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Abstract

The state-of-the-art approximate nearest neighbor search (ANNS) algorithms face
a fundamental tradeoff between query latency and accuracy, because of small
main memory capacity: To store indices in main memory for fast query response,
They have to limit the number of data points or store compressed vectors, which
hurts search accuracy. The emergence of heterogeneous memory (HM) brings
opportunities to largely increase memory capacity and break the above tradeoff:
Using HM, billions of data points can be placed in main memory on a single
machine without using any data compression. However, HM consists of both fast
(but small) memory and slow (but large) memory, and using HM inappropriately
slows down query time significantly. In this work, we present a novel graph-based
similarity search algorithm called HM-ANN, which takes both memory and data
heterogeneity into consideration and enables billion-scale similarity search on a
single node without using compression. On two billion-sized datasets BIGANN and
DEEP1B, HM-ANN outperforms state-of-the-art compression-based solutions such
as L&C [13] and IMI+OPQ [12] in recall-vs-latency by a large margin, obtaining
46% higher recall under the same search latency. We also extend existing graph-
based methods such as HNSW and NSG with two strong baseline implementations
on HM. At billion-point scale, HM-ANN is 2X and 5.8X faster than our HNSW
and NSG baselines respectively to reach the same accuracy.

1 Introduction

Efficient billion-scale nearest neighbor search has become a significant research problem [6, 7, 22, 23],
inspired by the needs of machine learning based applications. Since the number of entities (images,
documents, etc) grows enormously fast, it becomes challenging to find correspondences in large
datasets when there is a requirement for real-time responses (e.g., in several milliseconds). Exhaustive
search is infeasible at billion-point scales, because it is extremely computational demanding. Hence,
practitioners resort to indexing structures that perform the approximate nearest neighbor search
(ANNS) by restricting a query to search only a subset of the dataset that includes the desired
neighbors [10, 19, 25]. Among those ANNS, it has been demonstrated that similarity graphs, such as
Hierarchical Navigable Small World (HNSW) [29] and Navigating Spread-out Graph (NSG) [16],
obtain superior performance relative to tree structure based [9, 10, 31, 46], locality sensitive hashing
(LSH) based [18], and inverted multi-index (IMI) based [25] approaches, and they overall provide
the best-in-class latency-vs-accuracy trade-off on most public benchmark datasets.

While obtaining good search speed and accuracy, one major limitation of existing similarity graphs is
that they are very memory consuming and easily run out of memory with a few hundred millions of
vectors. When the dataset becomes too large to fit on a single machine, the compressed representations
of the database points are used, such as Hamming codes [33] and product quantization [13, 17, 21,
24, 32]. However, the performance of these methods deteriorates rapidly at higher recall targets,
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because they calculate approximate distance based on compressed vectors instead of on the original
data vectors. Douze et. al. [13] propose Link-and-Code (L&C), which combines a similarity graph
with quantized nodes and exploits neighbor nodes to refine the estimation of distance. However,
this approach still works poorly at high recall targets. In [40], the authors explore slow storage to
achieve billion-scale ANNS in a single machine. However, this approach is based on a fundamental
assumption that the persistent media such as SSD is several orders of magnitude slower than DRAM.
Based on this assumption, data accesses to the persistent media during search should be zero. As a
result, it maintains a copy of compressed data in memory with product quantization [40], which results
in loss of in-memory search quality. It then preforms a re-ranking using full-precision coordinates
stored on SSD, using block-level data accesses but with expensive SSD accessing time.

In this work, we present a fast and accurate approximate nearest neighbor search algorithm for
extremely large scale ANN search, called HM-ANN, which is built on top of Heterogeneous Memory.
Heterogeneous Memory (HM) combines cheap, slow but extremely large memory with expensive,
fast but small memory (e.g., traditional DRAM) to achieve a good balance between production cost,
memory performance and capacity. The emergence of HM brings opportunities to significantly
improve ANNS. Because of the large memory capacity, HM can use full-precision vectors with
accurate distance computation. Since memory access latency/bandwidth of slow memory component
in HM is much faster than slow storage such as SSD, it is possible to occasionally access data in slow
memory during search without paying expensive cost of data accesses. That being said, releasing full
performance potential of HM for ANNS is challenging. Although the slow memory such as PMM
performs ∼80X times faster than SSD, it is still ∼3X slower than DRAM in terms of random access
latency. Therefore, a naive data placement strategy can hurt the search efficiency badly. It then raises
the following research question: can we leverage HM for ANNS to achieve both high search accuracy
and low search latency, especially when the dataset cannot in DRAM (fast memory)? Specifically,
the algorithm should have a clear advantage over the state-of-the-art ANNS solutions.

HM-ANN enables fast and highly accurate billion-scale ANNS on HM. In particular, we make the
following contributions. (1) We present a fast and accurate billion-scale nearest neighbor search
solution on a single node without compression. Specially, we generalize the HNSW construction
algorithm to have a top-down insertion phase and a bottom-up promotion phase. The top-down phase
creates navigable small world graph as the bottom-most layer, which is also the largest, placed to the
slow memory; The bottom-up promotion phase promotes pivot points from the bottom layer graph to
form upper layers that are placed in the fast memory, which allows most search accesses to happen
in fast memory without losing much accuracy. (2) We explore memory management techniques
such as dynamic migration to prefetch to-be-accessed data from slow memory to fast memory and
parallel search to reduce search time in slow memory. (3) We introduce a performance model to
select search-related hyperparameters that satisfy search time and recall constraints. (4) We conduct
extensive evaluation and show that on two billion-scale datasets, HM-ANN provides 95% top-1 recall
in less than one millisecond; HM-ANN outperforms state-of-the-art compression-based solutions
such as L&C [13] and IMI+OPQ [12] in terms of recall-vs-latency by a large margin, getting 46%
higher recall under the same search latency budget; Since NSG and HNSW have never been scaled
up to a billion vector on a single machine, we create two strong baselines for them: using first-touch
NUMA and hardware-managed caching, respectively. Our results show that for 95% top-1 recall,
HM-ANN outperforms the baselines by 2X-5.8X in terms of search latency.

2 Preliminary and Related Works

2.1 ANNS and Similarity Graphs

Similarity graphs like HNSW [29] and NSG [16] have demonstrated superior performance with
polylogarithmic search and graph construction complexity for ANNS [15, 26, 40]. Take HNSW as an
example, which consists of multiple layers. The bottom-layer (L0) contains all database elements, and
the above layers are randomly selected, nested subsets of database elements. The sizes of the layers
follow a geometric progression. During the graph construction phase, HNSW connects elements in
each layer based on the closeness relationship. The connections of an element consist both long-range
links and short-range links to establish the small world properties. HNSW constrains the length of
the neighbors list of each element by a parameter M . HNSW starts the search at the top layer, and
performs a 1-greedy search until it reaches the nearest neighbor of the query in that layer. That node
is then used as an entry point in the next layer to start search again. At the bottom layer L0, which
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contains all elements, HNSW performs a best-first beam search to get the final candidates. HNSW
uses a parameter efSearch, which decides the candidate queue length, to control search time vs.
accuracy trade-off. Despite their outstanding performance, similarity graphs are memory-consuming.
For example, for the Deep1B [6] dataset, they require 384 bytes per vector, which translates to
>350 GB DRAM when including all overheads of data structures, causing out-of-memory failure.
Therefore, existing work mostly evaluate their solutions with a few millions vectors [16, 29].

2.2 Heterogeneous Memory

Heterogeneous memory (HM) is emerging. It combines multiple memory components to construct
main memory. HM is typically composed of a high-capacity memory technology such as non-volatile
memory (but high memory access latency) and a high-performance memory technology (with limited
memory capacity) such as DRAM. To make HM performance close to that of DRAM-only, previous
work focuses on hardware- [3, 11, 35, 36, 41] and software-based [14, 27, 43, 45, 44, 28, 37] solutions
to manage data placement on HM. Optane PMM and DRAM are commonly used to build HM. With
PMM, the memory capacity on a single machine can achieve 6TB [20]. However, the latency and
bandwidth of PMM is only 1/3 and 1/6 of DRAM. There are two operating modes for PMM, Memory
Mode and App-direct Mode. In Memory Mode, DRAM works as a hardware-managed cache to PMM.
Running the application in this mode does not require application modifications. App-direct Mode
allows the programmer to explicitly control memory accesses to PMM and DRAM. HM-ANN works
in App-direct Mode and outperforms Memory Mode in billion-scale dataset search (Section 4).

3 HM-ANN
The design of HM-ANN generalizes HNSW, whose hierarchical structure naturally fits into HM.
Elements in upper layers consume a small portion of the memory, making them good candidates to
be placed in fast memory (small capacity); The bottom-most layer has all the elements and has the
largest memory consumption, which makes it suitable to be placed in slow memory. Unlike HNSW,
where the majority of search happens in the bottom-most layer, elements in upper layers now have
faster access speed, so it is a reasonable strategy to increase the access frequency of upper layers. On
the other hand, since accessing L0 is slower, it is preferable to have only a small portion of it to be
accessed by each query. The key idea of HM-ANN is therefore to build high-quality upper layers and
make most memory accesses happen in fast memory, in order to provide better navigation for search
at L0 and reduce memory accesses in slow memory.

Notations. In the rest of the paper, we let V denote the dataset with N = |V | to build the graph; we
refer the graph in the layer i ∈ {0, 1, ..., l} of HM-ANN as Gi = (Vi, Ei) where Vi is the vertex set
and Ei is the edge set. We refer Ni as the number of elements in the layer i, and we have Ni = |Vi|.
Because L0 contains all the elements in database, we have V0 = V and N0 = N . Based on the
hierarchical structure of HM-ANN, we have Vi ( Vi−1. Similar to the existing effort [29], we
introduce Mi as the maximum number of established connection for each point v in the layer i. For
v ∈ V , we let D(v) denote the degree of node v, and D(v) =

∑
u∈V m(v, u) where m(v, u) = 1 if

there exits a link between node v and node u.

3.1 Graph Construction via Top-Down Insertions and Bottom-up Promotions

We generalize the HNSW construction algorithm to include two phases: a top-down insertion phase
and a bottom-up promotion phase (Alg. 1).

Top-down insertions. The top-down insertion phase is the same as HNSW (Line 1 in Algorithm 1),
where we incrementally build a hierarchical graph by iteratively inserting each vector v in V as a
node in G. Each node will generate up to M (i.e., the neighbor degree) out-going edges. Among
those, M − 1 are short-range edges, which connect v to its M − 1 nearest neighbors according to
their pair-wise Euclidean distance to v. The rest is a long-range edge that connects v to a randomly
picked node, which may connect other isolated clusters. It is theoretically justified that graphs
(e.g., L0) constructed by inserting these two types of edges guarantees to have the small world
properties [16, 42, 29].

Bottom-up promotions. The goal of the second phase is to build a high-quality projection of L0
elements into the layer 1 (L1), such that search in L0 can find true nearest neighbours of the query
with only a few number of hops. Ideally, HM-ANN wants to achieve the goal that performing
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1-greedy search in L0 is sufficient to achieve high recall, so that the slowdown caused by accessing
the slow memory is minimal. A straightforward way to project the L0 elements into L1 is to randomly
select a subset of elements in L0 to be L1, similar to what HNSW already does to build upper layers.
However, we observe that such an approach leads to poor index quality. As a result, many searches
end up happening in L0 (slow memory), causing long search latency.

Algorithm 1: HM-ANN Graph Construction Algorithm.
Input: vector set V ,vector dimension d, number of established connection M , size of dynamic

candidate list efConstruction
Output: Multi-layer graph HM-ANN
Parameters :# of nodes in layer i Ni, HM-ANN layer depth l
1 build graph hnsw ← HNSW (V, d,M, efConstruction) ;
2 for v in V do
3 D[v]← the degree of v as in zero-layer L0;
4 sort D for descending order ;
5 remove nodes in layer 1 to l ;
6 ep← get the highest degree node v in D(v) ;
7 for v in V in D(v) descending order do
8 for i← l...1 do
9 if Ni == 0 then

// layer i is full
10 W ← search_layer(v, {ep}, ef = 1, i);
11 ep← get nearest vector from W to v;
12 else

// add v in layer i to 1
13 for j ← i...1 do
14 W ← search_layer(v, {ep}, efConstraction, j) ;
15 neighbors← heuristic select Mi nodes from W in layer j ;
16 add bidirectional connections from neighbors to v at layer j;
17 shrink connections if ∃q ∈ neighbor and Dout(q) > Mi;
18 Nj = Nj − 1;
19 beark;

HM-ANN uses a high-degree promotion strategy (Lines 7-19 in Algorithm 1). This strategy promotes
elements with the highest degree in L0 into L1. From the layer i (i ≥ 2) to i+1, HM-ANN promotes
high-degree nodes to upper layer with a promotion rate of 1/M , where M is the maximum number
of neighbors for each element (i.e., Mi =M , where i = 2...l). The similar promotion rate setting is
used in HNSW [29] and typical skip list [34].

HM-ANN increases search quality in L1 by promoting more nodes from L0 to L1 and setting the
maximum number of neighbors for each element in L1 to 2×M (i.e., M1 = 2×M ). The number
of nodes in upper layers (Ni, where i = 1..l) is decided by available fast memory space. Excluding
the fast memory space for dynamic migration (discussed in Section 3.2) and data structure used for
search (e.g, the visited elements set V E in Algorithm 2), the remaining fast memory space is used
for storing data and links for each node. Section 3.4 quantifies memory usage in each layer, from
which we can calculate Ni for each layer.

The high-degree promotion strategy is based on the following observation. The hub nodes of the
graph at L0 are those nodes with a large number of connections (i.e., high degree). In the small world
navigation algorithm, a higher degree node provides better navigability [8]. Most of the shortest paths
between nodes flow through hubs. In other words, the average length of the navigation path (i.e.,
number of hops) is the smallest, when the adjacent node with the highest degree is selected as the
next hop. By promoting the high-degree nodes, the resulting L1 layer allows HM-ANN to effectively
reduce the number of search in L0, compared with the random promotion strategy.

3.2 HM-ANN Graph Search Algorithm

Fast memory search. The search in fast memory begins at the entry point in the top layer and then
performs 1-greedy search from the top layer to the layer 2, which is the same as in HNSW. To narrow
down the search space in L0, HM-ANN performs the search in L1 with a search budget controlled
by efSearchL1 by using Algorithm 2. efSearchL1 defines the size of dynamic candidate list in
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L1. Those candidates in the list are used as entry points for search in L0 (HNSW uses just one entry
point), in order to improve search quality in L0. We provides algorithm details in the appendix.

Parallel L0 search. In L0, HM-ANN evenly partitions the candidates from searching L1 and
uses them as entry points to perform parallel multi-start 1-greedy search with Thr threads in
parallel as shown in Algorithm 2. The top candidates from each search are collected to find the
best candidates. Parallel search makes best use of memory bandwidth and improves search quality
without increasing search time. Thr is determined by peak memory bandwidth constrained by
hardware divided by memory bandwidth consumption by one thread, which is easy to calculate.

Algorithm 2: HM-ANN Search Layer
Input: query vector q, enter points set EP , number

of nearest neighbors to query q to return ef ,
layer number l

Output: ef nearest vectors to q
Parameters :# of threads Thr, set of visited

elements VE, set of candidates C,
dynamic list of found nearest
neighbors W

1 Thr = min(Thr, |EP |)
2 partition EP into EPi, i← Thr − 1...0
3 do in parallel
4 V Et ← EP ; Ct ← EPt; Wt ← EP
5 while |Ct| > 0 do
6 if min_dist(q,Ct)>max_dist(q,Wt) then
7 break;
8 evaluate neighbors of c ∈ Ct

9 update V Et and Wt

10 merge Wi into W , i← Thr − 1...0
11 return ef nearest vectors from W to q

Different from the SSD-based ANNS [40,
47], the data in slow memory in HM-ANN
can be directly accessed by processors,
and there is no duplication between fast
and slow memories. However, due to
high latency and low bandwidth of slow
memory, HM-ANN should still make
memory accesses in fast memory as many
as possible. HM-ANN implements a
software-managed cache in fast memory
to prefetch data from slow memory
to fast memory before the memory
access happens. In particular, HM-ANN
reserves a space in fast memory (∼2 GB)
called migration space. When searching
L1, HM-ANN asynchronously copys
neighbor elements of those candidates in
efSearchL1 and the neighbor elements’
connections in L1 from slow memory to
the migration space in fast memory. When
the search in L0 happens, there is already a

portion of to-be accessed data placed in fast memory, which leads to shorter query time.

3.3 Performance Model-Guided Parameter Selection

The overall search quality of HM-ANN is related to the choice of efSearch at L1 (i.e., efSearchL1)
and efSearch at L0 (i.e., efSearchL0), which controls the number of distance computation happens
in fast memory and slow memory, respectively. To achieve a low query latency, ideally we would
like efSearchL0 to be as small as possible, such as 1-greedy search (efSearchL0 = 1). However,
although searching L1 narrows down the L0 search into a small local region, to have a high search
quality requires that efSearchL0 can not be too small, because the nearest neighbors not included
L1 and are not visited in L0 are definitely lost. Given the large search space of efSearchL1 and
efSearchL0, it is preferable to have a systematic way to do parameter selection. This section
provides a performance model for HM-ANN, with an eye towards being able to set efSearchL1 and
efSearchL0 properly to meet the goal of having low response time and high accuracy.

Response time constraint. To provide interactive service, the search latency must be lower than a
response time limit. In HM-ANN, we model the search latency as T = TL1∗ + TL0, where TL1∗
models search time in L1 and above, which is primarily dominated by search in L1, and TL0 models
search time in L0. The average query time at a layer is bounded by efSearch× C × TDC , where
efSearch is the size of dynamic candidate list in the layer and can be viewed as the beam length in
the best-first beam search; C is the average number of distance computations per beam before finding
the nearest neighbor at a layer; TDC is the execution time to calculate a pair-wise distance.

TDC is a constant and can be measured offline on both fast memory (TDCfast_mem
) and slow memory

(TDCslow_mem
). C is calculated by C = #steps×DC_per_step, which is a multiplication of the

average number of steps before we reach the nearest neighbor (#steps) and maximum number of
distance computation per step (DC_per_step). #steps in a layer is bounded by a constant [29]
based on the theory of Delaunay graph and is independent of the dataset size; DC_per_step is
bounded by the maximal out-degree M . When modeling search time in L0, we consider the effect of
parallel search with a parallel degree Thr. For the execution time, we therefore have:
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T = TL1∗ + TL0

= efSearchL1 × C × TDCfast_mem
+

⌈
efSearchL1

Thr

⌉
× efSearchL0 × C × TDCslow_mem

≤ search_time_constraint
(1)

Satisfy both response time and accuracy constraint. Beyond response time constraint, high
accuracy is clearly also important for high-quality ANNS, because otherwise users will not be able to
find what they are looking for. In practice, the accuracy of search must be higher than an accuracy
target θ. Therefore, for a given HM-ANN graph, HM-ANN first applies Equation 1 to analytically get
a set of candidate (efSearchL0, efSearchL1) pairs that satisfy the response time constraint. This
step often significantly reduces the search space to only a small set of configurations.

Among those candidate pairs, HM-ANN uses a learning query set randomly sampled to measure the
expected accuracy E(θ), with efSearchL1 ≥ 1, and efSearchL0 ≥ 0 as constraints. HM-ANN
then chooses those configurations that satisfy E[θ] ≥ θ. Finally, HM-ANN uses grid search to
choose the configuration that leads to the shortest query time.

3.4 Complexity Analysis

Search complexity. HM-ANN constructs each layer as a navigable small world graph, which enables
the number of hops scales logarithmically on the greedy search path. Similar to HNSW, HM-ANN
constructs the graph with a fixed maximum number of links for each element, which guarantees
that the average degree of each element in one layer is constant. The overall number of distance
computation is proportional to a product of the number of hops and the average degree of the elements
on the greedy path. Therefore, the search complexity in each layer of HM-ANN is logarithmic.
Given a layer i with Ni elements, the search complexity of the layer i is O(log(Ni)). Even with
the bottom-up promotion, the maximum number of elements in each layer of HM-ANN remains N .
Therefore, the overall search complexity of HM-ANN stays at O(log(N)).

Index construction complexity. The construction of HM-ANN contains two passes over the dataset,
due to the top-down insertions and the bottom-up promotions. The insertion of an element involves a
graph traversal followed by a constant cost of inserting short-range and long-range links. Therefore,
this phase has a cost of O(Nlog(N)). The second pass of HM-ANN involves degree calculation and
ranking and then extracts elements with high-degree in L0 into upper layers. Calculating the degree
of all elements and sorting them in terms of the degree at L0 is bounded by O(N ×M +Nlog(N)).
Therefore, in total the construction complexity of HM-ANN is O(N ×M +Nlog(N)).

Memory usage complexity. HM-ANN stores connection and elements separately in slow and fast
memories. In particular, HM-ANN stores the connections in L0 and the elements that only appear in
L0 into slow memory, and stores connections and elements at upper layers into fast memory. The fast
memory consumption of HM-ANN equals to the sum of memory consumption of each layer (except
L0): fast_memory_size =

∑l
i=1(Ni×Mi)× byte_per_link+N1× byte_per_element, where

Ni is the number of elements in layer i (i > 0), and Mi is the number of maximum established
connections for each element in the layer i. The slow memory stores most of L0, which equals to
slow_memory_size = (N0 ×M0)× byte_per_link + (N0 −N1)× byte_per_element.

4 Evaluation

4.1 Methodology

Testing bed. All experiments are done on a machine with Intel Xeon Gold 6252 CPU@2.3GHz. It
uses DDR4 (96GB) as fast memory and Optane DC PMM (1.5TB) as slow memory.

Workloads. We use five datasets, BIGANN [22], DEEP1B [6], SIFT1M [22], DEEP1M [6], and
GIST1M [4]. BIGANN contains one billion of 128-dimensional SIFT descriptors as a base set and
10,000 query vectors. DEEP1B contains one billion of 96-dimensional feature vectors of natural
images and 10,000 queries. SIFT1M and DEEP1M are one-million subset vectors in BIGANN and
DEEP1B respectively. GIST1M contains one-million 960-dimensional image descriptors.
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Table 1: Indexing time and memory consumption for graph-based methods on billion-scale datasets
BigANN DEEP1B

Indexing Search Indexing Search
Graph
size

Indexing
time

Promo.
rate

Fast-mem
usage

Slow-mem
usage

Graph
size

Indexing
time

Promo.
rate

Fast-mem
usage

Slow-mem
usage

HNSW 475GB 90h 0.02 96GB
(hw caching) 490GB 723GB 108h 0.02 96GB

(hw caching) 748GB

NSG 285GB 115h - 96GB
(hw caching) 303GB 580GB 134h - 96GB

(hw caching) 599GB

HM-ANN 536GB 96h 0.16 96GB 462GB 756GB 117h 0.11 96GB 681GB

Evaluation metrics. We measure the query response time as the average time of per-query execution
time. We measure the accuracy with top-K recall (e.g., K=1, or 100), which measures the fraction of
the top-K retrieved by the ANNS that are exact nearest neighbors.

Comparison configurations. For billion-scale tests, we include the following schemes: two state-
of-the-art billion-scale quantization-based methods (IMI+OPQ [12] and L&C [13]); and the state-of-
the-art non-compression-based methods (HNSW [29] and NSG [16]). To the best our knowledge,
directly running HNSW and NSG at billion-scale points would trigger the out-of-memory error, and
no prior work has been able to run HNSW and NSG with the two billion-scale datasets on a single
machine, without compression. We therefore create two baseline configurations for both HNSW
and NSG, using existing system-level data placement solutions: a first-touch NUMA configuration
that places data in fast memory first until it is full and then in slow memory, and a Memory Mode
configuration that treats fast memory as a hardware-managed fully-associative cache of slow memory.
We include comparisons of HM-ANN at million-scale datasets with with HNSW [29] and NSG [16],
which are known to be the best-in-class solution on the three million-scale datasets.

4.2 Experiment Results
Billion-scale algorithm comparison. We compare HM-ANN with the graph- (HNSW and NSG)
and quantization-based algorithms (IMI+OPQ and L&C). For HNSW, we build graphs with
efConstruction andM set to 200 and 48 respectively; For NSG we first build a 100-NN graph using
Faiss [1] and then build NSG graphs with R = 128, L = 70 and C = 500. We collect results on NSG
and HNSW using Memory Mode, since it leads to overall better performance than using first-touch
NUMA (see Section 4.3 for the comparison of the two). For IMI+OPQ, we build indexes with 64-
and 80-byte code-books on BIGANN and DEEP1B respectively. We present the best search result
with search parameters nprobe=128 and ht=30 for BIGANN and with autotuning parameter sweep on
DEEP1B. For L&C, we use 6 as the number of links on the base level, and use 36- and 144-byte OPQ
code-books. We use the same parameters (efConstruction=200 and M=48) as HNSW to construct
HM-ANN. We set efSearchL0=2 and vary efSearchL1 to show the latency-vs-recall trade-offs.

Figures 1 (a)-(d) visualize the results. Overall, HM-ANN provides the best latency-vs-recall
performance. Figure 1 (a) and (b) show that HM-ANN achieves the top-1 recall of > 95% within
1ms, which is 2x and 5.8x faster than HNSW and NSG to achieve the same recall target respectively.
IMI+OPQ and L&C cannot reach the similar recall target, because of precision loss from quantization.
As another point of reference, the SSD-based solution, DiskANN [40] (not open-sourced), provides
95% top-1 recall in 3.5ms. In contrast, HM-ANN provides the same recall in less than 1ms, which is
at least 3.5× faster. We compare top-100 recall shown in Figures 1 (c) and (d). HM-ANN provides
higher performance than all other approaches. For example, it obtains top-100 recall of > 90% within
4 ms, while performs 2.8x and 5x faster than HNSW and NSG with the same recall target respectively.
Quantization-based algorithms perform poorly and have difficulties to reach a top-100 recall of 30%.

Table 1 shows the index construction time and index size of HNSW, NSG, and HM-ANN. Among the
three, HNSW takes the shortest time to build the graph. HM-ANN takes 8% longer time than HNSW,
because it takes an additional pass for the bottom-up promotion. However, HM-ANN is still faster to
construct than NSG. In terms of memory usage, HM-ANN indexes are 5–13% larger than HSNW,
because it promotes more nodes from L0 to L1. In terms of memory usage, HM-ANN consumes less
fast memory than HNSW and NSG, which is valuable to reduce production cost [30, 38]. HNSW and
NSG use all fast memory because they do not explicitly manage HM and by default using Memory
Mode consumes all fast memory. The sum of slow and fast memory consumption can be larger than
the index size, because there are metadata needed for search that are not counted into the index size.

Million-scale algorithm comparison. Besides the billion-scale tests, we evaluate HNSW, NSG and
HM-ANN with the three million-scale datasets, which can fit in DRAM. For HNSW and HM-ANN,
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Figure 1: Query time vs. recall curve in (a) DEEP1B top-1, (b) BigANN top-1, (c) DEEP1B top-100, (b)
BigANN top-100, respectively.

we set efConstruction and M to 100 and 16 for SIFT1M and DEEP1M; We set efConstruction
and M to 100 and 32 for GIST1M. For NSG we use parameters in [2] suggested by the authors to
build the graph. Figure 2 shows the result. Overall, HM-ANN achieves competitive and sometimes
even better performance as HNSW and outperforms NSG on all three million-scale datasets. We
further verify that the total number of distance computation from HM-ANN is lower (on average
850/query) than that of HNSW (on average 900/query) to achieve 99% recall target. This indicates
that HM-ANN provides better accuracy-vs-latency results even when the datasets can fit in DRAM.

Figure 2: Query time vs. recall curve with (a)DEEP1M, (b)SIFT1M, and (c)GIST respectively.

4.3 Ablation Studies
Effectiveness of high-degree promotion. We compare the random promotion and high-degree
promotion strategies. In this study, both strategies use the same number of promoted nodes for
indexing and the same configurations for search. Figure 3 shows the results and indicates that high-
degree promotion outperforms the baseline HNSW largely. The high-degree promotion performs
1.8x, 4.3x and 3.9x faster than the random promotion to reach 95%, 99%, and 99.5% recall targets,
respectively, indicating that promoting high-degree nodes is effective for improving search efficiency.

Tfast_mem and Tslow_mem are measured by performing 10k distance computation in fast and slow
memories and then report the average. Tslow_mem and Tfast_mem are 421ns and 183ns respectively.

HNSW with Parallel L0 search. We investigate whether it is sufficient to just modify the search
procedure without modifying the hierarchical NN graph of HNSW to achieve similar performance
gains as HN-ANN. Figure 4 shows the latency-vs-recall performance of default HNSW using parallel
L0 search. We use T nearest neighbours found during HNSW L1 search as entry points for the
parallel search in L0, where T is the number of parallel threads. We set T = 4, same as HM-ANN.
HNSW with parallel L0 search only slightly outperforms HNSW. This suggests that parallel L0
search alone is not sufficient for performance improvement. Without it, the elements of L1 in HNSW
are selected randomly and sparse, and the entry nodes found through L1 search are sub-optimal. As a
result, even though the parallel search in L0 searches more nodes under the same time, the accuracy
only slightly improves.

Performance benefit of memory management techniques in HM-ANN. Figure 5 contains a series
of "stepping stones" between HNSW and HM-ANN to show how each optimization of HM-ANN
contributes to its improvements. “HNSW + Bottom-up promotion (BP)” modifies the HNSW
algorithm, mapping the bottom-most layer (i.e., L0) to the slow memory while building a high-quality
projection of L0 in fast memory without significantly impacting search efficiency. It provides the
benefit of improved search quality in fast memory while providing better entry points to L0 search in
slow memory. Together with the parallel L0 search (i.e., “HNSW + Bottom-up promotion (BP) +
Parallel L0 search (PL0)”) it significantly improves the search efficiency versus running HNSW on
HM without explicit data management. For example, to reach a 99% recall target, HM-ANN reduces
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Figure 5: Comparison of
techniques in HM-ANN.

the query time by 1.75x compared with HNSW. Finally, by prefetching data from slow memory to
fast memory, HM-ANN further pushes the search efficiency frontier.

System level data management solutions. We compare HM-ANN with HNSW in Memory Mode
and first-touch NUMA (as a software-based solution to manage data placement in HM, HM-ANN
does not work with Memory Mode and first-touch NUMA). We also evaluate HNSW on slow memory
without using any DRAM. Figure 6 shows the result. The figure shows that HM-ANN outperforms
HNSW with Memory Mode and first-touch NUMA by 2x and 3.7x while achieving top-1 recall
above 95%. The results suggest that although HM enables large memory capacity, simply using a
system-level solution without algorithm change cannot make the best use of HM. Explicitly managing
data for HM as HM-ANN does is the key to achieve superior latency and recall results.

Effectiveness of performance model-guided search. Figure 7 shows the distribution of
(efSearchl0, efSearchl1) pairs that meet time constraint of <1ms and recall constraint of ≥90%.
The bottom-left and top-right regions include those pairs violating either recall or time constraint; The
colored regions are those meeting the constraints; The darker color has shorter query time. Figure 7
shows the performance model removes most of configurations violating the constraints.

To show effectiveness of performance modeling, we evaluate HM-ANN with BIGANN and 5 latency
constraints from 1ms to 5ms (vertical red lines) in Figure 8. Red triangles represent (efSearchl0,
efSearchl1) that meet the latency constraints set by Eqn. 1. Among those, we list 9 recall constraints
marked with horizontal blue lines. For those recall constraints, 9 five-stars are those selected by
HM-ANN, which meet the corresponding recall constraints while also having the shortest query time.
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5 Conclusions

HM can store billions of point database in a single machine. However, indexing and search algorithms
on HM must be re-designed to release large performance potential of HM. We present a new graph-
based indexing and search algorithm called HM-ANN, which maps the hierarchical design of the
graph-based ANNs with memory heterogeneity in HM. Furthermore, HM-ANN adjusts the amount
of distance computations at different layers to allow most accesses happen in upper layers stored in
fast memory. Combined with a set of system-level techniques, HM-ANN is able to avoid expensive
accesses in slow memory without sacrificing accuracy. Evaluation on billion-scale datasets show that
HM-ANN establishes the new state-of-the-art for indexing and searching billion point datasets.

9



Broader Impact

In this paper, we introduce HM-ANN, a hierarchical graph-based similarity search algorithm to
leverage emerging heterogeneous memory, aiming to serve extremely large-scale data points on a
single node with high accuracy and ultra fast response time.

The similarity search algorithm has been applied to a wide range of applications, including large-scale
image/text search, web question and answer, and recommendation systems. Our research could be
used to improve quality of services for those applications, increasing system scales without adding
too much production cost, and efficiently handling large data sets with increasing volumes in data
centers.

Furthermore, HM is an emerging architecture providing extremely large memory capacity for data
intensive applications. Our research reveals a new field that could benefit from this architecture and
shows great potential of using HM to establish the new state-of-the-art for indexing and searching
large-scale datasets. Other algorithms that have the similar workload characteristics as ANN (such as
the hierarchical design in ANN) can benefit from our research.

Although there are many benefits of using HM-ANN, we must pay attention to the potential risks of
HM-ANN. HM-ANN uses a highly-structured approach to build the graph and removes randomness
during node promotion. Although this approach is necessary to improve search quality and manage
memory accesses in slow memory, it raises a risk of explicitly exposing critical information (such as
nodes with high degrees) into specific memory regions, allowing the hacker to steal the information
from the structured graph. Furthermore, Optane-based HM, which is one of the most common HM,
raises security issues because of using non-volatile memory (i.e., Optane) [48, 5, 39]. Those security
issues could happen in ANN search based on the Optane-based HM.

To mitigate the risks associated with using HM for ANN, we encourage research to understand the
impacts of using HM-ANN in real-world scenarios and consider how the system (especially the
address mapping scheme and memory organization) should be evolved to introduce randomness to
mitigate security risk. More fundamentally, how to strike a good balance between high performance
using a structured approach and potential security issues should be considered more broadly.
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