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Abstract—The emergence of high-density byte-addressable
non-volatile memory (NVM) is promising to accelerate data-
and compute-intensive applications. Current NVM technologies
have lower performance than DRAM and, thus, are often
paired with DRAM in a heterogeneous main memory. Recently,
byte-addressable NVM hardware becomes available. This work
provides a timely evaluation of representative HPC applications
from the “Seven Dwarfs” on NVM-based main memory. Our
results quantify the effectiveness of DRAM-cached-NVM for
accelerating HPC applications and enabling large problems
beyond the DRAM capacity. On uncached-NVM, HPC ap-
plications exhibit three tiers of performance sensitivity, i.e.,
insensitive, scaled, and bottlenecked. We identify write throttling
and concurrency control as the priorities in optimizing appli-
cations. We highlight that concurrency change may have a di-
verging effect on read and write accesses in applications. Based
on these findings, we explore two optimization approaches.
First, we provide a prediction model that uses datasets from a
small set of configurations to estimate performance at various
concurrency and data sizes to avoid exhaustive search in
the configuration space. Second, we demonstrate that write-
aware data placement on uncached-NVM could achieve 2x
performance improvement with a 60% reduction in DRAM
usage.

Keywords-Non-volatile memory; Optane; heterogeneous
memory; persistent memory; byte-addressable NVM; HPC;

I. INTRODUCTION

Byte-addressable non-volatile memories, such as STT-
RAM, ReRAM, and PCM [11, 15, 24, 25], are promis-
ing to accelerate data- and compute-intensive HPC appli-
cations [16]. High-density NVM enables larger memory
capacity than DRAM under the same area constraints. Data
stored in NVM can persist through power failures as if in
storage. Recently, some NVM technologies may even pro-
vide comparable bandwidth and latency to that of DRAM,
enabling much higher performance than block devices. Al-
together, these characteristics start blurring the boundary
between memory and storage when NVM is used in the

main memory. However, NVM technologies are still under
active development and not ready for replacing DRAM.
For instance, the write bandwidth of the Intel Optane DC
persistent memory is only one third that of DRAM [21].
Consequently, NVM is often paired with DRAM, building
a heterogeneous memory system.

The recent release of the Intel Optane DC persistent mem-
ory module (named Optane in the rest of the paper) marks
the first mass production of byte-addressable NVM. The
Optane provides a realistic and accessible hardware plat-
form for evaluating the impact of new main memory designs
on HPC scientific applications. The future Exascale system
is reported to be based on an NVM technology like Optane
[14]. Therefore, the performance of HPC applications on
this new hardware requires a timely and comprehensive
evaluation. Several works have provided system evaluation
and performance of specific applications [9, 12, 21, 32]. Still,
the landscape of HPC scientific applications requires a sys-
tematic approach to identify bottlenecks and opportunities.
Does an NVM-based main memory change the priority in
optimization? How to effectively leverage the heterogeneity
in DRAM/NVM systems for the best performance? An-
swering these questions not only helps to exploit NVM on
the next generation supercomputers but also influences the
design of runtime and system software to accommodate this
emerging memory technology.

In this work, we follow the well-known Seven Dwarfs [1]
and choose flagship libraries and applications, such as
ScaLAPACK [4], SuperLU [17], and Hypre [34] to cover
the landscape of scientific applications. Our study provides
a comprehensive evaluation of the domains of dense and
sparse linear algebra, spectral methods, N-body methods,
structured and unstructured grids, and Monte Carlo-based
algorithms. We find that scientific applications exhibit three
tiers of sensitivity on the uncached-NVM, i.e., insensitive,
scaled, and bottlenecked. Leveraging DRAM as a cache



to NVM could effectively improve application performance
even when the input problems have a memory footprint three
to five times the DRAM capacity. Furthermore, we reveal
two bottlenecks arising from the asymmetric bandwidth
and scaling limitation in NVM, i.e., write-throttling and
concurrency contention. These characteristics may change
the critical computation phases in applications and, thus,
require different priorities in optimization. Also, we identify
that concurrency changes have a diverging effect on read
and write accesses in applications, which requires different
strategies like the write-aware placement. We believe that
this work provides insights and feedbacks that are critical
for applications to leverage future systems with NVM-based
main memory.

We explore two optimization directions. We develop a
model to predict application performance in cached-NVM
at different concurrency and problem sizes to help design
space exploration and identify optimal configurations. On
uncached-NVM, we demonstrate in ScaLAPACK that ex-
plicitly managing write-aware placement can significantly
improve performance and reduce DRAM usage. We sum-
marize our contributions as follows.
• A comprehensive performance study of HPC workloads

from common computation domains (the Seven Dwarfs)
on cached and uncached NVM-based main memory;

• Highlight that write throttling and concurrency contention
change the priority of optimizing computation in scientific
applications;

• Identify the diverging effect of concurrency change on
read and write in applications, and demonstrate the effec-
tiveness of write-aware data placement.

• Develop a prediction model to estimate performance at
various concurrency and data sizes to select optimal
configurations.

II. BACKGROUND

In this section, we introduce NVM-based memory systems
and the Seven Dwarfs in scientific applications.

A. NVM-based Heterogeneous Memory

Extensive research has proposed using NVM for imple-
menting the main memory to exploit its high density, persis-
tence, and power efficiency [15, 24]. Still, the current NVM
technologies have lower performance than DRAM, and thus,
main memory designs often pair NVM with DRAM, either
as a cache or placed side-by-side to NVM. Previous works
mostly use simulations and small problems for evaluation
due to the lack of large-scale hardware. Recently, the first
mass production of byte-addressable NVM arrives in the
format of the Intel Optane DC Persistent Memory Module
(PMM). In this work, we use this new hardware to evaluate
realistic problems on promising memory designs.

The work of [21] has provided detailed system evalu-
ation, and we briefly summarize the system architecture
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Figure 1: The system architecture the Intel Purley platform.

(Figure 1) in this section. The memory subsystem consists
of DRAM DIMMs and NVDIMMs that share integrated
memory controllers (iMC). Each NVDIMM has a small
internal controller for address translation and a data buffer.
The internal data granularity in the Optane media is 256
bytes, while the data granularity between the processor
and memory subsystem is 64 bytes. System evaluation has
quantified that sequential and random read accesses to NVM
have a latency of 174 ns and 304 ns, respectively [21]. Write
latency to NVM depends on store instructions and data sizes.
For instance, 64- to 256-byte non-temporal data store has
180 – 200 ns latency [12]. On one socket, the read bandwidth
to NVM can reach 39 GB/s while the peak write bandwidth
is only 13 GB/s [12, 21]. Thus, the NVM exhibits about
three times asymmetry in read and write bandwidth.

The NVDIMMs can be configured in Memory or AppDi-
rect mode. In Memory mode, DRAM becomes a hardware-
managed direct-mapped write-back cache to NVM and is
transparent to applications. Note that DRAM on one socket
cannot cache accesses to NVM on another socket [9]. In
AppDirect mode, the NVM becomes a byte-addressable per-
sistent memory. A dax-aware file system would transparently
convert file read and write operations into 64-byte load and
store instructions in this mode to access NVM. Also, in
this mode, the NVM on each socket can be exposed as a
non-uniform memory access (NUMA) node to the CPUs.
Standard NUMA management routines like numactl can be
used to control data placement in this configuration.

B. Seven Dwarfs of HPC scientific applications

The work of [1] summarizes seven domains of numerical
algorithms in major HPC science and engineering applica-
tions, known as “Seven Dwarfs”. For a comprehensive eval-
uation of the HPC landscape, we select one application from
each Dwarf as well as Laghos [7], a proxy application of
the BLAST hydrodynamics application, for the experiments.
We introduce each Dwarf and application as follows.

• Dense Linear Algebra features dense array data struc-
tures. They exhibit strided memory access to all the
elements of the data structures. Classic vector and ma-
trix operations fall into this category. We select matrix



multiplication (level 3) from ScaLAPACK [4] for the
experiment.

• Sparse Linear Algebra methods store data in compressed
formats and access data elements through indirect memory
accesses. We choose SuperLU [17] that adopts the BAR
method for implementing sparse LU factorization.

• Spectral Methods often use fast Fourier transforms (FFT)
to solve differential equations. Data permutation in this
method often requires matrix transpose. We evaluate the
FT benchmark that performs discrete 3D FFT from the
NPB [2] suite.

• N-Body Methods have a high computation complexity of
O(N2) for simulating a dynamical system of N particles.
We use hardware accelerated cosmology code (HACC)
[10] that simulates the formation of structure in collision-
less fluids under the influence of gravity in an expanding
universe.

• Structured Grids feature regular grid structures. Stencil
operations on the grids often have high spatial locality in
data accesses. We choose Hypre [34], a high-performance
pre-conditioners library for solving linear systems in our
evaluation.

• Unstructured Grids feature irregular grid structures. Data
accesses and updates often involve multiple levels of
memory reference indirection. We use a general block-
structured AMR framework, BoxLib [3], for the test.

• Monte Carlo methods rely on repeated random data
accesses to calculate numerical results. We use XS-
Bench [27], which implements a Monte Carlo neutron
transport algorithm, as a representative of such workloads.

III. METHODOLOGY

In this section, we describe the experimental setup, bench-
marks, and methodologies. We use the Intel Purley platform
that consists of two 2nd Gen Intel R© Xeon R© Scalable proces-
sors as the testbed. The memory subsystem consists of four
iMCs, 12 memory channels, a total of 192 GB DRAM (12
DIMMs), and 1.5 TB NVM (12 NVDIMMs). The memory
channels run at 2400 GT/s, supporting 230.4 GB/s peak
system bandwidth. We override the EFI memory map to
expose NVM on each socket as a separate NUMA node.
The configuration of the system is summarized in Table I.

The platform runs the Fedora 29 operating system with
GNU/Linux 5.1.0. When the Optane DC PMM is configured
in AppDirect mode and exposed as NUMA nodes, we
use numactl to control the data placement onto different
memories. Table II summarizes the applications and their
input problems. We compile all applications with GCC 8.3.1.
For each application, we report the application-defined figure
of metric (FoM) if available. Otherwise, we report the run
time of the main computation kernels.

We develop profiling routines that sample memory band-
width on each NVDIMM and DRAM DIMM. We use the
Intel Processor Counter Monitor (PCM) tool [26] to monitor

Table I: Platform Specifications

Processor 2nd Gen Intel R© Xeon R© Scalable processor
Cores 2.4 GHz (3.9 GHz Turbo frequency × 24 cores (48 HT) × 2 sockets

L1-icache private, 32 KB, 8-way set associative, write-back
L1-dcache private, 32 KB, 8-way set associative, write-back
L2-cache private, 1MB, 16-way set associative, write-back
L3-Cache shared, 35.75 MB, 11-way set associative, non-inclusive write-back

DRAM six 16-GB DDR4 DIMMs × 2 sockets
NVM six 128-GB Optane DC NVDIMMs × 2 sockets

Interconnect Intel R© UPI at 10.4 GT/s, 10.4GT/s, and 9.6 GT/s

Table II: Evaluated benchmarks.
Benchmark Input Problems
Hypre [34] a 3D electromagnetic diffusion problem
Laghos [7] the Sedov blast wave Q3-Q2 3D computation
ScaLAPACK [4] the distributed matrix multiplication of dimension NxN
NPB [2] - FT a discrete 3D fast Fourier Transform of class D
HACC [10] a 252 simulation box using 384 grids in CORAL benchmark suite
BoxLib (AMReX) [3] the spherical chemical wave propagation
XSBench [27] the unionized grid of XL problem with 34 million lookups
SuperLU [17] a distributed PDGSSVX routine with real datasets from [6]

hardware counters to collect core activities and offcore
events. The profiling routines are integrated into applications
to exclude the initialization and finalization stages. We only
report the profiling results of the main computation phases.
When the Optane is configured in Memory mode, we report
the memory traffic as measured to DRAM DIMMs because
it is accessed before NVDIMMs. When the Optane is in
AppDirect mode, we report the memory traffic as the sum
of traffic to NVDIMMs and DRAM DIMMs.

IV. PERFORMANCE ANALYSIS

This section evaluates the impact of NVM-based main
memory on HPC scientific applications from three aspects
– (1) the performance sensitivity in cached-and uncached-
NVM (2) the write throttling effect on critical phases (3)
the diverging effect of concurrency changes on read and
write accesses. We also quantify the performance impact of
checkpointing on NVM.

A. Overall Performance

We start the evaluation with an overview of performance
sensitivity of HPC applications on two NVM-based main
memory, i.e., cached and uncached. All the experiments
use the local socket to eliminate the severe NUMA effects
reported in [9, 12, 21]. Input problems have a memory
footprint fit in DRAM capacity (50%-85%) so that we
can use the performance on DRAM-only main memory as
the reference. Figure 2 reports application performance on
DRAM-only, cached-NVM, and uncached-NVM main mem-
ory. Note that SuperLU, XSBench, and FFT use application-
defined metrics, i.e., the higher, the better, while the other
applications report the run time, i.e., the lower, the better.

All applications on the cached-NVM manage to achieve
performance comparable to that on the DRAM. The per-
formance gap between DRAM and the cached-NVM is
less than 10% except for ScaLAPACK, Hyre, and BoxLib.
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Figure 2: An overview of the performance sensitivity of eight applications to cached and uncached NVM compared to
DRAM. SuperLU, XSBench, and FFT report application-defined performance metrics and the others report the run time.

Table III: An overall characterization of performance sensitivity to NVM-uncached. The last column classifies applications
into three tiers. Highlighted cells in the same color are the primary indicator for each tier.

Dwarf Application Memory BW (MB/s) Read BW (MB/s) Write BW (MB/s) Write Ratio(%) Slowdown(x)
N-body HACC 40 25 14 36 1.01
Structured Grid Lagos 4,135 3,114 1,021 25 1.27
Dense Linear Algebra Scalapack 11,984 10,104 1,880 16 2.99
Monte Carlo XSBench 16,134 16,130 4 0.03 4.16
Structured Grids Hypre 11,413 10,519 894 8 4.67
Sparse Linear Algebra SuperLU 12,441 11,240 1,201 10 4.94
Unstructured Grids BoxLib 10,334 8,246 2,088 21 8.94
Spectral Methods FFT 6,365 4,063 2,302 36 14.92

These three applications have more performance loss, with a
maximum loss of 27% in Hypre (to be analyzed in the next
section). Note that cached-NVM requires no porting efforts
from the application developer, which would likely be the
first deployment choice.

On the uncached NVM, applications exhibit three tiers
of performance sensitivity, i.e., insensitive, scaled, and bot-
tlenecked performance compared to the DRAM baseline.
We group applications into three groups and summarize
the profiling results of memory traffic in Table III. In the
first tier, HACC and Laghos show insignificant performance
difference when the main memory switches from DRAM to
NVM directly. The loss in performance is less than the dif-
ference in latency and bandwidth of NVM and DRAM. This
class of applications is characterized by low memory band-
width (in green). Scientific applications that share similar
computations as HACC (N-body) and Laghos (unstructured
finite element) may sustain performance when porting onto
the NVM-based main memory without a DRAM cache.

Four applications form in the second tier, showing scaled
performance on the uncached NVM, as compared to their
DRAM baseline. These applications exhibit 2.99 to 4.94
times slowdown, which approximates the three times per-
formance gap between DRAM and NVM, as benchmarked
on the testbed [21]. We characterize this tier of applications
by a high memory bandwidth but a low write ratio. The total
memory bandwidth ranges between 11 and 16 GB/s while
their write bandwidth remains lower than 2 GB/s, making
up 0.03% to 16% total bandwidth only. Finally, BoxLib and
FFT form the third tier of performance sensitivity. Their

performance is severely bottlenecked on the uncached NVM,
showing a slowdown that is much higher than the latency
and bandwidth difference in the two memories. Although
this group of applications has a total memory bandwidth
lower than applications in the second tier, they have higher
than 2 GB/s write traffic. In particular, their memory traffic
has read/write ratios as low as 1.5 so that the write traffic
could even reach 36% total memory traffic. We notice that
the peak write bandwidth to NVM could reach 12 GB/s
on the testbed, which indicates the application slowdown is
not a result of bandwidth saturation. We identify the write
throttling effect and concurrency contention as the primary
causes of the slowdown in Section IV-D.

Observation I: N-body and structured grids applications
may have indifferent or scaled changes on NVM main mem-
ory while spectral methods may have severe degradation.

B. Cache Efficiency

We use two metrics to quantify the effectiveness of using
DRAM as a cached to NVM. First, for input problems
with memory footprint smaller than the DRAM capacity, we
define cache efficiency as the relative performance to that
on DRAM directly. The expectation is that low hardware
overhead for managing DRAM as a cache should bring
the performance to match using DRAM natively. Second,
when the input problems require memory size more than
the DRAM capacity, we defined cached speedup as the
performance improvement from non-cached NVM. In this
scenario, the cached-NVM is expected to enable larger
problems than on DRAM while still sustaining higher per-
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formance than uncached-NVM.
Overall, cached-NVM delivers high cache efficiency, as

shown in Figure 2. Among them, Hypre has the lowest cache
efficiency with a 28% performance loss. We identify the
cause by collecting samples of read and write bandwidth
to each DRAM DIMM throughout the execution. The re-
constructed traces of memory traffic in the cached-NVM
and DRAM configurations are presented in Figure 4. When
Hypre executes in cached-NVM, it has an average write
bandwidth at 9.3 GB/s. The write bandwidth drops nearly
by half when it runs on DRAM mode, with an average of
5.7 GB/s. We believe that this increased write bandwidth
in cached-NVM is the cause for the decrease in the read
bandwidth. The read bandwidth decreases from 82.5 GB/s
in DRAM mode to 59.5 GB/s in cached-NVM, i.e., an exact
28% reduction that matches the performance loss. Since
Hypre is a read-dominant workload, the read bandwidth
directly impacts the overall performance.

We evaluate the second metric by scaling up the input
problems to observe changes in application performance. We
focus on three MPI applications, i.e., SuperLU, BoxLib, and
Hypre, which typically require multiple compute nodes on
supercomputers for realistic simulations. For SuperLU, we
use five real datasets (kim2, offshore, Ge87H76, nlpkkt80,

and nlpkkt120) from [6], where the largest input requires
490 GB memory. For BoxLib and Hypre, we scale up their
simulation domains to reach 300 GB memory footprint. We
report the application-defined metric in SuperLU and the
speedup in runtime in BoxLib and Hypre in Figure 3. Su-
perLU sustains similar performance when the input problems
scale up to five times DRAM capacity. Both BoxLib and
Hypre show decreased speedup when their input problems
increase. When the memory footprint is about 4.4 and 2.9
times the DRAM capacity, the cached-NVM still manages
to double the performance compared to uncached mode.
Overall, these applications that represent the sparse linear
algebra and structured grid Dwarfs may benefit from the
hardware managed cache to NVM for efficient execution of
large-scale problems.

Observation II: sparse linear algebra and structured/un-
structured grids applications on cached-NVM could achieve
improved performance even for problems substantially be-
yond DRAM capacity.

C. Write Throttling

Uncached-NVM exposes the characteristics of NVM di-
rectly to the application without the interference from
DRAM cache. We analyze application performance in this
mode to provide feedback and insights for future NVM-
based designs. Asymmetric read and write performance is
a common characteristic of NVM technologies. On the
testbed, the asymmetry is quantified as 39 GB/s read band-
width and 13 GB/s write bandwidth. Our analysis reveals
a write-throttling effect that could change the critical com-
putation phase of an HPC application when running on
uncached-NVM.

SuperLU and Laghos both have two distinct phases in
the execution, as shown in the trace of memory traffic in
Figure 5. These phases, however, show different sensitivity
to the write throttling effect. The first phase in Laghos
always takes about 20% the execution time when running
on DRAM (Figure 5a) and uncached-NVM (Figure 5b).
In contrast, when running on DRAM, the first phase in
SuperLU only takes 20% the execution time (Figure 5c), but
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Figure 5: Write throttling changes the dominant computation phase in SuperLU from 20% to 70% execution time. In contrast,
Laghos sustains similar composition of computation phases in the two memory modes.

significantly extends to 60% execution time on uncached-
NVM (Figure 5d).

We find that there exists a threshold value of the write
bandwidth, above which a computation phase will signifi-
cantly extend the execution. We quantify this threshold as
2 GB/s on the testbed. For instance, the first phase in Laghos
has a moving average of 1.3 GB/s write bandwidth with its
peak remaining lower than 2 GB/s when running on DRAM.
The read/write ratio remains at 3 in this stage. These char-
acteristics are unchanged when Laghos runs on uncached-
NVM. On the other hand, the first phase in SuperLU exhibits
high write traffic and low read/write ratio when running on
DRAM, resulting in an average of 33 GB/s and a peak
at 40 GB/s. When running on uncached-NVM, the write
bandwidth of this phase is reduced by 14 times, reaching
only 2.3 GB/s. The dramatically reduced write performance
throttles the read performance due to data dependency and
coupling effects in shared units [20]. Consequently, the read
performance is also reduced significantly from 54 GB/s
to 4 GB/s. It is a high priority to address this change of
behavior in critical phases when optimizing applications on
NVM-based main memory.

We identify low read/write ratio and high write bandwidth
as the indicator to detect applications that are susceptible
to the write throttling effect. Comparing the two phases
in SuperLU, we find that the second phase with a high
read/write ratio and low write traffic has only a ‘scaled’
slowdown, which is proportional to the performance gap be-
tween DRAM and NVM. In Laghos, read and bandwidth on
DRAM in the two phases is lower than the peak bandwidth
of NVM, and thus the changes in application performance

are minimal. We highlight that phase-specific characteristics
become increasingly important in identifying the bottleneck
of HPC applications on NVM because the throttling effect
could dramatically change the profile of execution time.

Observation III: HPC applications with computation
phases susceptible to the write throttling on uncached-NVM
require different priorities in optimization.

D. Concurrency Contention

HPC applications on supercomputers often exploit the
high parallelism from multicore processors on multiple
nodes to accelerate simulations. However, multiple threads
may contend on shared buffers or units in the memory,
creating a performance bottleneck. For instance, re-ordering
and merging write to NVM is a common technique to
mitigate the high energy cost and low write bandwidth of
NVM technologies. On the testbed, write pending queues
(WPQ) in the memory controller functions for this purpose.
If the concurrency is high, contention may arise on a fully
occupied WPQ when new requests have to wait for the WPQ
to drain before being inserted into the queue [32]. Also, high
concurrency would decrease the opportunity of combinable
requests in WPQ, similar to the well-known fact that high
concurrency reduces the locality in the row buffer.

We identify concurrency contention by comparing the
performance change at different concurrency across memory
configurations. Each application is executed at a low and a
high concurrency on DRAM, cached-NVM, and uncached-
NVM, respectively. The contention ratio is calculated as
the performance at the high concurrency normalized to that
at the low concurrency. Figure 7 reports the ratios in the
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Figure 6: A diverging impact from concurrency changes in read and write in FT. The reduced write bandwidth overpowers
the increased read bandwidth, resulting a 26% performance loss.
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Figure 7: Applications with contention ratio lower than
the red dotted line show performance loss when the level
of concurrency increases. Larger gap between DRAM and
uncached-Optane indicates more contention on NVM.

eight applications. Applications with a ratio larger than one
(the red dotted line) benefit from increased concurrency.
For instance, HACC and XSBench have more than 30%
performance improvement when their concurrency increases.
A ratio lower than one may not necessarily be a result of
contention on memory. Some algorithmic properties could
also cause reduced performance. Thus, we use the differ-
ence between ratios on DRAM and other configurations to
identify the concurrency contention. For instance, FFT has
a ratio of 0.61 on DRAM but only 0.37 on uncached-NVM,
indicating the contention from NVDIMM as the main cause
for performance loss. Interestingly, ScaLAPACK has higher
contention on cached-NVM than uncached-NVM.

We reconstruct the trace of memory traffic of FT and
ScaLAPACK at two concurrency levels in Figure 6 and 8.
FT consists of iterative phases. In each phase, the write
bandwidth at the lower concurrency can reach 3 GB/s ( 6a)
while at the high concurrency it is below 2.7 GB/s. The
increased concurrency, however, has an opposing effect on
read bandwidth, which increases from 3.8 GB/s to 4.5 GB/s.
Overall, increased concurrency increases the divergence be-
tween the read and write bandwidth. This conflicting effect
could also change the composition of computation phases.
In ScaLAPACK, the first stage extends from 10% execution
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Figure 8: Increased concurrency in ScaLAPACK prolongs
the first stage (the left of the dashed line) from 10%
execution time to 30%, and also increases the gap between
read and write bandwidth in the first 80% execution time.

time in Figure 8a to 30% in Figure 8b. Note that read
bandwidth in the second stage increases dramatically from
12 GB/s to 17 GB/s, i.e., a reduced execution time. Since
the execution time of the first stage remains unchanged, its
portion in the total execution increases.

Observation IV: Concurrency changes may have a di-
verging impact on read and write bandwidth. Phase-specific
optimization or write-aware data placement may be more
effective than a global adjustment of concurrency.

E. Leveraging the memory persistence

Large-scale HPC simulations often rely on I/O intensive
visualization and checkpointing to detect anomaly at an early
stage and ensure the completion of long-running jobs. When
Optane is used as a persistent memory, HPC applications
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Figure 9: Visualization in Laghos snapshots every five steps.

may directly benefit from its high bandwidth and memory
persistence. We configure Optane in App Direct mode and
evaluate the overhead of visualization in Laghos on four
tiers of storage, from tmpfs on DRAM, a DAX-aware ext4
file system on the Optane, an ext4 file system on the local
RAID, to a Lustre file system on network interconnected
disk. Note that tmpfs is not persistent but provides the
upper bound of performance. The results are consistent with
the memory/storage hierarchy, as shown in Figure 9a. The
Optane persistent memory only imposes 2%-5% overhead,
achieving four times reduction in overhead on other per-
sistent storages. We further analyze the interaction between
PMM and DRAM traffic in Figure 9b. The bandwidth to
PMM is periodic and write-only. There is no interference to
the traffic to DRAM throughout the execution.

V. PERFORMANCE OPTIMIZATION

In this section, we propose two optimization techniques
for cached- and uncached-NVM main memory, respectively.
We develop a prediction model to predict performance
changes in cached-NVM when the concurrency or data
size changes. On uncached-NVM, we employ explicit data
placement to improve performance with reduced data size
on DRAM.

A. Model-based Prediction

Our performance analysis of applications on cache-NVM
reveals that changes in concurrency level and data size both
can impact the effectiveness of execution significantly. Natu-
rally, if a performance model can predict application perfor-
mance at various configurations, it could help the application
developer select an optimal set up without exhaustively
search all possible configuration space. Suppose a general
configuration consists of multiple dimensions of freedom.
Our empirical observation indicates that when sweeping the
configuration in one dimension, performance impact may
change from positive to negative, which will reflect in a
similar trend in some hardware events. These events are
defined as critical events and used as predictors [5].

A set of critical events mutually indicate the overall trend
in the performance of an application at a specific configura-
tion. This behavior is modeled analytically in a multivariate

function (Eq. 1). Here, each variant Nei represents the
count of one critical event ei. βi, the coefficient, indicates
either a positive or negative impact on the derivative of
performance. Our selection of critical events combines em-
pirical observation and a statistical procedure. First, from
the classification of performance sensitivity to NVM main
memory, we identify several critical indicators, such as the
computation intensity, memory traffic, read and write ratios.
These metrics could be reflected in a range of hardware
events. Second, we test a set of relevant hardware events
into the regression model to prune highly correlated events,
i.e., high p-values. Table IV summarize the events selected
for deriving the prediction model.

IPCp =

N∑
n=1

βi · (Nei · IPCs) + σ (1)

Table IV: The events selected for performance prediction.

Feature Activities
p0 Instruction Retired
p1 Cycles Active
p2 Cycles stalled due to Resource Related reason
p3 Cycles in waiting for outstanding offcore requests
p4 Count of the number of reads issued to memory controllers.
p5 Counts of Writes Issued to the iMC by the HA.

We use two data collection strategies to collect training
data sets for models for concurrency and data size sepa-
rately. When deriving the model for predicting performance
at different concurrency, we collect hardware events from
application executions at the middle point concurrency. For
instance, for hardware with HT hardware concurrency, we
collect data sets from executions using 0.75HT . When
deriving the model for predicting performance at a different
data size, we fix the concurrency and collect events from
configurations at a small data size. Next, the measurement
for each hard event is first scaled by the sampled IPC (IPCs

in Eq. 1) and then normalized by calculating their zero
scores. The normalized features are used as the training data
set to derive the coefficients of Eq. 1 using multivariate linear
regression.

We evaluate the accuracy of the prediction by comparing
the estimated IPC with the observed IPC. In the first exper-
iment, we predict the application performance at different
concurrency. We collect training data sets from running
applications in the configuration of ht = 36 only. The
prediction model is derived from this training data set to
estimate the performance at other concurrency levels. The
estimation error Eest is calculated as the absolute difference
of prediction and observed divided by the observed IPC. In
Figure 10, we report the accuracy as 1−Eest for XSBench
and FT, respectively. The average prediction errors in the two
applications are 5% and 8%. All concurrency levels except
the lowest and highest level have accuracy above 90%. In the



second experiment, we derive the prediction for various data
sizes at concurrency ht = 36. We collect the training data set
from each application execution using a small input problem.
The derived model then predicts the application performance
at larger input problems. Figure 11 reports the prediction
accuracy when the data size (x-axis) increases in XSBench
and ScaLAPACK. While all data sizes in ScaLAPACK have
accuracy over 97%, XSBench has lower accuracy at the
largest data size.
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Figure 10: The modeling accuracy of concurrency change.
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Figure 11: The modeling accuracy of data size change.

B. Write-aware Data Placement

In the second optimization technique, we target uncached-
NVM in heterogeneous memory. From the performance
analysis, we show that some applications like ScaLAPACK
and FT in Section IV-D could have diverging effects on
read and write bandwidth from the changes in concurrency.
Instead of adapting the concurrency, we explore a different
optimization technique that employs write-aware data place-
ment in applications to bypass this effect. This optimization
places data structures with substantial write traffic onto
DRAM so that increased concurrency would still increase
read bandwidth from NVM but would not create contention
due to writes on NVDIMMs.

We use a hardware sampling-based implementation of the
data-centric profiling tool [22] to identify write-intensive
memory objects for placement. The application source is
then modified accordingly to place the write-intensive data
structures onto DRAM using APIs in [21]. Figure 12
presents the performance of the optimization as compared
to that on DRAM and uncached-NVM, respectively. At
different data sizes, the optimization manages to achieve
DRAM-similar performance. Note that the used DRAM

capacity in the optimized implementation is only 30% of
the DRAM and cached-NVM modes. As a validation, we
also test placing other read-intensive memory objects onto
DRAM, and the performance shows minimal changes, which
approximates that on uncached-NVM.
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Figure 12: Optimization on Scalapack by changing data
placement on the NVM-based heterogeneous system.

VI. RELATED WORK

Before the hardware of byte-addressable NVM becomes
available, most previous works use emulators and simulators
for evaluating their approaches on NVM [8, 13, 19, 20,
23, 29, 30, 31, 33]. Although simulations and emulations
can provide valuable insights into the performance trend,
they either lack the performance details or are constraint
by small problems due to the long simulation time. In [12]
and [32], the authors prove that using software emulation
or hardware emulation does not capture all the features of
real hardware like the Intel Optane. Therefore, the system
software for NVM proposed in the previous studies requires
re-evaluation. Different from these works, the findings and
insights in this work are derived from representative HPC
applications on real NVM hardware.

Since the release of real hardware, several works have
provided preliminary evaluations of the Intel Optane DC
PMM [12, 21]. Some works have also ported selected
applications in commercial database, scientific and graph
workloads onto Optane [9, 18, 28, 32]. For instance, [9]
optimizes the graph workload Galois to mitigate the NUMA
effect when Optane is in the Memory mode. Still, a com-
prehensive evaluation that covers the landscape of HPC
applications as in our work is missing.

Prior works have proposed various approaches for uti-
lizing NVM-based heterogeneous memory systems [8, 20,
30, 31]. Unimem [30] uses a sample-based approach to
collect memory access information to decide data placement
on NVM-DRAM systems. Siena [20] explores different
organizations and configurations of DRAM and NVM in a
memory system to decide optimal system designs for HPC
applications. NVStream [8] utilizes the byte-addressability



in NVM to remove expensive system calls and uses non-
temporary storage and delta compression to reduce overhead
due to ensuring crash consistency on NVM. In this work,
we identify new optimization priorities and insights that will
also benefit these approaches and techniques.

VII. CONCLUSION

In this work, we analyze the performance of HPC appli-
cations representative for the Seven Dwarfs on NVM-based
heterogeneous memory hardware. Our results quantify the
effectiveness of using DRAM as a cache to NVM to improve
performance at large input problems. For uncached NVM,
we identify that the write throttling effect and concurrency
contention demands a high priority of optimization. We
highlight that changing concurrency could have diverging
impacts on read and write bandwidth in some applications.
Therefore, a global adjustment of the concurrency may be
insufficient. For the cached-NVM, we develop a prediction
model based on hardware events collected from a small set
of application runs to predict the performance at various con-
currency and data size. For uncached-NVM, we demonstrate
that write-aware data placement can effectively accelerate
applications with reduced requirement of DRAM capacity.
Our results show that the new memory system hardware is
promising for future supercomputer designs.
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