Enabling Faster NGS Analysis on Optane-based Heterogeneous
Memory

Jiaolin Luo
jluo38@ucmerced.edu
University of California, Merced

Jie Ren, Kai Wu
{jren6,kwud2}@ucmerced.edu
University of California, Merced

ABSTRACT

Next-Generation Sequencing (NGS) analysis technologies are
a pioneer approach for genome sequencing. The computation of
NGS analysis exhibits a unique pattern, in which the execution
requests a high density of small I/Os in the process de novo genome
assembly. The small I/Os can have a huge impact on performance
and delineate the sequencing performance. To solve the problem
caused by small I/Os, we leverage the byte-addressable feature of
emerging persistent memory, which has largely transformed the
computation architectures of HPC. We first conduct experiments
to study the impact of persistent memory on NGS analysis. Fur-
thermore, we propose an optimization mechanism, which converts
POSIX read/write calls to pure memory LOAD/STORE instructions
at runtime, to significantly advance the I/O efficiency. Our evalua-
tion demonstrates the effectiveness of the optimization mechanism,
in which we achieve a performance improvement by 31%.

1 INTRODUCTION

NGS analysis, e.g., the state-of-the-art Sentieon software [1],
drives scientific researches in multifarious disciplines, in particular
for biology and clinical medicine researches. In the process de novo
assembly of NGS analysis such as WGS and WES, the execution
issues a large number of consecutive and small I/Os with the sizes
of a few cache lines (as illustrated in Figure 1), in which the I/O
performance poses a bottleneck of the execution of NGS analysis
pipelines.

50000
1/0 calls ---- Average

40000 < peak 36758
30000
20000
average 11209

10000

of 1/O calls per second

0
0 1682 3364 5046 6728

Time (seconds)
Figure 1: The number of read and write IO calls in NGS analysis.

One fundamental design assumption of Linux I/O stack — con-
sisting of page cache, vfs layer, file systems, block layer and block
drivers - is that the backing storage devices are block-addressable,
in which the I/O granularity is known as sector and the data ac-
cesses are through the DMA mechanism transferring sectors to
or from page cache. Such assumption is incorrect if the backing
devices are byte-addressable and without the need of transferring
data through DMA mechanism. In order to request DMA I/Os from

Luanzheng Guo
lguo4@ucmerced.edu
University of California, Merced

Dong Li
dli35@ucmerced.edu
University of California, Merced

or to devices and maintain file system metadata, existing Linux
file I/O mechanisms (e.g., POSIX APIs read and write) involve in
switching processor ring level from user context to kernel context,
which can further incur extra overhead on I/O path. As a result,
existing I/O stack will obscure the advantages of persistent memory
and poses a bottleneck while employing persistent memory into
HPC architectures.

Emerging persistent memory has profound impact on established
HPC architectures and have revolutionized the design of HPC soft-
ware from multiple aspects. We seek to leverage the benefits of
emerging persistent memory (e.g., Intel’s Optane DC) to optimize
the efficiency of I/O stack in NGS analysis. First, persistent memory
is byte-addressable and can transfer data without the involvement
of DMA operations. Second, in terms of per GB price, the price
of Intel’s Optane DC is merely 50% of server level DRAM mem-
ory. Third, the available capacity of persistent memory can easily
reach up to 3TB per server. Fourth, the memory access latency of
persistent memory still remains comparable to DRAM memory.

The benefits of persistent memory enable HPC applications to
run with larger and cheaper extended memory. Nevertheless, the
performance improvement of NGS analysis from simply configur-
ing persistent memory as faster local storage is infinitesimal, in
which the execution is I/O intensive (as illustrated in Figure 1). The
overhead of the I/O stack in operating system hides the benefits of
persistent memory.

We first conduct experiments to answer the following concerns
in NGS analysis:

e Q1:Is I/O a bottleneck?
e Q2: What is the impact of persistent memory?
e Q3: Why I/O is slow on persistent memory?

In addition, we exploit the byte-addressable feature of persistent
memory to shorten the length of I/O stack in NGS analysis through
converting POSIX read/write calls to memory LOAD/STORE in-
structions at runtime.

Table 1: Experiment Platform Specifications

Software Ubuntu 18.04 with Linux kernel version 5.4.24
Sentieon Version 201911
'WGS fastq reads Project RM8398 of NA12878

WGS reference genome | HG38
Processor Intel® Xeon® Gold 6252N CPU @ 2.30GHz
DRAM six 16-GB DDR4 DIMM s X 2 sockets (192 GB in total)
PM six 128-GB Optane DC NVDIMM:s X 2 sockets (1.5 TB in total)
Storage Intel® D3-54510 SSD 480GB

Conference’20, XX 2020, XXX, XX, USA

(a) The I/O throughout speedup of memory LOAD over POSIX read

o o
g X

= o
x &

128B 256B 512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB
(b) The I/O throughout speedup of memory STORE over POSIX write

-
=3
K

1/O throughout speedup
IS
5

N
S
B

X

T T T T T T T T T T T T T T
1288 256B 512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB
1/0 size

Figure 2: The I/O throughout speedup of memory LOAD/STORE in-
structions over POSIX read/write with respect to different IO sizes.

2 CHARACTERIZATION

We conduct experiments — denoted as A, B and C - to answer
the three concerns (Q1-Q3) of Section 1, in which the experiment
setup is illustrated in Table 1.

Experiment A: Is I/O a bottleneck? We use Linux perf to
collect the statistics of I/O system calls in state-of-the-art NGS
analysis software Sentieon.

Figure 1 shows the trends of the number of POSIX read/write
calls across the execution. The dense I/O spikes range from 20000
to 30000 calls per second and approach to the maximum random
small IOPS of installed SSD.

The high I/O numbers in Figure 1 and analysis demonstrate the
I/O stack poses a bottleneck in the execution of NGS analysis.

Experiment B: The impact of Optane on execution time.
To mitigate the impact from I/O stack as shown in experiment A,
will that make any difference if we simply store files on faster
storage such as DRAM memory disk or Optane memory disk? The
answer is negative.

We evaluate the Sentieon performance on DRAM-only and Optane-
only respectively, where DRAM and Optane are configured as main
memory accordingly. In addition, we also evaluate the Sentieon per-
formance while sequencing data and intermediate files are on local
Solid State Disk (SSD), DRAM memory disk and Optane memory
disk respectively.

Table 2 shows the impact of persistent memory Intel’s Optane
DC on the execution of NGS analysis. We have two findings: (1)
The execution of Optane as main memory is 2.7 times slower than
the execution of DRAM as main memory; (2) The execution time
of Optane as local storage, DRAM as local storage and SSD as local
storage has no patent performance difference.

One reasonable explanation might justify the findings is that the
Linux I/O stack is inefficient as we have analyzed in Section 1. We
will further explore the causes in next experiment.

Experiment C: Why I/O is slow on persistent memory? We
devise a micro benchmark to compare the I/O throughput speedup
of pure memory LOAD/STORE instructions over traditional POSIX
read/write calls.

Table 2: The impact of Optane on the performance of Sentieon.

Main memory | Data storage Execution time (minutes)
DRAM SSD 120
DRAM DRAM memory disk | 120
DRAM Optane memory disk | 120
Optane SSD 320
Optane DRAM memory disk | 320
Optane Optane memory disk | 320

Jiaolin Luo, Luanzheng Guo, Jie Ren, Kai Wu, and Dong Li

w/ I/O acceleration
50%

37%
31%

Performance speedup
N
B
&

12%

w/ /0 acceleration

Figure 3: The performance speedup with Optane based I/0 accelera-
tion, in which the baseline is the performance without Optane based
I/0 acceleration.

Figure 2 shows the I/O throughput speedups of pure memory
LOAD/STORE instructions over traditional POSIX read/write. The
1/0 throughput speedups are evaluated with I/O sizes from 128B to
1MB. We have two observations: (1) For read, the I/O throughput
speedup is up to 15 times; (2) For write, the I/O throughput speedup
is up to 60 times.

The results suggest the inefficient I/O stack will hide the benefits
of persistent memory and justify the findings in Experiment B.

3 OPTIMIZATION

As we have known from Section 1 and Section 2, the overhead
of operating system I/O stack hides the benefits of persistent mem-
ory. To shorten the I/O stack length, we introduce an approach of
converting POSIX read/write calls to pure memory LOAD/STORE
instructions at runtime.

In the design, file-related calls (e.g., open, close, Iseek, read and
write) are re-interposed via the technique LD_PRELOAD and han-
dled in our optimization library at runtime. When file I/O calls are
from those files stored on persistent memory, the dynamic library
will remap those files to the address space of processes and convert
POSIX read/write calls to memory LOAD/STORE instructions.

4 EVALUATION

The evaluation environment is shown in Table 1. We compare the
performance speedup of the execution time of Sentieon sequencing
pipeline with I/O acceleration, in which the baseline is the execution
time without I/O acceleration.

Figure 3 demonstrates the effectiveness of our Optane-based I/O
acceleration technique with a performance speedup by 31%.

5 CONCLUSIONS

We first explore the impact of persistent memory (Intel’s Optane
DC) on I/O intensive NGS analysis software (Sentieon) and under-
stand its performance characterization via experiments. Our study
reveals the inefficiency of Linux I/O stack can pose a bottleneck in
NGS analysis.

In addition, we design an optimization method by shortening
the length of Linux I/O stack via converting POSIX read/write
calls to pure memory LOAD/STORE instructions. The evaluation
demonstrates such optimization can make a huge performance
improvement in NGS analysis.

REFERENCES

[1] K. I Kendig, S. Baheti, M. A. Bockol, T. M. Drucker, S. N. Hart, J. R. Heldenbrand,
M. Hernaez, M. E. Hudson, M. T. Kalmbach, E. W. Klee, et al. Sentieon dnaseq
variant calling workflow demonstrates strong computational performance and

accuracy. Frontiers in genetics, 10, 2019.

ENABLING FASTERNGS ANALYISVI[%IC\)/II?T)I({)YPTANE-BASED HETEROGENEOUS

JIAOLIN LUO, LUANZHENG GUO, JIE REN, KAI WU & DONG LI
UNIVERSITY OF CALIFORNIA, MERCED

MOTIVATION CHARACTERIZATION
The computation of Next-Generation Sequencing (NGS) analysis exhibits a unique pattern, in which Experiment A: Is I/O a bottleneck?. Fig- Table 1: The impact of Optane on the performance of
a large number of consecutive and dense small I/Os is issued. The small I/Os can have huge impact | | yre 1 shows the trends of the number of POSIX Sentieon.
on performance. We have the following motivations to explore the niche of persistent memory in NGS read /write calls. The result implies I/O is a bottle- — S e
analysis and SOlve its I/O problem: neCk in NGS analysis. DXREIZIK/IIOII memory SSaDa storage 1;(SC11 10N t1me (minutes
DRAM DRAM memory disk | 120
e Large capacity. gﬁgx optane memory disk 1 22>
The available capacity of DRAM as main memory is limited to few hundreds of GB, while the - Optane DRAM memory disk | 320
/Ocalls ---- Average Optane Optane memory disk | 320

available capacity of persistent memory Intel’s Optane DC can reach up to 1.5 — 3TB per server.

S
O
(@}
()
(e}

< peak 36758

30000

o Aftfordable price. Experiment C: Why I/O is slow on persistent

of 1/0O calls per second

The price of per GB persistent memory is a halt of DRAM, in future, the price will be even cheaper. jzzzz L A LR R I~ average 11209 memory?. Figure 2 shows the results of the 1/0O
: throughput speedup of memory LOAD/STORE
* Byte-addressable. : . Time (seconds o o instructios over POSIX read /write calls.

The byte-addressable feature can enable faster I/O performance skipping the Linux I/O stack.

, , o Figure 1: The number of read and write I/O calls in
We seek to leverage the benefits of persistent memory. We conduct a scientific research to answer the NGS analysis. 16

following concerns:

(a) The 1/0O throughout speedup of memory LOAD over POSIX read

—
= OO o
xX X X
1 1

128B 256B 512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB
(b) The 1/O throughout speedup of memory STORE over POSIX write

e Q1: Is I/O a bottleneck in NGS analysis? Experiment B: What is the impact of persistent

memory?. Table 1 shows the impact of persistent
memory on the execution of NGS analysis. We

(o3}

o

X
1

I/0O throughout speedup

I

o

X<
1

e Q2: What is the impact of persistent memory in NGS analysis?

N
o
>

—_
x
1

e Q3: Why I/O is slow on persistent memory? have two findings: (1) The execution time of Op- 1203 2560 5125 KB A 4KB BE 10K5 S2KB 6B 120K 256K 5126B e
. o . . . tane as main memory is 2.7 times slower than of
Furthermore, we design an optimization technique to solve the I/O problem in NGS analysis by short- | | pRAM as main memory; (2) Optane has no im- Figure 2: The I/O throughput speedup of pure mem-

ening the length of I/0 stack in persistent memory. Our evaluation demonstrates the etfectiveness ot

provement at I/0 performance if Simply Config— ory LOAD/STORE instructions over traditional POSIX
our solution, in which we achieve a performance improvement by 31%.

ured as local storage. read /write calls.

OPTIMIZATION EVALUATION

Small dense I/Os poses a performance bottleneck | | Figure 3 demonstrates the performance speedup We have the following conclusions:
of NGS analysis and simply configuring Optane f Optane-based I/O optimization technique. | o
as either main memory or local storage makes no | | The result shows the execution speedup is up to e The execution of NGS analysis is bound to small and dense 1/Os.

difference. 1% in NGS analysis.

CONCLUSIONS

e Simply configuring Optane as either main memory or local storage has no performance improve-

We devise an optimization method by shorten- ments.
ing the length of 1/0 stack via converting POSIX R acesieraer
read /write calls to pure memory instructions.

0
3
o~

e The overhead of Linux I/O stack hides the benetfits of persistent memory.

w
\l
X

Our design of converting POSIX read /write calls to pure memory LOAD/STORE instructions at
runtime can have huge performance improvement by up to 31%.

— N
N s
2 RS

Q.
-
®;
)
)
Q.
w
o
@)
c
©
S
S
@)
—
S
o
o

w/ I/O acceleration

Figure 3: The normalized execution time with and
without Optane-based I/0 optimization technique.

	SC20_NGS_poster_summary
	SC20_NGS_poster
	Abstract
	1 Introduction
	2 Characterization
	3 Optimization
	4 Evaluation
	5 Conclusions
	References

