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ABSTRACT
Cache line flushing (CLF) is a fundamental building block for pro-
gramming persistent memory (PM). CLF is prevalent in PM-aware
workloads to ensure crash consistency. It also imposes high over-
head. Extensive works have explored persistency semantics and
CLF policies, but few have looked into the CLF mechanism. This
work aims to improve the performance of CLF mechanism based
on the performance characterization of well-established workloads
on real PM hardware. We reveal that the performance of CLF is
highly sensitive to the concurrency of CLF and cache line status.

We introduce Ribbon, a runtime system that improves the perfor-
mance of CLF mechanism through concurrency control and proac-
tive CLF. Ribbon detects CLF bottleneck in oversupplied and insuffi-
cient concurrency, and adapts accordingly. Ribbon also proactively
transforms dirty or non-resident cache lines into clean resident
status to reduce the latency of CLF. Furthermore, we investigate the
cause for low dirtiness in flushed cache lines in in-memory data-
base workloads. We provide cache line coalescing as an application-
specific solution that achieves up to 33.3% (13.8% on average) im-
provement. Our evaluation of a variety of workloads in four configu-
rations on PM shows that Ribbon achieves up to 49.8% improvement
(14.8% on average) of the overall application performance.

CCS CONCEPTS
• Hardware → Emerging technologies; • Computer systems
organization→Multicore architectures; • Software and its engi-
neering → Concurrency control.

KEYWORDS
persistent memory; Optane; cache flush; runtime; concurrency

ACM Reference Format:
Kai Wu, Ivy Peng, Jie Ren, and Dong Li. 2020. Ribbon: High Performance
Cache Line Flushing for Persistent Memory. In Proceedings of the 2020
International Conference on Parallel Architectures and Compilation Techniques

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PACT ’20, October 3–7, 2020, Virtual Event, GA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8075-1/20/10. . . $15.00
https://doi.org/10.1145/3410463.3414625

(PACT ’20), October 3–7, 2020, Virtual Event, GA, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3410463.3414625

1 INTRODUCTION
Persistent memory (PM) technologies, such as Intel Optane DC
PM [25, 56], provide large capacity, high performance, and a conve-
nient programming interface. Data access to PM can use load/store
instructions as if to DRAM. However, the volatile cache hierarchy
on the processor imposes challenges on data persistency and pro-
gram correctness. A store instruction may only update data in the
cache, not persisting data in PM immediately. When data is written
from the cache back to memory, the order of writes may differ from
the program order due to cache replacement policies.

Data in PM needs to be in consistency state to be able to recover
the program after a system or application crash. Therefore, cache
line flushing (CLF) is a fundamental building block for programming
PM. Most PM-aware systems and applications [3, 4, 8, 11, 15, 19, 20,
39, 41, 55, 57–59, 63, 64] rely on CLF and memory fences to ensure
that data is persisted in the correct order so that the state in PM is
recoverable.

CLF can be an expensive operation. CLF triggers cache-line-
sized write to the memory controller, even if the cache line is only
partially dirty. Also, CLF needs persist barriers, e.g., the memory
fence, to ensure that flushed data has reached the persistent domain
before any subsequent stores to the same cache line could happen.
Our preliminary evaluation shows that CLF can reduce system
throughput by 62% for database applications like Redis. Hence, CLF
creates a performance bottleneck on PM and may significantly
reduce the performance benefits promised by PM.

Most of the existing techniques focus on optimizing persistency
semantics, other than the CLF mechanism [2, 15, 24, 30, 42, 46, 52,
62]. Skipping CLF [2, 46] or relaxing constraints on persist barri-
ers [15, 24, 30, 42, 52, 62], these techniques improve application
performance by reducing CLF. Each technique may have a different
fault model and recovery mechanism that is designed for specific
application characteristics. Still, these techniques use CLF to imple-
ment their persistency semantics.

In this paper, we focus on the CLF mechanism, instead of per-
sistency semantics. Therefore, our work applies to general PM-
aware applications. We reveal the characteristics of CLF on real PM
hardware. Based on our performance study, we introduce a run-
time system called Ribbon that decouples CLF from the application
and applies model-guided optimizations for the best performance.
Applying Ribbon on a PM-aware application does not change its
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persistency semantics, i.e., fault models and recovery mechanisms,
so that the program correctness is retained.

Our performance study of CLF on real PM hardware reveals
three optimization insights. First, concurrent CLF can create re-
source contention on the hardware buffer inside PM devices and
memory controllers, which causes performance loss. We define CLF
concurrency as the number of threads performing CLF simultane-
ously. Second, the status of a cache line can impact the performance
of CLF considerably. For instance, flushing a clean cache line could
be 3.3 times faster than flushing a dirty cache line. Third, many
flushed cache lines have low dirtiness, wasting memory bandwidth
and decreasing the efficiency of CLF. The dirtiness of a cache line
is quantified as the fraction of dirty bytes in the cache line. Since a
cache line is the finest granularity to enforce data persistency, the
whole cache line has to be flushed, even if only one byte is dirty.
Our evaluation of Redis with YCSB (Load and A-F) and TPC-C
workloads shows that the average dirtiness of flushed cache lines
is only 47%.

We introduce three techniques in Ribbon to improve the CLF
mechanism. First, Ribbon controls the intensity of CLF by thread-
level concurrency throttling. Optimal concurrency control needs
to address two challenges. How to avoid the impact of concurrency
control on application computation? How to determine the appro-
priate CLF concurrency? Simply changing thread-level parallelism
can reduce thread-level parallelism available for the application.
Our solution is to decouple CLF from the application.We instrument
and collect CLF in the application and manage a group of flushing
threads to perform CLF. This design supports flexible concurrency
control without impacting application threads. Furthermore, we
introduce an adaptive algorithm to select the concurrency level
of these flushing threads. The algorithm achieves a balance be-
tween mitigating contention on PM devices and increasing CLF
parallelism for utilizing memory bandwidth.

We propose a proactive CLF technique to increase the possibility
of flushing clean cache lines. Flushing a clean cache line is signif-
icantly faster than flushing dirty one. Proactive CLF may change
the status of a cache line from dirty to clean before the application
starts flushing this cache line. Ribbon leverages hardware perfor-
mance counters in the sampling mode to opportunistically detect
modified cache lines with negligible performance overhead.

Ribbon coalesces cache lines of low dirtiness to reduce the num-
ber of cache lines to flush. We find that unaligned cache-line flush-
ing and uncoordinated cache-line flushing are the main reasons
for low dirtiness in flushed cache lines. These problems stem from
the fact that existing memory allocation mechanisms are designed
for DRAM. Ribbon introduces a customized memory allocation
mechanism to coalesce cache-line flushing and improve efficiency.

We summarize our contributions as follows.

• We characterize the performance of the CLF mechanism in
PM-aware workloads on real PM hardware;

• We propose decoupled concurrency control, proactive CLF,
and cache line coalescing to improve performance of the CLF
mechanism;

• We design and implement Ribbon, a runtime to optimize
PM-aware applications automatically;
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Figure 1: The Intel Optane persistent memory architecture.

• We evaluate Ribbon on a variety of PM-aware workloads
and achieve up to 49.8% improvement (14.8% on average) in
the overall application performance.

2 BACKGROUND AND MOTIVATION
In this section, we introduce the state-of-art persistent memory
architecture and review common CLF policies.

2.1 Persistent Memory Architecture
In the most recent PM architecture (i.e., Intel Optane DC Persistent
Memory Module, shortened as Optane), PM and DRAM are placed
side-by-side and connected to CPU through memory bus. Figure 1
illustrates this architecture on one socket. Two integrated memory
controllers (iMC) manage a total of six memory channels, each
connecting to two DIMMs – a DRAM DIMM and an NVDIMM.
Data is guaranteed to become persistent only after it reaches iMC.
In cases of power failure, data in write pending queue (WPQ) in
iMC will be flushed to NVDIMM by hardware. When WPQ has
high occupancy, write blocking effect could stall CPU if threads
have to wait for the WPQ to drain [56].

The inset in Figure 1 depicts the internal architecture of Optane.
The host CPU and Optane communicate at 64-bytes granularity
through the non-standard DDR_T protocol, while Optane internal
transactions are in 256 bytes. Within the Optane device, there is
a controller (the Apache Pass controller) that manages address
mapping for wear-leveling. There is also a small DRAM buffer
within the Optane device to improve the reuse of fetched data and
reduce write-amplification [25].

2.2 Cache Line Flushing
On-chip data caches are mostly implemented with volatile memory
like SRAM. Because of the prevalence of volatile caches, data cor-
ruption could occur if updates to a data object stay in the cache but
have not reached the persistent domain when a crash happens. A
persistent domain refers to the part of the memory hierarchy that
can retain data through a power failure. For instance, the system
from iMC to Optane media is the persistent domain on the Optane
architecture [25]. For data persistency and consistency, the pro-
grammer typically employs ISA-specific CLF instructions, such as
clflush, clflushopt, and clwb on x86 machines [23], to ensure
that data in a cache line is pushed to the persistent domain. The
order of two CLF can be enforced by an sfence instruction, which



ensures the second CLF does not happen before the first one reaches
the persistent domain.

The standard practice to ensure persistence of a data object in PM
is to flush all cache blocks 1 of the data object [23], even though the
data object may not be fully cached. Because of the complexity and
overhead of tracking dirty cache lines or checking resident cache
blocks for a particular data object in the existing hardware, every
cache block of the data object is flushed by software, exemplified
in Listing 1. The example is a code snippet from Intel PMDK [23].

Listing 1: An example of persisting a data object
1 / ∗ Loop through c a c h e l i n e a l i g n e d chunks ∗ /
2 / ∗ c ov e r i ng a t a r g e t da t a o b j e c t ∗ /
3 c a c h e _ b l o c k _ f l u s h ( c on s t vo id ∗ addr , s i z e _ t l en )
4 {
5 uns igned _ _ i n t 6 4 p t r ;
6 f o r ( p t r = ( uns igned _ _ i n t 6 4 ) addr & ~ (

FLUSH_ALIGN − 1 ) ;
7 p t r < ( uns igned _ _ i n t 6 4 ) addr + l en ;
8 p t r += FLUSH_ALIGN )
9 / ∗ c l f l u s h / c l f l u s h _ o p t / clwb ∗ /
10 f l u s h ( ( char ∗ ) p t r ) ;
11 / ∗ c l f l u s h _ o p t and clwb needs a f en c e ∗ /
12 / ∗ t o ensure i t s comp l e t ene s s ∗ /
13 _mm_sfence ( ) ;
14 }

2.3 Optimization of Cache Line Flushing
Flushing cache lines from the volatile cache into the persistent
domain is the building block for programming persistent memory.
Active research in different PM access interfaces – libraries [9,
23, 52], multi-threaded programming models [7, 18, 19], and file
systems [11, 15, 54, 55] – proposes optimizations to mitigate the
high overhead of CLF. We categorize existing CLF optimizations
into five classes, summarized as follows.

Eager CLF triggers CLF explicitly at the application level after
the data value is updated. There is no delay of CLF and no skip of
CLF. This kind of CLF provides strict persistency [42], but often
introduces excessive constraints on write ordering, limiting the
concurrency of writes. Frequently performing eager CLF could
impose high performance cost [2, 45, 46, 58, 61].

Asynchronous CLF removes CLF from the critical path of the
application, such that CLF overhead is hidden. Asynchronous CLF
can be implemented by a helper thread that performs CLF in par-
allel with application execution [17]. The effectiveness of asyn-
chronous CLF depends on workload characteristics: if the time
interval between CLF and the next memory fence is too short, then
asynchronous CLF is not effective, and exposed to the critical path.

Deferred CLF relaxes the constraints of write ordering to im-
prove performance. This method groups data modifications into
failure-atomic intervals and delays CLF to the end of each inter-
val. This method ensures data consistency across intervals. Once
the system crashes, all or none of the data modifications in the
interval become visible. The existing studies determine the interval
length based on either a user-defined value [10, 40] or application
semantics [7].

1We distinguish cache line and cache block in the paper. The cache line is a location
in the cache, and the cache block refers to the data that goes into a cache line.
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Figure 2: The overhead of CLF in common PM-aware applications.

Passive CLF relies on natural cache eviction from the cache
hierarchy to persist data. Lazy persistence [2] is one such optimiza-
tion. With passive CLF, the system itself does not trigger CLF. Dirty
data is written back to PM, depending on the hardware eviction. In
the event of system failure, the system uses checksums to detect
inconsistent data and recovers the program by recomputing incon-
sistent data. Lazy persistency trades CLF overhead with recovery
overhead.

Bypassing CLF avoids storing modified data in the cache hier-
archy and, instead, writing to PM directly [16, 60]. Specific non-
temporal instructions on x86-64 architecture (e.g., movnti and
movntdq) provide such support. Still, fence instructions are used
to ensure the update is persisted. Bypassing CLF could avoid the
overhead in cache and CLF instructions to gain performance if there
is little data reuse in the cache [56].

Most of existing efforts focus on the CLF policy, i.e., when to
use CLF or how to avoid CLF. However, there is a lack of study to
improve the CLF mechanism itself, and the performance character-
ization of CLF on PM hardware remains to be studied, which is the
focus of this paper.

3 PERFORMANCE ANALYSIS OF CLF
We use the Intel Optane PM hardware (specifications in Table 3)
for the performance analysis.

Overhead of CLF in PM-aware applications. We quantify
the cost of CLF in seven representative PM-aware applications.
These applications are in-memeory databases (Intel’s PMEMKV [21]
and Redis [6]), PM-optimized index data structures (Fast&Fair [20]
and Level-Hashing [63]), and multi-threaded C/C++ applications
(Streamcluster, Canneal and Dedup) from Parsec [5] benchmark
suite. These applications rely on various persistency semantics and
fault models to enable crash consistency, but all use the CLF mecha-
nism. Table 4 summarizes the applications. For Parsec applications,
we use the native input problem and report execution time. For
other workloads, we run dbench to perform randomfill operations
and report system throughput. Figure 2 shows the CLF overhead in
each benchmark in the hatched bars.

The results highlight the impact of CLF on these PM-aware work-
loads. For all workloads, CLF significantly affects the performance
by 24%-62%. Redis shows the highest performance loss because
relies on frequent CLF to persist data objects and logs to implement
database transactions. The high overhead in PM-aware workloads
motivates our work to optimize the performance of the CLF mech-
anism.

The performance impact of CLF concurrency. We increase
the number of threads to performCLF andmeasure the performance
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Figure 3: Performance at increased numbers of threads performing
CLF.
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Figure 4: Performance of flushing cache lines in different status.

of PMEMKV and Streamcluster on DRAM and Optane, respectively.
Table 4 in Section 6.1 provides more details of the workloads. For
PMEMKV, the key size is 20 bytes, and the value size is 256 bytes
(Figure 3a) and 1 KB (Figure 3b). Figure 3c reports Streamcluster
performance.

On Optane PM (Figure 3), all workloads reach their peak per-
formance at a small number of threads, and then the performance
starts degrading. In contrast, performance on DRAM sustains scal-
ing as the concurrency increases. Optane shows lower scalability
than DRAM because the contention at the internal buffer of Optane
and the WPQ in iMC. The increasing performance gap between
DRAM and Optane at a large number of threads reveals that high
frequency of CLF exacerbates the scaling limitation.

We identify two optimization directions to improve CLF per-
formance. First, the adaption in CLF concurrency should be bi-
directional. At a low concurrency level, there is no sufficient write-
back traffic to exploit memory bandwidth so that PM is underuti-
lized. In this scenario, increasing the concurrency to flush cache
lines becomes essential. At a high concurrency level, PM cannot
cope with high CLF rate at the application level, and concurrency
throttling becomes critical. Given the above two optimization direc-
tions, the challenges remain in how to efficiently and timely detect
whether PM is under- or over-utilized? Furthermore, what is the
appropriate concurrency level?

Second, different workload characteristics, such as the value
size in key-value stores and query intensity, could lead to different
concurrency peak. For instance, in PMEMKV, using the 1 KB value
size in Figure 3b reaches the peak point using 12 threads, while using
the 256-byte value size in Figure 3a reaches the peak point using
16 threads. The different concurrency peaks necessitate a dynamic
solution that enables flexible controlling of CLF concurrency.

Table 1: Average dirtiness of flushed cache lines.

Workloads YCSB TPC-CLoad A B C D E F
Dirtiness 0.43 0.55 0.56 0 0.51 0.51 0.47 0.32

The performance impact of cache lines status. We develop
micro-benchmarks to persist data objects of various sizes. Also, we
control the locality and dirtiness of flushed cache blocks of those
data objects, in order to measure the cost of flushing dirty (resident)
cache lines, non-resident cache lines, and clean resident cache lines.
Figure 4 presents the measured overhead of these three CLF cases.

At a small data size, e.g., 64-byte, flushing a clean cache line
resident in the cache hierarchy is significantly cheaper (3.3x) than
flushing a dirty cache line. Such low overhead is because of reduced
overhead in cache coherence directory lookup, and also because of
the elimination of writeback traffic. As a comparison, when flushing
a cache line that has been evicted from the cache hierarchy, i.e.,
non-resident, the cost is much higher than flushing a resident cache
line. The difference between a dirty flush and a cache-miss flush
indicates the cost of looking up the whole cache coherence directory
in our machine is high and overweights the benefit of eliminated
writeback.

The low cost of flushing a clean resident cache line motivates
us to design a proactive flushing mechanism to ‘transform’ dirty
or non-resident flushing into clean-hit flushing ahead of time. The
key idea is to complete the transformation before the latency of
CLF is exposed to the critical path.

Dirtiness of flushed cache lines. We quantify the average
dirtiness of flushed cache lines, denoted as 𝑅𝑑𝑏 , as the ratio between
the modified bytes and the cache line size. Therefore, a workload
with 𝑅𝑑𝑏 cache line dirtiness would waste (1 − 𝑅𝑑𝑏 ) bandwidth
from the cache hierarchy to the memory subsystem. Moreover,
write amplification inside the PM hardware buffer may further
increase the number of clean bytes written back to PM. For instance,
if only one byte in four consecutive cache lines is updated, 256
bytes will be eventually written to Optane PM, because the internal
transactions have a granularity of 256 bytes. Table 1 shows the
results for running YCSB [12] and TPC-C [32] workloads against
Redis. In general, the dirtiness is less than 0.6 in all workloads,
indicating more than half memory bandwidth is wasted for writing
back clean data to PM. Thus, improving cache line dirtiness could
benefit CLF performance on such PM hardware.

4 DESIGN
We design Ribbon to accelerate the CLF mechanism in PM-aware
applications without impacting program correctness and crash
recovery. Ribbon decouples the concurrency control of CLF from
the application. It also proactively transforms cache lines to clean
status. It uses CLF coalescing, an application-specific optimization
for workloads that exhibit low dirtiness in flushed cache lines.

4.1 Decoupled Concurrency Control of CLF
Ribbon decouples CLF from the application and adjusts the level
of CLF concurrency (the number of threads performing CLF) adap-
tively. Ribbon throttles CLF concurrency if contention on PM de-
vices is detected. Conversely, it ramps up CLF concurrency when
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PM bandwidth is underutilized. We illustrate the workflow in Fig-
ure 5.

CLF Decoupling The decoupling design in Ribbon creates a
thin layer (the gray box in Figure 5) between the application and
PM. CLF and fence instructions from the application, such as clwb,
clflushopt, clflush, and sfence, are collected and queued in
this layer. Ribbon uses a group of flushing threads to execute these
intercepted instructions, respecting the order between flush and
fence instructions as in the program order. Therefore, the sequence
of flush and fence is unchanged, and consistent semantics is pre-
served. Furthermore, Ribbon can adapt the CLF concurrency by
changing the number of flushing threads.

Ribbon uses FIFO queues as a coordination mechanism between
the application and flushing threads. Each application thread has
a private FIFO queue, while one flushing thread may work with
multiple FIFO queues. CLFs from an application thread are en-
queued at the head of its queue. At the queue tail, a flushing thread
dequeues and executes CLFs. Ribbon uses a circular buffer to im-
plement the queue, and only exchanges two integers, i.e., the head
and tail indexes, among threads to have a lock-less queue imple-
mentation. Synchronization between the threads is rare because,
on each queue, the application thread only updates the head and
the flushing threads only update the tail.

Assume there are 𝑁 application threads and𝑀 flushing threads.
Each flushing thread handles at most ⌊𝑁 /𝑀⌋ +1 application threads
(queues). Ribbon throttles the CLF concurrency by reducing𝑀 to
be𝑀 < 𝑁 . Conversely, increasing𝑀 to𝑀 > 𝑁 would increase the
CLF concurrency. Separately, a control thread detects performance
bottlenecks in PM and adjusts the number of flushing threads.

Ribbon ensures that the flushing threads execute CLF and fence
instructions in the same order as in the application thread. Each
memory fence instruction in the application thread acts as the
deadline for the flushing threads to finish all CLFs issued before
it. Therefore, CLFs after a fence cannot be executed until CLFs
before the fence are cleared from the queue. When an application
thread issues a memory fence instruction, but there are pending
CLF requests in the queue, Ribbon blocks the application thread.

This interaction is essential for throttling the CLF concurrency and
ensuring program correctness, i.e., reducing the draining rate of
CLFs from the queue, without overflowing the queue.

Determining the concurrency level of CLF. A control thread
monitors the traffic to PM and adjusts the concurrency level of CLF
(𝑁𝑈𝑀𝑡ℎ𝑟 ) at runtime.

The control thread monitors hardware counters in PM at interval
𝑇 to track the write bandwidth to PM DIMMs (𝐵𝑊𝑝𝑚𝑚). System
evaluation shows that when the concurrency level increases, the
bandwidth to PM first increases to a peak and then starts decreas-
ing [25, 43, 56]. 𝐵𝑊𝑝𝑚𝑚 reflects the speed at which the memory
controller drains write requests from the WPQ. When memory con-
tention occurs in the WPQ, reducing the concurrency level would
improve 𝐵𝑊𝑝𝑚𝑚 . We call the concurrency levels below the one that
reaches the peak performance to be the scaling region and above to
be the contention region. The control thread samples 𝐵𝑊𝑝𝑚𝑚 at four
concurrency points to estimate 𝑁𝑈𝑀𝑡ℎ𝑟 for achieving the peak
𝐵𝑊𝑝𝑚𝑚 .

The control thread first samples the bandwidth at the concur-
rency level P1 which is equal to the number of flushing threads that
saturate bandwidth on hardware. P1 is architecture-dependent and
on the Optane PM, system evaluation reveals that the peak write
bandwidth is achieved at four threads [25]. Therefore, 1–𝑃1 threads
in PM-aware workloads have to be in the scaling region. The con-
trol thread records the bandwidth to PM at P1 to be 𝐵𝑊 𝑝𝑚𝑚

1 . Then,
it chooses a sample point at the number of cores (P4) and measures
𝐵𝑊

𝑝𝑚𝑚

4 . On our PM hardware, P4 is equal to 24. Next, samples
are taken at 𝑃2 = 𝑃1 + 1 and 𝑃3 = 𝑃4 − 1, namely 𝐵𝑊

𝑝𝑚𝑚

2 and
𝐵𝑊

𝑝𝑚𝑚

3 . If 𝐵𝑊 𝑝𝑚𝑚

2 is higher than 𝐵𝑊
𝑝𝑚𝑚

1 , and 𝐵𝑊
𝑝𝑚𝑚

4 is also
higher than 𝐵𝑊

𝑝𝑚𝑚

3 , it means that even the maximum parallelism
has not reached the contention region. Thus, the control thread
selects 𝑁𝑈𝑀𝑡ℎ𝑟 to be P4. If 𝐵𝑊 𝑝𝑚𝑚

2 is higher than 𝐵𝑊
𝑝𝑚𝑚

1 , but
𝐵𝑊

𝑝𝑚𝑚

4 is lower than 𝐵𝑊
𝑝𝑚𝑚

3 , it means that the peak is between
P2 and P3. The control thread sets 𝑁𝑈𝑀𝑡ℎ𝑟 to be the intersection
between the two lines connecting P1 to P2 and P3 to P4, respec-
tively. Finally, if 𝐵𝑊 𝑝𝑚𝑚

2 is lower than 𝐵𝑊
𝑝𝑚𝑚

1 , and 𝐵𝑊
𝑝𝑚𝑚

4 is
also lower than 𝐵𝑊

𝑝𝑚𝑚

3 , the control thread selects 𝑁𝑈𝑀𝑡ℎ𝑟 to be
P1. In practice, the number of flushing threads is subject to the num-
ber of idle threads, and contemporary many-core platforms can
provide abundant thread-level parallelism. If there are no enough
idle threads to support 𝑁𝑈𝑀𝑡ℎ𝑟 flushing threads, Ribbon automati-
cally disables concurrency control and regresses to use application
threads to perform CLF.

We sweep all levels of CLF concurrency in all evaluated work-
loads and find that this algorithm can always determine the optimal
concurrency level. Figure 6 reports all workloads (except one phase
in Streamcluster) exhibit a similar trend, i.e., reaching a peak at a
low concurrency level and then decreasing performance as concur-
rency increases. The dashed line and the intersection illustrate the
optimal concurrency level for PMEMKV. Streamcluster contains
two phases of 𝐵𝑊𝑝𝑚𝑚 . The first phase follows the scaling trend of
other applications in Figure 6. In the second phase (shown in Fig-
ure 7), Streamcluster does not enter the contention as its bandwidth
continues increasing. The control thread determines 𝑁𝑈𝑀𝑡ℎ𝑟 to
be the maximum available concurrency.
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Figure 7: PM bandwidth of Streamcluster. The number of applica-
tion threads is 24.

The control thread repeats the above procedure of determining
concurrency level of CLF, if the variation of 𝐵𝑊𝑝𝑚𝑚 is higher than
a threshold, indicating there is a change in execution phases of the
application and there is a need to adjust concurrency level. Based
on our study, the variation threshold should be set between 20%
and 30% of 𝐵𝑊𝑝𝑚𝑚 for best performance. If the threshold is too
low (e.g., less than 20%), Ribbon triggers concurrency throttling
frequently, which causes performance loss. If the threshold is too
high (e.g., more than 30%), Ribbon cannot timely capture the change
of execution phases, which loses opportunities for performance
improvement. We use 20% in Ribbon; We study the sensitivity of
application performance to this parameter in Section 6.3.

The time interval𝑇 to track 𝐵𝑊𝑝𝑚𝑚 has impact on performance.
On the one hand, if𝑇 is too large, infrequent monitoring may fail to
capture bandwidth saturation. On the other hand, if 𝑇 is too small,
runtime overhead is large, thereby amortizing the performance
benefit of concurrency control. We set 𝑇 to one second in Ribbon
to strike a balance between monitoring effectiveness and cost. We
study the sensitivity of application performance to this parameter
in Section 6.3.

4.2 Proactive Cache Line Flushing
Ribbon proactively flushes cache lines to transform cache lines to
clean state. The proactive CLF increases the chance of flushing
a clean cache line in the critical path of the application, which
has lower latency than flushing a dirty cache line. We present the
workflow in Figure 8.

Ribbon leverages the precise address sampling capability in hard-
ware performance counters, e.g., Precise Event-Based Sampling
(PEBS) from Intel processor or Instruction-based Sampling (IBS)
from AMD processor, to collect the virtual memory addresses of
store instructions. If a cache line is found to be updated recently,
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Figure 8: Proactive cache line flushing to improve performance.

Ribbon uses a thread to proactively issue a flush (the thread is
named the proactive thread). Later on, when the application thread
flushes the cache line, it is likely to be in clean status. Note that the
cache blockmay have been evicted by hardware before the proactive
thread flushes it. However, a redundant flush by the proactive thread
has no impact on program correctness. This approach increases the
probability of clean cache lines flushed by the application, which
shortens the latency on the critical path.

The proactive CLF can slightly increase write traffic (see Sec-
tion 6.3). For instance, if a cache block is written multiple times
followed by one CLF in the program, using the proactive CLF may
generate more than one CLF. To avoid the negative impact of extra
write traffic due to the proactive CLF, Ribbon disables it once CLF
concurrency is reduced because of reaching bandwidth bottleneck;
The proactive CLF is re-enabled if CLF concurrency is increased.

Ribbon separates the proactive thread and flushing threads as two
independent groups. The design is synchronization-free between
the proactive thread and flushing threads. The design does not
change which cache lines should be flushed. It also ensures that
the consistency semantics in the program retains because no CLF
is skipped due to the proactive CLF.

4.3 Coalescing Cache Line Flushing
We propose cache line coalescing as an application-specific opti-
mization for workloads that exhibit low dirtiness in flushed cache
lines. An Application is suitable for this optimization if multiple
CLFs in the application meet two requirement: First, the multiple
CLFs occur in proximity in time; Second, the flushed data objects
are coalescable to fewer cache blocks. The first requirement en-
sures crash consistency after CLF coalescing. CLF coalescing delays
those to-be-coalesced CLFs that happen early in the bundle of CLFs
from being coalesced. However, if all CLFs in the bundle happen
sequentially with no other non-coalescing CLFs occurring between
these to-be-coalesced CLFs in the application, delaying the to-be-
coalesced CLFs has no impact on crash consistency. The second
requirement is the necessary condition to have potential perfor-
mance benefits.

Listing 2 shows an example from Redis. Lines 8 and 12 use two
CLFs for persisting newVal and newKey, respectively. Coalescing



Listing 2: An example of CLF coalescing
1 # d e f i n e KEY_LEN 24
2 # d e f i n e VALUE_LEN 100
3 / ∗ The o r i g i n a l code wi thout c o a l e s c i n g ∗ /
4 vo id setGenericCommand ( c l i e n t ∗ c , char ∗ key , char ∗

v a l . . . ) { . . .
5 TX_BEGIN ( s e r v e r . pm_pool ) {
6 char ∗ newVal = al loc_mem (VALUE_LEN ) ;
7 dupSt r ingObjec tPM ( newVal , v a l ) ;
8 f l u s h ( newVal , VALUE_LEN ) ;
9 _mm_sfence ( ) ;
10 char ∗ newKey = al loc_mem ( KEY_LEN ) ;
11 setKeyPM ( c−>db , key , newkey , newVal ) ;
12 f l u s h ( newkey , KEY_LEN ) ;
13 _mm_sfence ( ) ;
14 } TX_ONABORT { . . . } TX_END . . . }
15
16 / ∗ The code with c o a l e s c i n g ∗ /
17 vo id se tGener i cCommand_coa le sc ing ( c l i e n t ∗ c , char ∗

key , char ∗ v a l . . . ) { . . .
18 TX_BEGIN ( s e r v e r . pm_pool ) {
19 char ∗ mem = alloc_mem (VALUE_LEN + KEY_LEN ) ;
20 char ∗ newVal = get_mem ( 0 ) ;
21 dupSt r ingObjec tPM ( newVal , v a l ) ;
22 char ∗ newKey = get_mem (VALUE_LEN ) ;
23 setKeyPM ( c−>db , key , newKey , newVal ) ;
24 f l u s h (mem, VALUE_LEN + KEY_LEN ) ;
25 _mm_sfence ( ) ;
26 } TX_ONABORT { . . . } TX_END . . . }

these CLFs will delay the first CLF. Between these two CLFs, there
are no other CLF. Therefore, the delay of the first CLF still maintains
execution correctness after a restart, i.e., the two CLFs either both
succeed or fail, which is consistent with the original execution.
After the coalescing, the situation that the first CLF succeeds but
the second one fails is impossible, guaranteeing the consistency.

After examining PM-aware applications in Table 4, we find that
in-memory databases, such as PMEMKV and Redis, and customized
PM data indexes, such as Fast&Fair (B+-tree) and Level-Hashing,
are prone to the low dirtiness. Parallel computing codes, such as
streamcluster, caneal, and dedup from Pasec, often do not have
the low dirtiness. Furthermore, we find unaligned CLF and unco-
ordinated CLF are the main reasons for low dirtiness in flushed
cache lines.

The unaligned CLF happens when a persistent data object is
unaligned with cache lines. For example, a persistent data object
is 100 bytes. Ideally, the object should use two cache blocks of
64 bytes. However, the object may be unaligned at the memory
allocation and ended up occupying three cache blocks. Once the
object is updated, three cache blocks, i.e., 192 bytes, have to be
flushed, increasing the number of CLF by 50%. Uncoordinated CLFs
happen when multiple associated data objects are allocated into
separate cache blocks. Here, data objects are associated if they are
always updated together. Therefore, coalescing them into the same
cache blocks will reduce the number of CLFs.

Implementing cache line coalescing requires replacing memory
allocation and combining cache line flushes and memory fences.
This transformation could be done automatically by the compiler. In
practice, we find that automatic conversion is challenging because
even the same application logic can have different implementations
in different applications. Without application knowledge, automatic
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…
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Figure 9: Uncoordinated cache-line flushing in the two-level hash
table in Redis.

transformation is error-prone. Therefore, we provide a simple in-
terface and leverage the programmer’s application knowledge in
implementation.

The remainder of the section uses Redis as an example. We use
a PM-aware version of Redis, i.e., Redis-libpmemobj [22]. As a key-
value store system, Redis provides fast access to key-value pairs.
Each key-value pair includes a unique key ID and their data (value).
For each key-value pair, the key and value objects are allocated
separately on different cache blocks. Figure 9 gives a case where
the value object in a key-value pair is a complex data structure.
This case comes from the secondary indexing in Redis. In this case,
Redis updates the key (i.e., F_n in Figure 9, which is the secondary-
level key) and value (i.e., V_n in Figure 9) together. Coalescing F_n
and V_n objects into a fewer contiguous cache blocks reduces the
number of CLFs.

To coalesce CLFs for Redis, we introduce a new memory allo-
cation mechanism. The old implementation in Redis-libpmemobj
uses the memory allocation API from PMDK’s libpmemobj library,
which does not consider semantics correlation between memory
allocations (i.e., memory allocations for a pair of key and value). In
the new implementation, we introduce a customized memory allo-
cation API that takes an argument indicating whether the memory
allocation is for a key or a value object. In the original implemen-
tation of Redis, the memory allocation for a value object happens
before the memory allocation for the corresponding key object.
Hence, if the memory allocation is for a value object, in our im-
plementation of Redis, the memory allocation not only allocates
memory for the value, but also for the key. The key and value objects
are co-located into continuous cache blocks, which enables CLF
coalescing. If the memory allocation is for a key object, no memory
allocation happens, but the previously allocated memory for the
key object is returned. Also, the new implementation attempts to
avoid unaligned CLF.

4.4 Impact of Ribbon on Program Correctness
PM-aware applications optimized with Ribbon maintain their pro-
gram correctness because their fault models and recovery mech-
anisms remain unchanged. Ribbon does not eliminate any cache
flush or fence instructions, nor changes their order in the original
program. Thus, the original consistency semantics in these pro-
grams are preserved even in the presence of crashes. The advantage
of Ribbon is to reduce the latency of these CLF instructions on
the critical path by improving the bandwidth to PM or increasing



Table 2: Ribbon APIs

API name Description
int ribbon_start(int numAppT, Initialize the runtime system and resource (e.g.,

flushing threads and FIFO queues)
int eleFQueue)
int ribbon_flush(void* addr, Put CLF requests into fluhsing queues
size_t len)
void* ribbon_alloc(size_t len, Memory allocation for coalescing CLF
int type)
int ribbon_stop() Terminate runtime and release resources
int ribbon_fence() Ensure all pending CLF requests are flushed
int ribbon_free(void* addr) Free a memory allocation

the probability of a clean cache line. Although the proactive CLF
may introduce additional cache flushes, they do not occur on the
critical path. Also, changing the state of cache lines has no impact
on the fault model in these PM-aware applications because cache
line eviction and replacement is hardware-managed and outside
the application control. Coalescing multiple cache lines into one
does not eliminate the flush and fence instructions in the program.
However, it can reduce write amplification so that these instruc-
tions could complete at reduced latency. When a crash occurs, each
program will be restored to a consistent state by employing its
original recovery mechanism, e.g., undo/redo logging.

5 IMPLEMENTATION
ProgrammingAPIs. Ribbon is implemented as a user-level library
to provide CLF performance optimization. Ribbon provides a small
set of APIs and is designed to minimize the porting efforts in exist-
ing PM-aware applications and libraries, such as Intel PMDK [23],
Mnemosyne [53], and NVthreads [19]. Table 2 summarizes main
APIs.

ribbon_start() initializes the flushing threads, control thread and
proactive CLF thread. This routine creates a pool of flushing threads
and FIFO queues, and initializes performance counters. This routine
is called only once before main execution phase starts. ribbon_stop()
frees all runtime resources created in ribbon_start(). This routine is
called only once before the end of the main program. ribbon_flush()
and ribbon_fence are used to intercept cache flush and memory
fence calls in the program. ribbon_flush() places a CLF request at the
head of the private FIFO queue of the issuing thread. ribbon_fence()
checks if all pending requests in the FIFO queue have drained.
If not, Ribbon blocks the application thread. ribbon_alloc() and
ribbon_free() are used to replace the memory allocation and free
APIs in the pmemobj library in Redis. The two APIs are used to
allocate and free memory from/to PM for coalescing CLF.

Using the above APIs to replace CLF and memory fence can
be done automatically by a compiler. To enable CLF coalescing
in Redis, we make modifications manually. The statistics of code
modification given by git diff is: 10 files changed, 293 insertions(+),
64 deletions(-).

System optimization. Ribbon includes several optimization
techniques to enable high performance. We use FIFO queues to
coordinate between the application thread and flushing threads.
When the number of flushing threads is more than the number of
application threads, multiple flushing threads fetch CLF requests

Table 3: Experiment Platform Specifications

Processor 2nd Gen Intel R○ Xeon R○ Scalable processor
Cores 2.4 GHz (3.9 GHz Turbo frequency) × 24 cores (48 HT)

L1-icache private, 32 KB, 8-way set associative, write-back
L1-dcache private, 32 KB, 8-way set associative, write-back
L2-cache private, 1MB, 16-way set associative, write-back
L3-Cache shared, 35.75 MB, 11-way set associative, non-inclusive write-back
DRAM 16-GB DDR4 DIMM x 6 per socket
PM 128-GB Optane DC NVDIMM x 6 per socket

Interconnect Intel R○ UPI at 10.4 GT/s, 10.4GT/s, and 9.6 GT/s

Table 4: A summary of evaluated workloads

Application Program Type PM Access Layer
PMEMKV Database Library/PMDK(undo&redo)
Redis Database Library/PMDK(undo&redo)

Fast&Fair (B+-tree) PM-aware index Native (add custom assembly instructions)
Level-Hashing PM-aware index Native (add custom assembly instructions)
Streamcluster Lock-based parallel code Library/NVthreads (redo)

Canneal Lock-based parallel code Library/NVthreads (redo)
Dedup Lock-based parallel code Library/NVthreads (redo)

from one FIFO queue, which raise contention. To avoid the con-
tention, we dedicate one flushing thread to fetch CLF requests from
the queue and then assigns them to other flushing threads. Our im-
plementation uses the most recent clwb instruction to flush cache
blocks.

6 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of Ribbon.

6.1 Methodology
Experiment platform. We evaluate Ribbon on the Intel Optane
persistentmemory. Table 3 describes the configuration of the testbed.
The system consists of two sockets, each with two integrated mem-
ory controllers (iMCs) and six memory channels. Each DRAM
DIMM has 16 GB capacity while a PM DIMM has 128 GB capacity.
In total, the system has 192 GB DRAM, and 1.5 TB Intel Optane DC
persistent memory. We use one socket for performance study to
eliminate NUMA effects. The persistent domain starts from iMC,
i.e., a memory fence only returns after the flushed data has reached
iMC.

Applications with various PM access interfaces. We select
seven representative PM-aware workloads from diverse domains,
including in-memory database (PMEMKV [21] and Redis [1]), PM-
aware index data structures (Fast&Fair [20] and Level-Hashing [63])
and C++ parallel computing applications (Streamcluster, Canneal,
and Dedup from Parsec benchmark suite [5]). For PMEMKV, we
use its cmap storage engine.

These applications also use different interfaces to access PM,
such as high-level PM-aware libraries and native direct interaction.
Table 4 summarizes the application characteristics and PM access
interfaces for each workload. PMEMKV and Redis use libpmemobj
from Intel PMDK [23] library to access and persist data. libpmemobj
is a logging-based transaction system, which implements undo log-
ging to protect user data and redo logging to protect metadata. The
Parsec applications guarantee data consistency by the NVthreads
library [19]. NVthreads supports a redo-logging for multi-threaded



C/C++ programs. The two PM-aware index data structures use cus-
tom assembly instructions to flush data from the cache to PM, and
add fences to ensure the order between these flushes and other
application accesses to the data.

6.2 Overall Performance
We evaluate each workload at a low and high thread-level paral-
lelism (using 4 and 24 application threads respectively). For Redis,
we cannot change the number of threads to run it, because it is
a single-thread server; To evaluate Redis, we change the number
of client threads (using 4 and 24). PMEMKV, Redis, Fast&Fair, and
Level-Hashing run the dbench benchmark to execute one hundred
million randomfill operations. The key size is 20 bytes, and three
value sizes (256 bytes, 1 KB, and 4 KB) are tested. Streamcluster,
Canneal, and Dedup use the Native input problem in [19].

Ribbon demonstrates its generality in these PM-aware frame-
works that employ different fault models, recovery mechanisms,
and interfaces to access PM. Ribbon achieves performance improve-
ment in all seven workloads at different application concurrency,
without changing any CLF policy. Figures 10 and 11 present the
performance of Ribbon (w. cc+pclf ) in comparison to the origi-
nal implementation (baseline). At four application threads, Ribbon
increases the concurrency of CLF and achieves up to 17.6% im-
provement (9.3% on average). In contrast, at 24 application threads,
Ribbon detects memory contention and improves the performance
by up to 49.8% (20.2% on average).

Ribbon brings performance benefits to all tested workloads.
Among them, Ribbon delivers more performance benefits to those
that use large value sizes (1 KB and 4 KB in our evaluation) and
high application threads concurrency (24 application threads in our
evaluation). These cases can result in memory contention or lack
of CLF parallelism, which provides more opportunity to Ribbon.

We analyze the effectiveness of each optimization technique by
breaking down their contribution to performance improvement.
In particular, we apply the concurrency control first (w. cc) and
measure performance improvement. Then, on top of it we apply
the proactive CLF (w. pclf ) and measure performance improve-
ment. Figures 12 and 13 presents the breakdown with four and 24
application threads.

We find that the concurrency control and proactive CLF con-
tribute comparably to the performance improvement at a low num-
ber of application threads (Figures 12). At a large number of ap-
plication threads, most performance improvement attribute to the
concurrency control technique (Figure 13). The difference is because
the contention on PM devices increases when CLFs are issued by
more threads, which compete in inserting flushed data to WPQ (the
start of the persistent domain). Therefore, CLF tends to create a
performance bottleneck at a large number of application threads,
which is addressed by the concurrency control. Note that Redis
also benefits substantially from the proactive CLF even at the high
number of client threads because it is a single-threaded server, and
CLF contention is not its bottleneck.

6.3 Sensitivity Evaluation
We use Streamcluster with Native input problem for sensitivity
study because this workload has execution phases with various

Table 5: Sensitivity study on bandwidth variance threshold and
monitor interval (App threads = 24).

BW Variance Threshold Improvement
10% 7.4%
20% 16.5%
30% 17.3%
50% 14.6%

(a)

Interval (sec) Improvement
0.1 9.7%
1 16.5%
5 13.8%
10 11.3%

(b)

Table 6: Sensitivity study on proactive CLF

#app threads 1 2 4 8 12 16 17-24
Improvement 5.4% 6.6% 7.5% 6.3% 4% 2.1% 0

Normalized BW cost 6.9% 6.3% 5.6% 7.2% 8.4% 8.9% 0

bandwidth consumption, imposing challenges on concurrency con-
trol and proactive CLF.

Sensitivity on bandwidth variance threshold. We use four
thresholds for study. Table V(a) shows the results and the tradeoff
between low and high threshold values. 20%-30% leads to the largest
improvement (Ribbon uses 20%).

Sensitivity on monitor interval 𝑇 .We use four intervals for
study. Table V(b) shows the improvement achieved at various in-
terval values. The highest improvement is achieved at one second.
(Ribbon uses one second for 𝑇 ).

Sensitivity on proactive CLF. We evaluate how the proactive
CLF responses given various bandwidth consumption of the appli-
cation. Ribbon should avoid the negative impact of the proactive
CLF on memory bandwidth. To evaluate the proactive CLF itself,
we disable the concurrency control, but integrate the algorithm
of determining concurrency level into the proactive CLF to detect
bandwidth contention. When the concurrency level needs to be
reduced according to the algorithm, we do not change concurrency
but disable the proactive CLF. We sweep the number of application
threads from one to 24. We report the bandwidth consumption of
the proactive CLF normalized to the total bandwidth consumption
in Table 6. We report application performance normalized to that
without the proactive CLF.

The proactive CLF improves the performance by 2.1%-7.5% when
the number of applications increases from one to 16. In these cases,
the proactive CLF takes a small portion (5.6%-8.9%) of the total
bandwidth consumption. When the application uses more than
16 application threads, the proactive CLF is disabled because of
the detection of bandwidth contention. As a result, there is no
performance improvement.

6.4 Heavily Loaded System Evaluation
We evaluate Ribbon on a heavily loaded machine to understand the
impact of Ribbon on application performance. In this evaluation,
we co-run three different application combinations. For each combi-
nation, we run two applications, each using 24 application threads.
PMEMKV, Level-Hashing, and Fast&Fair run dbench to execute one
hundred million randomfill operations and use 256 bytes as the
value size. Streamcluster and Canneal use the native input problem.
We report the experimental results in Figure 14.

We observe that all workloads can benefit from Ribbon signifi-
cantly. Comparedwith the systemwithout Ribbon, Ribbon improves
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Figure 10: Overall performance (App threads = 4).
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Figure 11: Overall performance (App threads = 24).
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Figure 12: A breakdown of performance improvement from the con-
currency control and proactive CLF (App threads = 4).
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Figure 13: A breakdown of performance improvement from the con-
currency control and proactive CLF (App threads = 24).

the performance of PMEMKV and Streamcluster by 20.4% and 27.7%,
respectively. When Level-Hashing and Canneal co-run on the same
machine, Ribbon speeds up the two applications by 17.3% and 13.9%,
respectively. Fast&Fair and PMEMKV co-run achieve the most im-
provement from Ribbon, reaching 45.2% and 25.6% improvement,
respectively. When multiple applications share a machine, Ribbon
predicts the optimal system-wide CLF concurrency according to
the method described in Section 4.1. Ribbon decides the number of
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Figure 14: Heavily loaded system

flushing threads for each application based on the CLF throughput
ratio of the two applications.

6.5 Coalescing of Cache Line Flushing
We evaluate the effectiveness of CLF coalescing in Redis running
YCSB [13] and TPC-C [32] benchmarks. For YCSB, we use its default
configuration. The key and value sizes are 24 bytes and 100 bytes,
respectively. We run 24 clients threads.

Our first evaluation compares the dirtiness of flushed cache lines
with and without CLF coalescing. Table 7 presents the results. The
baseline version results in 0.32 to 0.56 cache line dirtiness in tested
workloads, except for the read-only workloads (YCSB-C). After the
optimization, the cache line dirtiness is increased to 0.4-0.68. For
each workload, the coalescing effectively reduces traffic and CLF
by 20%-45%.

We quantify the impact of the improved cache line dirtiness on
the overall performance, as reported in Figure 15. The increased
dirtiness results in 18% to 33% performance improvement (w. coalesc-
ing) for write-intensive workloads. For the read-mostly workloads,
performance improvements are less than write-based workloads,
because these read-only workloads generate far less write traffic.



Table 7: Quantify the dirtiness of flushed cache lines in Redis.

Workloads YCSB TPC-CLoad A B C D E F
w.o coalescing 0.43 0.55 0.56 0 0.51 0.51 0.47 0.32
w. coalescing 0.62 0.66 0.67 0 0.63 0.63 0.68 0.40

+4.9%

+2.3%

+4.1%

+5.4%

+33.3%

+15.4%

+22.8%

+18.1%

0K

20K

40K

60K

80K

YCSB-Load YCSB-A YCSB-F TPC-C

Th
ro

u
gh

o
u

t 
(o

p
s/

se
c)

baseline
w. (cc+pclf)
w. coalescingb

et
te

r

(a) Write-intensive workloads

+0.5% +0%
+0.7%

+0.5%

+1.2% +0% +3.2%

+2.9%

0K

30K

60K

90K

120K

YCSB-B YCSB-C YCSB-D YCSB-E

Th
ro

u
gh

o
u

t 
(o

p
s/

se
c)

baseline
w. (cc+pclf)
w. coalescingb

et
te

r

(b) Read-mostly workloads

Figure 15: The performance improvement by the CLF coalescing.

We also compare the CLF coalescing technology with the combina-
tion of the concurrency control and proactive CLF (w. cc+pclf ). We
observe that the CLF coalescing achieves 5.3x higher performance
improvements than the combination. This performance improve-
ment highlights the effectiveness of the CLF coalescing.

7 RELATEDWORK
Persistencymodels have been proposed to characterize and direct
CLF. Pelley et al. [42] introduce strict and relaxed persistency and
consider persistency models as an extension to memory consistency
model. They propose strict, epoch, and strand persistency models
and provide a persistent queue implementation. Other works [15,
24, 30, 52, 62] propose various optimizations to relax the constraints
on persistence ordering. Ribbon is generally applicable to various
persistency models.

CLF-oriented optimizations. Lazy Persistency [2] avoids ea-
ger cache flushing and relies on natural eviction from the cache
hierarchy to persist data. Their solution detects persistency fail-
ures by calculating the checksum of each persistency region. This
approach trades off rare persistency failure with a complex recov-
ery procedure. NV-Tree [57] quantifies that CLF causes over 90%
persistency cost in persistent B+-tree data structure. They propose
to decouple tree leaves from internal nodes and only maintain
the persistency of leaf nodes. In-cacheline log [10] supports fine-
grained checkpointing that writes the cache hierarchy to PM at
the beginning of each epoch. They place undo log and its logged
data structure in the same cache line to reduce CLF. Link-free and
soft algorithms [64] implement a durable concurrent set that only
persists set members but avoids persisting pointers to eliminate un-
necessary CLF. Software Cache [36] implements a resizable cache
to combine writebacks and reduce CLF. Hardware modifications in
the cache hierarchy and new instructions [39, 49] are also proposed
to reduce the latency of CLF. Also, some cache designs use (relaxed)
non-volatile memories [44, 50, 51], which naturally eliminates CLF.

Many other efforts that use CLF to enable crash consistency pro-
vide solutions in PM-aware programming models [7, 19], language-
level persistency [18, 29]. Our solution is generally applicable to
most of the existing software interfaces as their building block relies

on CLF. Unlike hardware-based solutions, we do not change hard-
ware. We use commonly available hardware counters on existing
architectures. We summarize software and hardware-based solu-
tions, as well as optimizations for concurrency controls as follows.

System software, such as file systems PMFS [15] and BPFS [11],
introduce a buffered epoch persistency model. Persistent opera-
tions within an epoch can be reordered to improve the persist
concurrency, while orders of persists across epochs are enforced.
SCMFS [54] and NOVA [55] are PM-aware file systems with failure-
atomic, scalability optimizations.

Libraries, such as Mnemosyne [52] and NV-Heaps [9], support
programmer’s annotation of persistent data structures.Mnemosyne [52]
keeps a per-thread log for improving concurrency and uses stream-
ing writes to PM. NV-Heaps [9] provides type-safe pointers and
garbage collection for failure atomicity on PM. Kamino-tx [38] and
Intel’s PMDK [23] enable transactional updates to PM.

Hardware-based solutions extend existing instruction sets [26,
31, 48], modify cache hierarchy or add new interfaces to memory
subsystems [27, 62], to provide low-overhead support for crash
consistency on PM. Recently, works that rely on a hybrid of DRAM
and PM memory subsystem [37, 41, 47] to speedup logging into
DRAM and persist later to PM off the critical path.

Concurrency control has been studied on GPU and CPU to
improve performance. Kayiran et al. [28] propose a mechanism
to balance the system-wide memory and interconnect congestion
and dynamically decide the level of GPU concurrency. Li et al. [33]
reduce thread-level parallelism to mitigate page thrashing, which
brings significant pressure on memory management, on Unified
Memory. On the Optane architecture, Yang et al. [56] identify con-
tention on a single DIMM, when a large number of threads access it.
Their work proposes using non-interleaved memory mapping onto
PM and binds each DIMM to a specific thread to avoid contention.
Our approach requires no modification in virtual memory mapping
and can dynamically adjust concurrency without statically binding
NVDIMMs to threads. Curtis-Maury et al. [14] and Li et al. [34, 35]
use performance models to select thread-level or process-level con-
currency for best performance on CPU. Our design does not use
performance models because and provides focused guidance on
CLF.

8 CONCLUSIONS
CLF is critical for ensuring data consistency in persistent memory.
It is a building block for many PM-aware applications and systems.
However, the high overhead of CLF creates a new “memory wall”
unseen in the traditional volatile memory. We analyze the perfor-
mance of CLF in diverse PM-aware workloads on PM hardware.
We design and implement Ribbon to optimize CLF mechanisms
through a decoupled concurrency control and proactive CLF to
change cache line status. Ribbon also uses cache line coalescing
as an application-specific solution for those with low dirtiness in
flushed cache lines, achieving an average 13.9% improvement (up
to 33.3%). For a variety of workloads, Ribbon achieves up to 49.8%
improvement (14.8% on average) of the performance.

ACKNOWLEDGMENT
We thank Intel and the anonymous reviewers for their constructive comments. This work was par-
tially supported by U.S. National Science Foundation (CNS-1617967, CCF-1553645 and CCF1718194).
This researchwas supported by the Exascale Computing Project (17-SC-20-SC). LLNL-CONF-808913.



REFERENCES
[1] 2019. Redis. http://redis.io/.
[2] M. Alshboul, J. Tuck, and Y. Solihin. 2018. Lazy Persistency: A High-Performing

and Write-Efficient Software Persistency Technique. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture.

[3] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. 2015. Let’s talk about
storage & recovery methods for non-volatile memory database systems. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of
Data. ACM, 707–722.

[4] Katelin A Bailey, Peter Hornyack, Luis Ceze, Steven D Gribble, and Henry M
Levy. 2013. Exploring storage class memory with key value stores. In Proceedings
of the 1st Workshop on Interactions of NVM/FLASH with Operating Systems and
Workloads. ACM, 4.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’08). ACM, New York, NY, USA, 72–81. https:
//doi.org/10.1145/1454115.1454128

[6] J.L Carlson. 2013. Redis in Action. In Manning Publications: Greenwich.
[7] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. 2014. Atlas: Leverag-

ing locks for non-volatile memory consistency. In ACM SIGPLAN Notices, Vol. 49.
ACM, 433–452.

[8] Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile main memory.
Proceedings of the VLDB Endowment 8, 7 (2015), 786–797.

[9] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K Gupta,
Ranjit Jhala, and Steven Swanson. 2012. NV-Heaps: making persistent objects
fast and safe with next-generation, non-volatile memories. ACM Sigplan Notices
47, 4 (2012), 105–118.

[10] NachshonCohen, David TAksun, Hillel Avni, and James R Larus. 2019. Fine-Grain
Checkpointing with In-Cache-Line Logging. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 441–454.

[11] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Benjamin
Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through byte-addressable,
persistent memory. In Proceedings of the ACM SIGOPS 22nd symposium on Oper-
ating systems principles. ACM, 133–146.

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing.

[13] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. ACM, 143–154.

[14] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S. Nikolopoulos,
Bronis R. de Supinski, and Martin Schulz. 2008. Prediction models for multi-
dimensional power-performance optimization on many cores. In International
Conference on Parallel Architectures and Compilation Techniques.

[15] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System software for persistent
memory. In Proceedings of the Ninth European Conference on Computer Systems.
ACM, 15.

[16] Pradeep Fernando, Ada Gavrilovska, Sudarsun Kannan, and Greg Eisenhauer.
2018. NVStream: Accelerating HPC Workflows with NVRAM-based Transport
for Streaming Objects. In Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’18).

[17] E. R. Giles, K. Doshi, and P. Varman. 2015. SoftWrAP: A Lightweight Framework
for Transactional Support of Storage Class Memory. In 2015 31st Symposium on
Mass Storage Systems and Technologies.

[18] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Pe-
ter M Chen, and Thomas F Wenisch. 2018. Persistency for synchronization-free
regions. In ACM SIGPLAN Notices, Vol. 53. ACM, 46–61.

[19] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. 2017. NVthreads: Practical persistence for multi-threaded appli-
cations. In Proceedings of the Twelfth European Conference on Computer Systems.
ACM, 468–482.

[20] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018. En-
durable transient inconsistency in byte-addressable persistent b+-tree. In 16th
{USENIX} Conference on File and Storage Technologies ({FAST} 18). 187–200.

[21] Intel. [n.d.]. Key/Value Datastore for Persistent Memory. https://github.com/
pmem/pmemkv.

[22] Intel. [n.d.]. Redis, enhanced to use Persistent Memory - limited prototype.
https://github.com/pmem/redis/tree/3.2-nvml.

[23] Intel. 2014. Persistent Memory Development Kit. http://pmem.io
[24] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-atomic persis-

tent memory updates via JUSTDO logging. ACM SIGARCH Computer Architecture
News 44, 2 (2016), 427–442.

[25] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen

Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module. CoRR abs/1903.05714 (2019).

[26] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. [n.d.]. Efficient
Persist Barriers for Multicores. In Proceedings of the 48th International Symposium
on Microarchitecture.

[27] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017. ATOM:
Atomic durability in non-volatile memory through hardware logging. In 2017
IEEE International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 361–372.

[28] Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog, Rachata
Ausavarungnirun, Mahmut T Kandemir, Gabriel H Loh, Onur Mutlu, and Chita R
Das. 2014. Managing GPU concurrency in heterogeneous architectures. In 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 114–
126.

[29] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M Chen,
Satish Narayanasamy, and Thomas F Wenisch. 2017. Language-level persistency.
In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 481–493.

[30] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F Wenisch.
2016. High-performance transactions for persistent memories. ACM SIGPLAN
Notices 51, 4 (2016), 399–411.

[31] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen, and
T. F. Wenisch. 2016. Delegated persist ordering. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[32] Scott T. Leutenegger and Daniel Dias. 1993. A Modeling Study of the TPC-C
Benchmark. In SIGMOD Record.

[33] Chen Li, Rachata Ausavarungnirun, Christopher J Rossbach, Youtao Zhang, Onur
Mutlu, YangGuo, and Jun Yang. 2019. A Framework forMemoryOversubscription
Management in Graphics Processing Units. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 49–63.

[34] Dong Li, Bronis de Supinski, Martin Schulz, Dimitrios S. Nikolopoulos, and
Kirk W. Cameron. 2010. Hybrid MPI/OpenMP Power-Aware Computing. In
International Parallel and Distributed Processing Symposium.

[35] Dong Li, Dimitrios S. Nikolopoulos, Kirk W. Cameron, Bronis de Supinski, and
Martin Schulz. 2010. Power-Aware MPI Task Aggregation Prediction for High-
End Computing Systems. In International Parallel and Distributed Processing
Symposium.

[36] P. Li, D. R. Chakrabarti, C. Ding, and L. Yuan. 2017. Adaptive Software Caching
for Efficient NVRAM Data Persistence. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

[37] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin
Zheng, and Jinglei Ren. 2017. DudeTM: Building durable transactions with
decoupling for persistent memory. In ACM SIGARCH Computer Architecture
News, Vol. 45. ACM, 329–343.

[38] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou, Ram-
natthan Alagappan, Karin Strauss, and Steven Swanson. 2017. Atomic in-place
updates for non-volatile main memories with kamino-tx. In Proceedings of the
Twelfth European Conference on Computer Systems. ACM, 499–512.

[39] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M Swift, Haris Volos, and
Kimberly Keeton. 2017. An analysis of persistent memory use with WHISPER.
In ACM SIGARCH Computer Architecture News, Vol. 45. ACM, 135–148.

[40] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R.
Chakrabarti, and Michael L. Scott. 2017. Dalí: A Periodically Persistent Hash Map.
In 31st International Symposium on Distributed Computing (DISC 2017) (Leibniz
International Proceedings in Informatics (LIPIcs)).

[41] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory. In Proceedings of the 2016 International Conference on
Management of Data. ACM, 371–386.

[42] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory Persis-
tency. In Proceeding of the 41st Annual International Symposium on Computer
Architecuture.

[43] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. 2019. System Evaluation
of the Intel Optane Byte-addressable NVM. In Proceedings of the International
Symposium on Memory Systems. ACM. https://doi.org/10.1145/3357526.3357568

[44] Mitchelle Rasquinha, Dhruv Choudhary, Subho Chatterjee, SaibalMukhopadhyay,
and Sudhakar Yalamanchili. 2010. An energy efficient cache design using spin
torque transfer (STT) RAM. In Proceedings of the 16th ACM/IEEE international
symposium on Low power electronics and design. ACM, 389–394.

[45] Jie Ren, Kai Wu, and Dong Li. 2018. Understanding Application Recomputabil-
ity without Crash Consistency in Non-Volatile Memory. In Proceedings of the
Workshop on Memory Centric High Performance Computing (MCHPC’18).

[46] Jie Ren, Kai Wu, and Dong Li. 2020. Exploring Non-Volatility of Non-Volatile
Memory for High Performance Computing Under Failures. In 2017 IEEE Interna-
tional Conference on Cluster Computing.

[47] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu. 2015. ThyNVM: Enabling
Software-transparent Crash Consistency in Persistent Memory Systems. In 2015

http://redis.io/
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://github.com/pmem/pmemkv
https://github.com/pmem/pmemkv
https://github.com/pmem/redis/tree/3.2-nvml
http://pmem.io
https://doi.org/10.1145/3357526.3357568


48th Annual IEEE/ACM International Symposium on Microarchitecture.
[48] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. 2017.

Proteus: A flexible and fast software supported hardware logging approach for
nvm. In 2017 50th Annual IEEE/ACM International Symposium onMicroarchitecture
(MICRO). IEEE, 178–190.

[49] Seunghee Shin, James Tuck, and Yan Solihin. 2017. Hiding the long latency
of persist barriers using speculative execution. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 175–186.

[50] Clinton W Smullen, Vidyabhushan Mohan, Anurag Nigam, Sudhanva Guru-
murthi, and Mircea R Stan. 2011. Relaxing non-volatility for fast and energy-
efficient STT-RAM caches. In 2011 IEEE 17th International Symposium on High
Performance Computer Architecture. IEEE, 50–61.

[51] Zhenyu Sun, Xiuyuan Bi, Hai Helen Li, Weng-Fai Wong, Zhong-Liang Ong,
Xiaochun Zhu, and Wenqing Wu. 2011. Multi retention level STT-RAM cache de-
signs with a dynamic refresh scheme. In proceedings of the 44th annual IEEE/ACM
international symposium on microarchitecture. ACM, 329–338.

[52] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Light-
weight persistent memory. In ACM SIGARCH Computer Architecture News, Vol. 39.
ACM, 91–104.

[53] H. Volos, A. J. Tack, and M. M. Swift. 2011. Mnemosyne: Lightweight Persistent
Memory. In Architectural Support for Programming Languages and Operating
Systems.

[54] Xiaojian Wu and AL Reddy. 2011. SCMFS: a file system for storage class memory.
In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 39.

[55] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In Proceedings of the 14th Usenix
Conference on File and Storage Technologies (FAST’16).

[56] Jian Yang, Juno Kim,Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
2020. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory.
In 18th USENIX Conference on File and Storage Technologies (FAST 20).

[57] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: reducing consistency cost for NVM-based single
level systems. In 13th {USENIX} Conference on File and Storage Technologies
({FAST} 15). 167–181.

[58] S. Yang, K. Wu, Y. Qiao, D. Li, and J. Zhai. 2017. Algorithm-Directed Crash Con-
sistence in Non-volatile Memory for HPC. In 2017 IEEE International Conference
on Cluster Computing.

[59] P. Zardoshti, T. Zhou, Y. Liu, and M. Spear. 2019. Optimizing Persistent Memory
Transactions. In 2019 28th International Conference on Parallel Architectures and
Compilation Techniques (PACT).

[60] Lu Zhang and Steven Swanson. 2019. Pangolin: A Fault-tolerant Persistent
Memory Programming Library. In Proceedings of the 2019 USENIX Conference on
Usenix Annual Technical Conference (USENIX ATC ’19).

[61] Yiying Zhang and Steven Swanson. 2015. A study of application performance
with non-volatile main memory. In 2015 31st Symposium on Mass Storage Systems
and Technologies (MSST). IEEE, 1–10.

[62] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. 2013.
Kiln: Closing the Performance Gap between Systems with and without Persistent
Support. In MICRO.

[63] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-optimized and high-performance
hashing index scheme for persistent memory. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18). 461–476.

[64] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank.
2019. Efficient lock-free durable sets. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 128.


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Persistent Memory Architecture
	2.2 Cache Line Flushing
	2.3 Optimization of Cache Line Flushing

	3 Performance Analysis of CLF
	4 Design
	4.1 Decoupled Concurrency Control of CLF
	4.2 Proactive Cache Line Flushing
	4.3 Coalescing Cache Line Flushing
	4.4 Impact of Ribbon on Program Correctness

	5 Implementation
	6 Experimental Results
	6.1 Methodology
	6.2 Overall Performance
	6.3 Sensitivity Evaluation
	6.4 Heavily Loaded System Evaluation
	6.5 Coalescing of Cache Line Flushing

	7 Related Work
	8 Conclusions
	References

