for CG without and with EasyCrash when
the system scales from 100,000 to 200,000 and 400,000 nodes

smaller (N’ < N), and the checkpoint overhead (N’ x T.pnx)
becomes smaller. With and without EasyCrash, the useful
computation remains similar because of small runtime over-
head of EasyCrash. To calculate T”, we use Young’s formula,
T' = /2 X T_chk X MTBFEasyCrash-

With EasyCrash, once a crash happens, the system either
goes to last checkpoint with recovery overhead modeled as
M’ x (T_vain + T_r + T_sync), or uses EasyCrash to successfully
recompute with recovery overhead modeled as m” x (T_r' +
T_sync). With NVM, T_r becomes T, which is smaller,
because we load data from NVM-based main memory, not
from local SSD or storage node. 7 is estimated using data
size of non-readonly data objects divided by NVM bandwidth.

Choice of parameters. The time spent on writing a check-
point to persistent storage depends on hardware characteristics.
A modern HPC node normally has 64 to 128 GB memory.
For nodes using SSD and NVMe, the average I/O bandwidth
is 2 GB/s; For nodes using HDD, the average I/O bandwidth
is around 20 MB/s to 200 MB/s [57], [58]. As a result, we
choose the checkpointing overhead (1'_chk) as 32s, 320s,
3200s to represent different hardware scenarios. A similar
set of values is used in previous efforts [22], [51], [55]. We
emulate the system with 100,000 nodes for a long simulation
time (T'otal_Time is 10 years). Previous work [59] shows that
systems in such a scale have M T BF = 12 hours. Based on
this data, we scale MT'BF as in [22] for 200,000 and 400,000
nodes. As a result, M T'BF' are 6 and 3 hours respectively.

Results for system efficiency. Figure 8 shows system effi-
ciency with and without EasyCrash under different checkpoint
overhead. We show the lowest and highest recomputability
(from FT and SP respectively), and average recomputability
of all benchmarks because of space limitation. EasyCrash
improves system efficiency by 2%-24%.

We evaluate the system scalability with EasyCrash. We
evaluate all benchmarks but only present CG because of space
limitation. Results for other benchmarks can be found in [25].
Figure 9 shows the efficiency with and without EasyCrash at
different system scales. With EasyCrash the system efficiency
always outperform that without EasyCrash. This trend is
consistent with all benchmarks. The system with EasyCrash
achieves better efficiency as the system scale increases.

Determining 7. To ensure the system with EasyCrash

has efficiency gains, the application recomputability must
be higher than a threshold 7 (see Section IV-B). Given
Total_Time and Equations 8 and 9, we calculate a lower
bound of Rg4sycrash. Which is 7.

VII. DISCUSSIONS

Determining how/when to use EasyCrash. To decide
whether to use EasyCrash, we need multiple information,
including (1) system MTBF, (2) checkpoint overhead, (3)
the application recomputability with EasyCrash to select data
objects and code regions and estimate efficiency benefit, and
(4) the acceptable minimum performance loss ¢5. For (1), (2)
and (4), it is reasonable to assume that the system operator has
such information. With (1), (2) and (4), the recomputability
threshold 7 can be calculated. For (3), we use crash tests
(Section IV-C). For an application taking long execution time,
repeatedly performing crash tests is time-consuming, but if
the application is commonly used and repeatedly executed in
production, then the cost of crash tests is amortized. For those
applications that are time-consuming but not executed very
often, we propose the following solution.

Our observation reveals that by using EasyCrash to persist
critical data objects at selected code regions, the application
using different input problems > shows similar recomputability.
Our evaluation with ten benchmarks, each of which uses four
input problems, shows that the variance of recomputability is
less than 9% (detailed in [25]). Hence, we can use a small
input problem to reduce evaluation cost. In our evaluation,
using the smallest input problem for crash tests to estimate re-
computability for the largest input problem (memory footprint
sizes of the two input problems differ by 249x), we reduce test
time by more than 99%. In our evaluation, crash tests for each
benchmark can be finished in less than 14 minutes using two
48-core machines (each has two Xeon Gold 6126 processors).
The rationale to support the above solution is that EasyCrash
judiciously chooses critical data objects and code regions,
hence effectively guarantees application recomputability.

To reduce evaluation cost, we cannot use an arbitrarily small
input problem. Our empirical observation reveals that to enable
accurate estimation of application recomputability for a large
input problem, the size of all non-critical data objects in the
application using a small input problem should be at least
2x larger than the last level cache size. This is because data
accuracy loss for non-critical data objects is not bounded by
EasyCrash when a crash happens; The application relies on
hardware caching effect to persist them. If most of them can
be fit into the cache and not persisted often, data inconsistent
rate can be high and application recomputability can be
reduced, which results in an under-estimation of application
recomputability for the large input problem.

What kind of application is not suitable? Two categories
of applications are not suitable for EasyCrash. (1) Applications
with small memory footprint. When a crash happens, most
of the application data are resident in the cache and lost. To
ensure high recomputability, we have to persist data objects
frequently, causing high runtime overhead. (2) Applications
with no tolerance for computation errors. These applications
regard any application outcome (or intermediate results) differ-
ent from that of the golden run as incorrect. Many of our crash-
and-restart tests generate outcomes (or intermediate results)

5The application using different input problems should use the same
algorithm and does not have control flow difference between input problems.

10

different from those of the golden run, but these tests are
correct execution and pass acceptance verification.

For (1), the system can disable EasyCrash and only em-
ploy the traditional checkpoint mechanism to handle failures.
Because of small memory footprint of the application, the
checkpoint is small and can be stored in NVM with small
overhead. For (2), when the application outcome (or inter-
mediate results) is different from that of the golden run, the
users can claim a silent data corruption (SDC) happens [22],
[30]. With the acceptance verification, many applications treat
this kind of SDC as benign and ignorable. Examples of
these applications include many iterative solvers and machine
learning training workloads, which have been leveraged in
the recent approximate computing research [33], [34]. The
applications that cannot tolerate SDC cannot use EasyCrash.

VIII. RELATED WORK

Some efforts focus on establishing crash consistency in
NVM [8], [14] by software- and hardware-based techniques.
Building an atomic and durable transaction by undo- and redo-
logging mechanisms in NVM is the most common method
to enforce crash consistency [8], [16]. Some work on NVM-
aware data structures [9], [14] re-design specific data structures
to explicitly trigger cache flushing for crash consistency. How-
ever, the existing work can impose big performance overhead
and extensive changes to the applications, which may not be
acceptable by HPC.

Recent efforts use NVM for HPC fault tolerance [10], [15],
[60]. They avoid flushing caches for high performance, and use
algorithm knowledge [60] or have high requirements on loop
structures [10], [15] to recover computation upon application
failures. EasyCrash is different from them: EasyCrash aims
to explore application’s intrinsic error resilience and leverage
consistent and inconsistent data objects for recomputation;
EasyCrash is general, because it does not have high require-
ment on code structure or application algorithms.

Approximate computing trades computation accuracy for
better performance by leveraging application intrinsic error
resilience. LetGo [22] is such an example. Once a failure
happens, LetGo continues application execution. EasyCrash is
significantly different from LetGo. EasyCrash loses dirty data
in caches when a crash happens, and selectively flushes data
objects in some code regions to guarantee the improvement
of system efficiency. Letgo does not lose data in caches and
provides no guarantee on the improvement. LetGo does not
consider differences of code regions and data objects in their
impacts on application recomputability. EasyCrash is highly
NVM oriented, while LetGo is not.

IX. CONCLUSIONS

The emergence of NVM provides many opportunities for
HPC to enable scalable scientific simulation and high system
efficiency. However, integrating NVM into HPC is challeng-
ing, because of high requirements of HPC on performance,
resource consumption, and code maintenance. This paper
focuses on leveraging the non-volatility of NVM for HPC
under failures. We demonstrate the great potential of relaxing
the requirement on crash consistency for high efficiency.

X. ACKNOWLEDGEMENT

This work was partially supported by U.S.National Sci-
ence Foundation (CNS-1617967, CCF-1553645 and CCF-
1718194).

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

REFERENCES

C. Hsu and W. Feng, “A power-aware run-time system for high-
performance computing,” in SC’05, 2005.

I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault
tolerance mechanisms and checkpoint/restart implementations for high
performance computing systems,” The Journal of Supercomputing, 2013.
Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and
S. Scott, “A reliability-aware approach for an optimal checkpoint/restart
model in hpc environments,” in Cluster’07, 2007.

E. Meneses, X. Ni, T. Jones, and D. Maxwell, “Analyzing the interplay
of failures and workload on a leadership-class supercomputer,” 2015.
N. DeBardeleben, J. Laros, J. Daly, S. Scott, C. Engelmann, and
B. Harrod, “High-end computing resilience: Analysis of issues facing
the hec community and path-forward for research and development,”
2019.

S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large
scale systems: Long-term measurement, analysis, and implications,” in
SC ’17, 2017.

“Intel and micron produce breakthrough memory technology,” 2015.
H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
Persistent Memory,” in ASPLOS’11, 2011.

J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-
tree: Reducing consistency cost for nvm-based single level systems,” in
FAST’15, 2015.

H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin, “Efficient check-
pointing of loop-based codes for non-volatile main memory,” in
PACT’17, 2017.

K. Wu, Y. Huang, and D. Li, “Unimem: Runtime Data Management on
Non-Volatile Memory-based Heterogeneous Main Memory,” in SC’17,
2017.

D. Li, J. S. Vetter, G. Marin, C. McCurdy, C. Cira, Z. Liu, and W. Yu,
“Identifying opportunities for byte-addressable non-volatile memory in
extreme-scale scientific applications,” in /PDPS’12, 2012.

K. Wu, J. Ren, and D. Li, “Runtime data management on non-volatile
memory-based heterogeneous memory for task-parallel programs,” in
SC’18, 2018.

J. Coburn, A. Caulfield, A. Akel, L. Grupp, R. Gupta, R. Jhala, and
S. Swanson, “Nv-heaps: Making persistent objects fast and safe with
next-generation, non-volatile memories,” in ASPLOS’11, 2011.

M. Alshboul, J. Tuck, and Y. Solihin, “Lazy persistency: A high-
performing and write-efficient software persistency technique,” in
ISCA’18, 2018.

Intel, *“ Persistent Memory Development Kit,” https://pmem.io/, 2014.
M. Dong and H. Chen, “Soft updates made simple and fast on non-
volatile memory,” in ATC’17, 2017.

J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engel-
mann, “Combining partial redundancy and checkpointing for hpc,” in
ICDCS’12, 2012.

I. R. Philp, “Software failures and the road to a petaflop machine,” in
HPCRI’05, 2005.

J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench — The
Development and Verification of A Performance Abstraction for Monte
Carlo Reactor Analysis,” in PHYSOR’14, 2014.

M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz, “Fault
Resilience of the Algebraic Multi-grid Solver,” in ICS’12, 2012.
B.Fang, Q.Guan, N.Debardeleben, K.Pattabiraman, and M.Ripeanu,
“Letgo: A lightweight continuous framework for hpc applications under
failures,” in HPDC’17, 2017.

L. Guo and D. Li, “MOARD: Modeling Application Resilience to
Transient Faults on Data Objects,” in IPDPS’19, 2019.

P. J. Roache, Verification and validation in computational science and
engineering. Hermosa, 1998.

“Easycrash: Exploring non-volatility of non-volatile memory for high
performance computing under failures (technical report),” in Information
is hidden due to double-blind reviews. Will release it after paper
acceptance, 2019.

X. Ji, C. Wang, N. El-Sayed, X. Ma, Y. Kim, S. S. Vazhkudai, W. Xue,
and D. Sanchez, “Understanding Object-level Memory Access Patterns
Across the Spectrum,” in SC’17, 2017.

D. Li, J. S. Vetter, and W. Yu, “Classifying Soft Error Vulnerabilities in
Extreme-Scale Scientific Applications Using a Binary Instrumentation
Tool,” in SC’12, 2012.

A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “HPL - A
Portable Implementation of the High-Performance Linpack Benchmark
for Distributed-Memory Computers,” 2008.

D. Nicholaeff, N. Davis, D. Trujillo, and R. Robey, “Cell-based adaptive
mesh refinement implemented with general purpose graphics processing
units,” Tech. Rep. LA-UR-11-07127, 2012.

L. Guo, D. Li, I. Laguna, and M. Schulz, “FlipTracker: Understanding
Natural Error Resilience in HPC Applications,” in SC’18, 2018.

11

[34]

(35]

[36]

[37]

[38]
[39]

[40]

[41]
[42]

[43]
[44]
[45]
[46]
[47]

[48]

[49]

[50]

(51]

[52]

[53]

(54
[55]

[56]

(571

[58]
[59]
[60]

G. Bronevetsky and B. de Supinski, “Soft Error Vulnerability of Iterative
Linear Algebra Methods,” in ICS’08, 2008.

V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in DAC’13, 2013.

J. Meng, A. Raghunathan, S. Chakradhar, and S. Byna, “Exploiting
the forgiving nature of applications for scalable parallel execution,” in
IPDPS’10, 2010.

M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying Quantitative
Reliability for Programs that Execute on Unreliable Hardware,” in
OOPSLA’13, 2013.

W. Baek and T. M. Chilimb, “Green: a framework for supporting energy-
conscious programming using controlled approximatio,” in PLDI’10,
2010.

A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze,
and M. Oskin, “ACCEPT: A Programmer-Guided Compiler Framework
for Practical Approximate Computing,” in University of Washington
Technical Report, 2015.

A. N. Lab, “U.S. Department of Energy and Intel to deliver first
exascale supercomputer,” https://www.anl.gov/article/us-department-of-
energy-and-intel-to-deliver-first-exascale-supercomputer, 2019.

Intel, “Intel NVM Library,” http:/pmem.io/nvml/libpmem/, 2014.

J. Ren, K. Wu, and D. Li, “Understanding Application Recomputability
Without Crash Consistency in Non-Volatile Memory,” in Proceedings of
the Workshop on Memory Centric High Performance Computing, 2018.
D. H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon, “NAS parallel
benchmark results,” IEEE Parallel Distrib. Technol., vol. 1, no. 1, pp.
43-51, Feb. 1993.

“SPEC OMP2012,” www.spec.org/omp2012, 2012.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC’09, 2009.

LLNL, “LULESH 2.0,” https://github.com/LLNL/LULESH, 2013.

H. Jin, M. A. Frumkin, and J. M. Yan, “The openmp implementation
of nas parallel benchmarks and its performance,” 1999.

I. Bermejo-Moreno, J. Bodart, J. Larsson, B. M. Barney, J. W. Nichols,
and S. Jones, “Solving the compressible navier-stokes equations on up
to 1.97 million cores and 4.1 trillion grid points,” in SC 13, 2013.

J. H. Zar, “Significance testing of the spearman rank correlation coeffi-
cient,” Journal of the American Statistical Association, vol. 67, no. 339,
pp- 578-580, 1972.

M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Characterizing the
Impact of Soft Errors on Iterative Methods in Scientific Computing,” in
ICS’11, 2011.

D. Li, B. de Supinski, M. Schulz, D. S. Nikolopoulos, and
K. W. Cameron, “Hybrid MPI/OpenMP Power-Aware Computing,” in
IPDPS’10, 2010.

M. Silvano and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. John Wiley & Sons, 1990.

(2019) Non-volatile memory crash tester (nvct). [Online]. Available:
https://github.com/NVMCrashTester/NVCT

G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra, A. Guer-
mouche, T. Herault, Y. Robert, F. Vivien, and D. Zaidouni, “Unified
model for assessing checkpointing protocols at extreme-scale,” Concurr.
Comput. : Pract. Exper., 2014.

K. Mohror, A. Moody, G. Bronevetsky, and B. R. de Supinski, “De-
tailed Modeling and Evaluation of a Scalable Multilevel Checkpointing
System,” vol. 25, no. 9, pp. 2255-2263, 2014.

A. Moody, G. Bronevetsky, K. Mohror, and B. de Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing sys-
tem,” in SC’10, 2010.

J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Commun. ACM, 1974.

N. El-Sayed and B. Schroeder, “Checkpoint/restart in practice: When
‘simple is better’,” in IEEE International Conference on Cluster Com-
puting, 2014.

J. T. Daly, “A Higher Order Estimate of the Optimum Checkpoint
Interval for Restart Dumps,” Future Generation Computer Systems,
2006.

W. Bhimji, D. Bard, M.Romanus, A. Ovsyannikov, B. Friesen,
M. Bryson, J. Correa, G. K. Lockwood, V. Tsulaia, S. Byna, S. Farrell,
D. Gursoy, C. S. Daley, V. E. Beckner, B. van Straalen, N. J. Wright,
and K. Antypas, “Accelerating science with the nersc burst buffer early
user program,” 2016.

K. Wu, F. Ober, S. Hamlin, and D. Li, “Early evaluation of intel optane
non-volatile memory with hpc i/o workloads,” 2017.

NCSA, “Blue Waters: Sustained Petascale Computing,” 2014, http:
/Iwww.ncsa.illinois.edu/Blue Waters/.

S. Yang, K. Wu, Y. Qiao, D. Li, and J. Zhai, “Algorithm-directed crash
consistence in non-volatile memory for hpc,” in Cluster’17, 2017.

