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ABSTRACT

Hardware failures and faults often result in application crash in
large-scale high performance computing (HPC). The emergence
of non-volatile memory (NVM) provides a solution to address this
problem. Leveraging the non-volatility of NVM, one can build in-
memory checkpoints or enable crash-consistent data objects. How-
ever, these solutions cause large memory consumption, extra writes
to NVM, or disruptive changes to applications. We introduces a fun-
damentally new methodology to handle HPC under failures based
on NVM. In particular, we attempt to use remaining data objects in
NVM (possibly stale ones because of losing data updates in caches)
to restart crashed applications. To address the challenge of possi-
bly unsuccessful recomputation after the application restarts, we
introduce a framework EasyCrash that uses a systematic approach
to decide how to selectively persist application data objects to sig-
nificantly increase possibility of successful recomputation. Our
evaluation shows EasyCrash transforms 47% of crashes that cannot
correctly recompute into the correct computation while incurring
a negligible performance overhead (2.9% on average). Using Easy-
Crash and application intrinsic error resilience, 77% of crashes can
successfully recompute. In combination with a traditional check-
point on storage, EasyCrash enables up to 30% improvement (20%
on average) in system efficiency at various system scales.

1 INTRODUCTION

The extreme-scale high performance computing (HPC) systems face
a grand challenge on system reliability. Hardware failures and tran-
sient hardware faults often result in application failures (application
crashes). Application crashes lose application’s work and decrease
HPC system efficiency. A typical HPC system nowadays has a mean-
time between failure (MTBF) of tens of hours [34, 48, 66, 71], even
with hardware- and software-based protection mechanisms. It is
expected that the failure rate could further increase in the future, as
the complexity and scale of HPC systems increases. This indicates
that a larger portion of computation cycles will have to be used to
handle application failures [30, 46].

Byte-addressable non-volatile memory (NVM) technologies, such
as Intel Optane DC persistent memory DIMM [3], are emerging.
NVM provides better density and power efficiency than DRAM
while providing DRAM-comparable performance. Recent efforts
have demonstrated the possibility of using NVM as main mem-
ory [37, 59, 78, 97, 103] with load/store instructions and for fu-
ture HPC [40, 58, 64, 99, 101, 104]. The emerging NVM provides
new opportunities to handle HPC under failures.

Leveraging the non-volatility of NVM as main memory, we can
recover data objects and resume application computation (recom-
putation) after the application crashes. However, with write-back
caching, stores may reach NVM out of order. Data objects cached
in the cache hierarchy and stored in NVM may not be consistent

during application crash. Such inconsistency persists after the ap-
plication restarts and impacts application execution correctness.
Consequently, many existing work [25, 33, 59, 96, 97, 103] studies
how to ensure that data objects stored in NVM can be recovered
to a consistent version for successful recomputation, a property
referred to crash consistency.

To enable crash consistency, the existing solutions use in-memory
checkpoint/restart (C/R) [8, 26, 37, 58] or build crash-consistent
data objects [23, 77, 90, 96, 103, 107]. However, those solutions have
limitations when applied to NVM and HPC. (1) Using NVM as a fast
persistent media to implement in-memory C/R creates bottleneck
in memory capacity and worsens the endurance problem faced by
NVM. In particular, creating checkpoints in NVM (used as main
memory) can double or even triple memory footprint of the applica-
tion. For those scientific simulations with large data sets, reducing
the effective capacity of NVM constrains the simulation scale that
scientists can study. In addition, NVM has limited endurance and
can tolerate a limited number of writes (even with wear-level tech-
niques in place). For example, the write endurance of phase change
memory (a promising NVM technology) is seven orders of magni-
tude lower than DRAM [81]. As a result, the endurance problem of
NVM have been actively studied recently [6-8, 42, 45, 62, 107, 108].
Since in-memory checkpoints are written to NVM, checkpointing
causes a number of additional writes in NVM. (2) Building crash-
consistent data objects can cause large modifications to applications.
In order to enable crash consistency, the existing efforts record up-
dates to data objects by creating undo/redo logs [49, 70, 97] or
metadata [32, 82, 102], which often introduce new data structures
and memory synchronization. Such disruptive modifications to the
application are difficult to be adopted by legacy HPC applications,
which are often large (tens or hundreds of thousands of code lines)
and dominate scientific simulations in HPC data centers.

In conclusion, high requirements of HPC on memory consump-
tion, performance, and code stableness are calling for a new solution
to explore the non-volatility of NVM to handle failures.

In this paper, we introduce EasyCrash, a framework that relaxes
the requirement on crash consistency and leverages error resilience
intrinsic to HPC applications to handle application crashes. Easy-
Crash employs a fundamentally new methodology: It does not
create data copy or record modifications to data objects for high
crash consistency; Instead, it attempts to use remaining data objects
in NVM (possibly inconsistent ones because of losing data updates
in caches) to restart crashed application, based on the prevalent
characteristics of error resilience in HPC applications.

Relaxing the requirement on crash consistency raises a risk of
unsuccessful recomputation. The random occurrence of crashes
can leave data objects in NVM in any inconsistent state with no
guarantee on successful application recomputation. To address this
challenge, we perform crash tests and characterize how the suc-
cess of application recomputation is sensitive to data consistency
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Figure 1: An illustration of how an HPC application behaves with
EasyCrash. Annotation: “E” - EasyCrash persistence operations; “v”
- application acceptance verification; “chk” - checkpointing.

of data objects at various execution phases. Based on the study,
we use analytical models to decide where to persist data objects
to enable high application recomputability. To minimize runtime
overhead of cache flushing, we use correlation analysis to decide
which data objects are the most critical to successful application
recomputation. EasyCrash only flushes cache blocks of those data
objects at specific execution phases. Such selective cache flushing
constrains the relaxed crash consistency (but not too much), hence
increasing application recomputability with high performance. To
ensure 100% of application recomputation, EasyCrash is built upon
the tradition checkpointing on storage to handle unsuccessful re-
computation. However, with EasyCrash, we can reduce checkpoint
frequency, because EasyCrash makes many crashes successfully
recompute without rolling back to the last checkpoint. Reducing
checkpoint frequency is critical to improve system efficiency. It
was reported that up to 50% time in HPC data centers is spent in
checkpointing [36, 80].

EasyCrash is based on three observations. First, many HPC appli-
cations are characterized with large data sets and most of them may
not be in caches during application execution, because of limited
cache capacity. This indicates that using cache flushing (instead of
making data copy) to persist data objects can potentially reduce a
large number of writes and memory consumption.

Second, many HPC applications have intrinsic error resilience,
which indicates that computation inaccuracy because of relaxed
consistency is tolerable by HPC applications. In particular, many
popular HPC applications, such as iterative solvers (e.g., the precon-
ditioned conjugate gradient method, Newton method, and multigrid
method), Monte Carlo-based simulations [95] and some machine
learning workloads (e.g., Kmeans and CNN training), have natural
error resilience to localized numerical perturbations, because they
require computation results to converge over time. As a result, they
can intrinsically tolerate computation inaccuracy. Furthermore, se-
lectively persisting data objects at appropriate execution phases
bounds data inconsistency and improves recomputability.

Third, many HPC applications have application-specific accep-
tance verification based on physical laws and math invariant. Lever-
aging the verification, the application can detect whether compu-
tation results are acceptable before delivering them to end users.
For example, large-scale computational fluid dynamics simulations
examine result correctness by making a comparison to exact ana-
lytical results [85]. Those applications with acceptance verification
reduces the probability of producing incorrect results that might
be generated by applications.

Figure 1 illustrates how EasyCrash works with NVM as main
memory for an HPC application. EasyCrash persists some data
objects at certain execution phases of the application. Once a crash
happens, the application immediately restarts using remaining con-
sistent and inconsistent data objects in NVM. Application-specific

acceptance verification checks if the recomputation result is cor-
rect. If the application cannot recompute successfully, then the
application goes back to the last checkpoint.

EasyCrash meets high requirements of HPC to handle failures,
and addresses the limitation in the existing efforts. First, EasyCrash
does not create data copy, hence saving memory capacity and en-
abling scientific simulation with larger memory footprint. Second,
EasyCrash flushes cache blocks using special instructions (e.g.,
CLWB), which do not write back cache lines 1 {60 main memory, if
the corresponding cache blocks are clean or not resident in caches;
Hence we reduce unnecessary writes to NVM. Saving writes to
NVM is beneficial for the performance of persisting data objects.
Third, EasyCrash does not change data structures and involves few
changes to the application; Hence, EasyCrash brings a feasible and
highly beneficial solution to HPC.

Besides the contributions of handling application failures, our
study is featured with a novel tool to characterize the sensitivity
of application recomputation to crash consistency. In particular, to
build EasyCrash, we must have a tool that retains data objects in
main memory and caches after a crash for study, captures the impact
of hardware caching on data persistence, and allows us to repeatedly
trigger crashes. However, the traditional systems cannot meet our
needs: The volatile DRAM-based system loses data in main memory
and caches after a crash; The physical machines (including Intel
Optane) cannot tolerate repeated crash tests (tens of thousands of
tests); The existing tools to examine crash consistency [52-54, 61]
ignore hardware caching effects (e.g., cache line eviction) on data
persistence; The existing random fault injection method [19, 65, 98]
provides no guarantee on application crash.

To address the above problem, we introduce a tool, NVCT (stand-
ing for Non-Volatile memory Crash Tester). NVCT is a PIN [68]-
based cache simulator plus rich functionality for crash study. NVCT
allows the user to trigger application crash randomly and then per-
form postmortem analysis on data values in caches and memory.

In summary, this paper makes the following contributions:

e A novel methodology for HPC under failures, by leveraging NVM
and error resilience intrinsic to many HPC applications;

e An open-sourced tool Z to enable crash study on NVM; Based on
our knowledge, this tool is the first one for such study;

o Characterization of HPC application recomputability after crashes;

o Theoretical analysis to provide guidance for persisting data ob-
jects with guarantee on high performance and system efficiency;

o Evaluation with a spectrum of HPC applications. EasyCrash trans-
forms 54% of crashes that cannot correctly recompute into correct
computation, while incurring a negligible performance overhead
(1.5% on average). Using EasyCrash 77% of crashes successfully
recomputes. As a result, EasyCrash enables up to 30% improve-
ment (20% on average) in system efficiency.

2 BACKGROUND
2.1 Cache Flushing for Data Persistence

Because of the prevalence of volatile caches, data objects in appli-
cations may not be persistent in NVM when a crash happens. To

!We distinguish cache line and cache block in the paper. The cache line is a location
in the cache, and the cache block refers to the data that goes into a cache line.
2The tool is available online. https://github.com/NVMCrashTester/NVCT



ensure persistency and consistency of data objects in NVM, the
programmer typically employs ISA-specific cache flushing instruc-
tions (e.g., CLFLUSH, CLFLUSHOPT and CLWB). To persist a large data
object, the current common practice is to flush all cache blocks of
the data object [49], even when some of them are not in the cache.
This is because we do not have a performant and cost-effective
mechanism to track dirty cache lines and whether a specific cache
block is resident in the cache. However, flushing a clean cache block
or a non-resident cache block is less expensive than flushing a dirty
one resident in the cache, because there is no writeback.

2.2 Terminology and Problem Definition

Data objects. We focus on heap and global data objects, but not
on stack data objects. Choosing those data objects is based on our
survey on 60 HPC applications (Appendix A.1): We find that major
memory footprint and most important data objects (important to
execution correctness) in HPC applications are heap and global
ones. Our observation is aligned with the recent work [56, 65].

We study data objects (but not the whole system state) for recom-
putation study, because of two reasons: (1) The current main-stream
NVM programming models for NVM [25, 49, 97] focus on persisting
data objects for the convenience of application restart; (2) persisting
the whole system state can cause large performance overhead.

Application recomputability. We define application recom-
putability in terms of application outcome correctness. In particular,
we claim an application recomputes successfully after a crash, if
the final application outcome remains correct. The application out-
come is deemed correct, as long as it is acceptable according to
application semantics. Depending on application semantics, the
outcome correctness can refer to precise numerical integrity (e.g.,
the outcome of a multiplication operation must be numerically
precise), or refer to satisfying a minimum fidelity threshold (e.g.,
the outcome of an iterative solver must meet certain convergence
thresholds). Leveraging application-level acceptance verification,
we can determine the correctness of application outcome.

Furthermore, we define application recomputability with a high
requirement on performance to make our solution practical for HPC.
In particular, for an HPC application with iterative structures, we
claim that it recomputes successfully when its outcome is correct
and it does not take extra iterations to finish.

Application recomputability quantifies the possibility that once
a crash happens, the application recomputes successfully. To cal-
culate application recomputability, one has to perform a number
of crash tests to ensure statistical significance. Each test triggers a
random crash and restarts the application. We use the ratio of the
number of tests that successfully recompute to total number of tests
as application recomputability. All of the crash tests to calculate
application recomputability form a crash test campaign.

We distinguish “restart” and “recompute”. After the application
crashes, the application may resume execution, which we call restart.
If the application outcome is correct and there is no need of extra
iterations to finish, we claim the application recomputes.

System efficiency. It is defined as the ratio of the accumulated
useful computation time to total time spent on the HPC system.
The total time includes useful computation time, checkpoint time,
lost computation time because of crashes, and recovery time.

Application target. We focus on HPC applications. The effec-
tiveness of EasyCrash is affected by the acceptance verification and
error resilience characteristics of those applications.

The acceptance verification can happen at the end of the ap-
plication [79] or during application execution [76], which detects
whether the application state is corrupted before delivering results
to users. Typically it is the programmer’s responsibility to write the
acceptance verification to ensure that computation results do not
violate application-specific properties (e.g., convergence conditions
or numeric tolerance for result approximation). The application-
level acceptance verification is very common in HPC applications,
and increasingly common, because of the strong needs of increasing
confidence in the results offered by HPC applications.

A large number of HPC applications are characterized with an
iterative structure (a main computation loop dominating computa-
tion time) and acceptance verification. Our comprehensive survey
on 60 HPC applications from various scientific and engineering
fields support the above conclusion (see Appendix A.1). Many of
those HPC applications are known to be naturally resilient to com-
putation inaccuracy [19, 24]. They are promising to be recomputable
after crashes, because they work by improving the accuracy of the
solution step by step, which is helpful to eliminate errors. For exam-
ple, a convergent iterative method can tolerate data inconsistency
during the convergence process. Because of the prevalence and
importance of those applications, the recent work on approximate
computing also focuses on those applications [18, 72, 73, 83, 84, 93].
We expect those applications become more common in the future, in
order to enable higher performance and energy efficiency [10, 89].

Failure model. We focus on application failures which could
be caused by power loss, hardware failures or faults. We do not
consider application failures caused by software bugs, because
those bugs can prevent application recomputation. After application
failure, NVM is still accessible for restart [9, 25, 27, 33, 59, 96, 97].

2.3 Optane DC Persistent Memory Module

The very recent release of Intel Optane DC persistent memory mod-
ule (DCPMM) is arguably the most mature NVM product as main
memory and promising for future HPC [60]. We put our discussion
in the context of this hardware to make our work more useful.

DCPMM can be configured as either memory mode or app-direct
mode. With the memory mode, DCPMM does not provide data per-
sistency, hence not relevant to our work. We assume that DCPMM
uses app-direct mode in our work. With this mode, DCPMM is
provisioned as persistent memory with byte addressability. The
application can directly access it using load/store instructions, and
flushing CPU caches makes data persistent in Optane DCPMM. Fig-
ure 11 in Appendix A.2 depicts its memory organization. To locate
data objects in DCPMM after a failure, the user leverages a memory-
mapped file-based mechanism. This mechanism is commonly used
in the exiting NVM-aware programming models [50, 88, 97].

3 NVCT: ATOOL FOR STUDYING
APPLICATION RECOMPUTABILITY
To enable our study on application recomputability in NVM, we

introduce a PIN-based crash emulator, NVCT. NVCT includes a
simulated multi-level, coherent cache hierarchy and main memory,



3 void main(int argc,

double u[NR];
double r[NR];

static
static
char s»argv) {

int it;
initialize ();
for (it = 1; it <= nit; it++) {//main comp loop
for () { // a first—level inner loop; Rl
for() {...}// a second—level inner loop
}
for () { // a first—level inner loop; R2
}
for () { // a first—level inner loop; R3
}
for () { // a first—level inner loop; R4
cache_block_flush (u, NR+sizeof (double));
cache_block_flush(r, NR+sizeof (double));
}
cache_block_flush(&it, sizeof(int));
}
result verification
}
(a) Persisting data objects during MG execution.
static double u[NR];
static double r[NR];

void main(int argc,
int it,it_old;
initialize ();
load_value (u,NR+sizeof (double));
load_value (r,NR«sizeof (double));
load_value(&it_old ,sizeof (int));
for (it = it_old; it

char s»argv) {

<= nit; it++) {//main comp loop
// flush cache blocks
}

/result verification

(b) Restart MG.

Figure 2: Study recomputability of MG with NVCT.

arandom crash generator, a set of APIs to support the configuration
of crash tests and application restart, and a tool to examine data
inconsistency for post-crash analysis. Different from the traditional
cache simulator, NVCT not only captures microarchitecture level,
cache-related hardware events such as cache misses and invalida-
tion, but also records the most recent values of data objects in the
simulated caches and main memory.

Main memory simulation. Different from the microarchitec-
tural simulation of main memory, the main memory simulation
in NVCT records data values and their corresponding memory ad-
dresses. Whenever the cache simulation writes back any cache line,
the corresponding data values in the simulated main memory are
updated. Using this method, we can easily determine data incon-
sistency between caches and main memory. During a crash test,
the data values of user-specified data objects in the simulated main
memory can be dumped into a file for post-crash analysis.

Random crash generation. NVCT emulates the occurrence of
a crash by stopping application execution after a randomly selected
instruction. Furthermore, NVCT can report call path information
when a crash happens by leveraging CCTLib [20]. The call path
information introduces program context information for analyzing
crash results, which is helpful to distinguish those crash that happen
in the same program statement, but with different call stacks.

Calculation of data inconsistent rate. NVCT reports data
inconsistent rate after a crash happens. When a crash happens,
NVCT examines dirty cache lines in the simulated cache hierarchy
and compares with the corresponding cache block in main memory
to determine the number of dirty data bytes in the cache line. To
calculate the data inconsistent rate for a data object, NVCT counts
the total number of dirty bytes in the data object and then divides
the number by the data object size.

Application restart. When restarting, NVCT loads data values
from the file dumped by the main memory simulation to initialize
user-specified data objects. Some data objects are initialized by the
application itself. After that, NVCT resumes the main loop, starting
from the beginning of the iteration where the crash happens.

Putting all together. To use NVCT, the user needs to insert
APIs to specify (1) data objects that need to be persisted during
application execution, (2) the initialization phase of the application
for a restart, and (3) code regions where crashes can happen. The
user also needs to configure cache simulation and crash tests (e.g.,
how many crash tests and what probability distribution the crash
tests follow). During application execution, NVCT leverages the
infrastructure of PIN to instrument the application and analyze
instructions for cache and memory simulations. NVCT triggers
a crash as configured, and then performs post-crash analysis to
report data inconsistent rate and restart the application.

An example. Figure 2 gives an example of how we study appli-
cation recomputability. This is a multi-grid (MG) numerical kernel
from the NAS parallel benchmark suite [11] (NPB). Like many HPC
applications, MG has a main computation loop, within which we
persist two global data objects and a loop iterator > at somewhere
(Lines 19-20, 22 in this example). After a crash happens, we restart
MG using Figure 2b. To restart, the application re-initializes compu-
tation (Line 5 in Figure 2b), loads the values of the two data objects
and old loop iterator (Lines 6-8) from NVM, and restarts the main
computation loop from the iteration where the crash happens (Line
9). We run MG to completion and verify the application outcome.

4 CHARACTERIZATION OF APPLICATION
RECOMPUTABILITY

We characterize application recomputability to motivate our design.

4.1 Experiment Setup

Benchmarks for evaluation. We use all benchmarks from NPB.
To enrich our benchmark collection, we add botsspar from SPEC
OMP 2012 [2], kmeans from Rodinia [22] and LULESH [67]. In to-
tal, we have 11 benchmarks, covering dense linear algebra, sparse
linear algebra, spectral methods, structured-grid, graph traversal,

3In the rest of the paper, we always persist a loop iterator to bookmark where the
crash happens. This makes restart easier. Persisting just one iterator has almost zero
impact on application performance.
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Figure 3: Application responses after crash and restart. Figure anno-
tation: S1 - successful recomputation without using extra iterations,
S$2 - successful recomputation with extra iterations, S3 - Interrup-
tion, and S4 - verification fails.

and data mining. These benchmarks are chosen, because of their
representativeness and explicit code structures to verify application
outcomes. The input problems for these benchmarks are summa-
rized as “input 3” in Table 11 in Appendix A.7. Table 1 summarizes
these benchmarks and shows their characteristics.

System configuration. We simulate a three-level cache hier-
archy, shown in Table 4 in Appendix A.3. We use both single and
multiple threads to run benchmarks. We present the results of sin-
gle thread, but the conclusions we draw from multiple threads are
the same as from single thread.

Crash tests. To ensure statistical significance, for each bench-
mark, we run a sufficient number of crash and recomputation tests
(usually 1000-2000 tests), such that further increasing the number of
tests does not cause big variation (less than 5%) in evaluation results.
This method ensures that our evaluation is sufficient and results
are statistically correct. During application execution, we randomly
stop it for crash tests, and the time of stopping follows a discrete
uniform distribution. This method of interrupting applications is
common in the research on system fault tolerance [19, 43, 44, 65, 98].

4.2 Experiment Results

We observe four application responses after a crash and restart.
(1) Successful recomputation without performance overhead: the
application successfully passes acceptance verification, and uses no
extra iteration to finish; (2) Successful recomputation with perfor-
mance overhead: the application successfully passes the acceptance
verification, but takes at least one more iterations than the original
execution; (3) Interruption: the application cannot run to comple-
tion (e.g., due to segfault); (4) Verification fails: the application
cannot pass the acceptance verification, even after taking two times
as many iterations as in the original execution.

Figure 3 and Table 1 (the last two columns) show the results
based on the above classification. We notice that some applications
show strong recomputability (e.g., 88% and 67% for SP and BT re-
spectively). Some applications (e.g., IS, LU, and EP) are the opposite:
They cannot restart, or have segmentation faults.

Analysis. (1) SP and BT has high recomputability because of
their algorithms to isolate propagation of data inconsistency. In
particular, SP and BT, aiming to solve 3-dimensional compressible
Navier-Stokes equations [57], decouple computation along x, y
and z dimensions. Each dimension employs an iterative numerical
solver. Iterative solvers tolerate data loss after crashes [12], and
most of data inaccuracy is constrained to one dimension without
propagation, because of the decoupling of dimensions. (2) LU has

low recomputability, because it does not decouple computation
along three dimensions. Although LU performs similar numerical
simulation as SP and BT, data inaccuracy because of crash are prop-
agated throughout the whole computation and fails the verification
eventually. (3) IS has low recomputability, because it is character-
ized with rich pointer arithmetic. Crash and restart easily cause
segmentation faults because of dangling or wild pointers. (4) EP
has low recomputability, because it has a small memory footprint.
Crash and restart leave most of data objects in stale states, violating
the application requirement on data correctness.

Conclusion 1. Applications have quite different recomputability
(e.g., the difference between SP and IS is 88%), because of code
structures (e.g., in IS and EP) and algorithms (e.g., in SP and LU).

To study how to improve application recomputability (i.e., the
application passes acceptance verification without using extra iter-
ations), we selectively persist data objects and examine its impact
on application recomputability. We do not persist all data objects,
because it can cause large performance overhead. Figure 4a shows
the results for MG. We choose three data objects (it, u and r) for
study. We persist them at the end of each iteration of the main com-
putation loop. By persisting the data object u, the recomputability is
improved to 63%; However, persisting it and r, the recomputability
is barely improved.

Analysis. (1) it is a single variable (4 bytes) and used only once
in each iteration of the main loop. Without flushing it, it is highly
likely that it is evicted out of the cache at the end of the iteration
because of cache conflicts. Hence, persisting it is not helpful to
improve recomputability. (2) u and r are rather large arrays, and
a set of stencils are applied to them over many iterations. r are
dominated by read accesses, while u are by intensive writes. Hence,
persisting r is not helpful while persisting u is.

Conclusion 2. Persisting different data objects has different
implications on application recomputability, because of data access
patterns (e.g., data reuse and write/read pattern).
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Figure 4: The recomputability of MG after (a) persisting three differ-
ent data objects in MG; and (b) persisting u in different code regions.
“orig” stands for the recomputability without persisting anything.
“m.1” stands for the case of persisting u at the end of each iteration
of the main loop without considering code regions.

We further study the impact of where to persist data objects on
application recomputability. MG has four first-level inner loops
shown as R1-R4 in Figure 2a. They represent four execution phases.
They all update u. We persist u at the end of an execution phase
(code region). Figure 4b shows the result. Persisting u at R3, we
have 21% improvement in recomputability, while persisting it at
other code regions, we only have less than 7% improvement.



Table 1: Benchmark information. “R/W” =

“Read/Write ratio”, “DO” = “data object”, “iter” = “iterations”.

Benchmarks Description # Of.‘ code R/W | Memory footprint Cand.i. of eritical Critical DO size Ave. # of extra iter. to To'ta:l # of iter. in thf"
regions DO size restart (restart overhead) | original app execution

CG Sparse linear algebra 6 21:1 947MB 5.7MB 2.3MB 9.1 75

MG Structured grids 4 7:1 3.4GB 2.3GB 1.2GB 0 20

FT Spectral method 4 1:1 5.1GB 4.0GB 4.0GB 0 20

1S Graph traversal (sorting) 8 2:1 1.0GB 264MB 4KB N/A(segfault) 10

BT Dense linear algebra 15 2:1 1.43GB 525.6MB 361.2MB 0 200

LU Dense linear algebra 4 5:2 1.4GB 599MB 164MB N/A (the verification fails) 250

SP Dense linear algebra 16 2:1 1.47GB 561MB 394MB 0 400

EP Monte Carlo 2 2:1 1MB 1MB 80B N/A (the verification fails) 65535
botsspar Sparse linear algebra 4 2:1 3.74GB 3.36GB 3.36GB 0 200
LELUSH Hydrodynamics modeling 4 5:1 1.41GB 251MB 20MB 0 3517
kmean Data mining 1 9:2 222MB 20B 20B 18.2 36

Analysis. MG implements a hierarchical multi-grid method that
approximates the solution to a discrete Poisson equation. R3 cor-
responds to the solving phase on a coarse grid to accelerate the
speed of computation convergence [19]. Data inconsistency in R3
easily causes significant computation errors in multiple finer grids,
leading to verification failure. Persisting u in R3 constrains data
inconsistency caused by random crashes, leading to higher recom-
putability. Other code regions work on a fine grid and the impact
of data inconsistency there on application outcome correctness is
limited. Hence persisting u at the other code regions is not helpful.

Conclusion 3. The application shows different recomputability
when persisting data objects at different code regions, because the
execution correctness of those code regions has different impact
on application outcome correctness.

Insight. Persisting all data objects throughout code regions may
not be useful and efficient. Selectively persisting data objects at
some code regions can effectively bound data errors caused by data
inconsistency and lead to higher application recomputability, while
paying less performance overhead.

5 DESIGN

Motivated by the above observations, we introduce EasyCrash, a
framework that can increase application recomputability with an
ignorable runtime overhead and offers higher system efficiency than
C/R without EasyCrash. EasyCrash automatically decides which
data objects should be persisted (Sec 5.1) and where to persist them
to maximize application recomputability (Sec 5.2). We show how
to use EasyCrash at the end of this section (Sec 5.3).

5.1 Selection of Data Objects

We name data objects selected to be persisted, “critical data objects”
in the rest of the paper. To select data objects, we choose those data
objects with the following properties as candidates: (1) Their life-
time is the main computation loop; and (2) They are not read-only.
Except the candidates, the other data objects are either temporal or
read-only, and not treated as the candidates of critical data objects.
When the application restarts, the other data objects are not read
from NVM. Instead, they are restored by either the initialization
phase of the application or being re-computed based on the can-
didates of critical data objects. When the application restarts, the
candidates are directly read from NVM. There is a large search
space to select data objects out of the candidates. Assuming that
there are P candidates (P can be hundreds or thousands in HPC

applications), there are 2F possible selections. We use statistical
correlation analysis to efficiently select data objects.

Our method is based on the following observation. When a crash
happens, data objects remaining in NVM can have different degrees
of inconsistency. For example, a data object of 128MB could have
16MB of inconsistent data, giving an inconsistent rate of 16/128 =
12.5%, while some data object could have an inconsistent rate of 50%.
Application recomputability correlates with the inconsistent rate
of some data objects, meaning that if these data objects have high
inconsistent rate, application recomputability is low. They should
be selected as critical data objects. Application recomputability is
not sensitive to the inconsistent rate of some data objects. Persisting
them does not matter to application recomputability. Hence, the
sensitivity of application recomputability to the inconsistent rate
of data objects can work as a metric to select data objects.

We use Spearman’s rank correlation analysis [106] to statistically
quantify the correlation between the inconsistent rate of data ob-
jects and application recomputability. The result of the Spearman’s
rank correlation is the coefficient (Rs), which quantifies how well
the relationship between two input vectors (data inconsistent rate
and application recomputability) can be described using a mono-
tonic function. Furthermore, we use the p-value of R to ensure
statistical significance of our analysis. The p-value is the probability
of observing data that would show the same correlation coefficient
in the absence of any real relationship between the input vectors.

To use the Spearman’s rank correlation analysis, we build two
vectors for each candidate data object, using the results collected
from a crash test campaign: One vector is composed of data incon-
sistent rates; The other vector is composed of application recompu-
tation results (i.e., whether the application recomputes successfully
or not). Each component of the two vectors is collected in one crash
test of the crash test campaign. The vectors are used as input to the
correlation analysis.

Based on the Spearman’s rank correlation analysis, we use two
criteria to select data objects. (1) A critical data object should have a
negative value of the correlation coefficient which indicates decreas-
ing data inconsistent rate improves application recomputability. (2)
The p-value of Rg should be smaller than a threshold. We use 0.01
as the threshold, because it is a common threshold [106], and less
than it statistically shows a very strong correlation in our study.

Verification of the selection of data objects. To verify that
our selection is effective, we evaluate application recomputability
with three strategies: (1) Do not persist any data object; (2) Persist
selected data objects; (3) Persist all candidate data objects. Figure 5
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Figure 5: Application recomputability under three strategies to per-
sist data objects. Figure annotation: “DO” stands for data objects.

shows the results. The figure shows that the difference in applica-
tion recomputability between (2) and (3) is less than 3% in all cases.
This verifies the effectiveness of our selection of data objects.

5.2 Selection of Code Regions

In this section, we first introduce code regions in typical HPC appli-
cations. Then we formalize our problem of selecting code regions,
and introduce an algorithm to solve it. Table 5 in Appendix A.4
summarizes the annotation for our formulation.

Application code regions. We characterize HPC applications
as a set of iterative structures or loops. In particular, there is usually
a main computation loop in an HPC application. Within the main
loop, there are a number of inner loops that are typically used to up-
date data objects iteratively. This code structure is very commonly
used in HPC applications. A number of existing efforts are based
on this code structure [8, 17, 28, 44, 63, 86, 87, 91]. Figure 2a shows
an example of such a program abstraction for MG.

We model an application as a chain of code regions delineated
by loop structures. A code region is either a first-level inner loop
or a block of code between two adjacent, first-level inner loops.
We use the above definition of code regions, because such code
regions easily represent computation phases of the application.
Persisting data objects in a code region ensures that the most recent
computation results in a phase are persistent in NVM, and can
effectively improve application recomputability. A similar definition
of code regions is in [44] to study application resilience to errors.

Problem formulation. Among all code regions, we want to se-
lect code regions to satisfy two performance goals. (1) The runtime
performance goal: the application with critical data objects persisted
at the selected code regions should have runtime overhead smaller
than a threshold ts. ts is set by the user (in our study, ts = 3% of
the application execution time without any crash). (2) The system
efficiency goal for long-running applications: the system efficiency
with EasyCrash (including successful and unsuccessful recompu-
tation) should be better than that with traditional C/R without
EasyCrash. Achieving this goal requires that the recomputability
of the application should be high enough (higher than a threshold
7). Section 7 discusses how to decide 7.

We name the selected code regions “critical code regions” in the
rest of the paper. In the following discussion, we assume that there
is only one critical code region, in order to make our formalization
easy to understand. But our formalization can be easily extended
to any number of critical code regions.

Assume that there are W code regions in an application and Y is
the application recomputability without persisting any data objects.

The recomputability of a code region i is c;. The recomputability
of a code region is the possibility that when a crash happens
during the execution of the code region, the application can be
successfully recomputed. Based on the definition of recomputability
(Section 2.2), the application recomputability Y is a weighted sum
of the recomputability of code regions; A weight for a code region is
the ratio of execution time of the code region to total execution time
of the application.We formulate Y based on the above discussion.

w
Y =) (aixc) 8
i=1

where g; is the weight of a code region i. In other words, g; is the
ratio of the accumulated execution time * of the code region i to
total execution time of the application.

Assume the code region k (1 < k < W) is selected as a critical
code region. After persisting critical data objects at the code region
k, the recomputability of the application and code region becomes
Y’ and c,’C respectively. We have performance loss ;. because of
persisting critical data objects in the code region k, which is the
ratio of absolute performance loss to total execution time.

Y’ is calculated based on c,'C for the code region k. ¢; for the
other code regions (1 < i < W and i # k) remains the same.Y” is
formulated in Equation 2.

k-1 w
Y = Z(a;xci)+a;€><cl’c+ Z (a} X c;) )
i=1 i=k+1
where a] and a’k are new performance ratios (weights) with the
consideration of the persistence overhead.

Our two performance goals are formulated as follows. We want

to select a code region to meet the two goals.
lk < ts (3)
Y >1 4)
Our algorithm to solve the problem. To determine if the selec-
tion of a code region can meet Equation 3, we need to estimate
the performance loss (I}) caused by persisting critical data objects.
Based on [, we easily get a; (the weight). [ is estimated by measur-
ing the overhead of flushing one cache block and the total number of
cache blocks to flush. To determine if the selection of a code region
k can meet Equation 4, we first estimate ¢; without doing extensive
crash tests (recall that ¢ is the recomputability of the code region
k after persisting operation). Then, based on Equation 2 and c; , we
calculate Y’ (recall that Y’ is the application recomputability after
persisting the selected data objects at the code region k) and use
Equation 4 to decide if we reach the system efficiency goal.

c,’C depends on how frequently we persist data objects in the code
region. (1) If the code region k is a loop structure, we can persist data
objects at every iteration of the loop to maximize recomputability
(czmx, and c,’C = cl’c”“x), or persist them every x iterations (x >
1) (the corresponding recomputability of the code region is ¢},
and cl’c = c¢¥). If we do not persist data objects at all, then the
recomputability of the code region is not changed (still ¢t ), and
the code region is not selected. (2) If the code region is not a loop

4 A code region can be repeatedly executed. Hence we count the accumulated execution
time.
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Figure 6: An example of using our algorithm to decide whether a
code region (code region 2) should be selected for a program with
three code regions.

structure, we flush cache blocks at the end of the code region to
reach ¢;"**, or do not flush at all with no change of recomputability.
To measure ¢;"** for a code region k, we persist data objects

at every iteration of the loop in the code region k > to maximize
recomputability of the code region, trigger crashes during the ex-
ecution of the code region k, and then measure the application
recomputability as c¢!"**. However, given W code regions to mea-
sure recomputability, this approach has to perform W crash test
campaigns, which can be expensive. We use the following method
to address this problem.

We use only one crash test campaign to measure best recom-
putability of all code regions (including the code region k). In par-
ticular, we persist data objects at every iteration of the loop in each
code region. This ensures best recomputability of each code region.
In the crash test campaign, crash tests still randomly happen. We
use those crash tests that occur during the execution of a code
region to calculate the best recomputability of that code region.

To calculate cz (recall that c;: is the recomputability of the code
region k when we persist data objects every x iterations in the code
region k), we use Equation 5.

max

1
g = (e —cp) x < ek (5)

In essence, Equation 5 estimates ¢} based on a linear interpolation
between ¢;"“* and ¢y (recall that ¢ is the recomputability of the
code region k without persisting any data object).

Using the above formulation, we are able to know the perfor-
mance loss (I;.) and the application recomputability (c]’<) for any
coderegion k (1 < k < W). To illustrate the above modeling process
better, Figure 6 runs an example where we have three code regions,
and the algorithm tries to decide if the code region 2 should be
selected and how frequently to persist data objects there.

Based on the above, we can generalize our method to select any
number of code regions (not just one as above) and decide how
frequently to persist data objects in each code region. In particular,
to meet the two performance goals, we choose those code regions in
which persisting data objects with certain frequencies do not cause
performance loss larger than ¢5. Also, application recomputability
after persisting critical data objects in the selected code regions with

SIf there is no loop, we persist data at the end of the code region k.

selected cache flushing frequencies is larger than 7 (the system effi-
ciency goal). We also want to maximize application recomputability.
This is a variant of the 0-1 knapsack problem [94] with each code
region as an item, performance loss as the item weight and applica-
tion recomputability as the item value. This problem can be solved
by the dynamic programming in pseudo-polynomial time.

Discussions. When we estimate I, we assume every cache
block of data objects is in the cache, which overestimates perfor-
mance overhead. However, overestimation is harmless, because it
ensures that runtime overhead in production is smaller than f;.

To calculate Y’, we use one campaign of crash tests to measure
the recomputability of each code region, by persisting critical data
objects at each code region. However, to accurately measure the
recomputability of a specific code region, we should persist critical
data objects only at the code region (not each code region). Our
method, although avoids massive crash tests, ignores the possi-
ble propagation of computation inaccuracy from one code region
to another. Such a method makes the measured recomputability
smaller than the real recomputability. This means using our method,
EasyCrash should result in larger recomputability and larger per-
formance benefit in reality, which is good.

5.3 How to Use EasyCrash

To use EasyCrash, we need to know the performance loss [} for
each code region. Different frequencies of persisting data objects
lead to different performance losses. We estimate the performance
loss based on the overhead measurement of flushing one cache
block, total number of cache blocks and flushing frequency. Note
that certain cache flushing instructions (CLFLUSH and CLFLUSHOPT)
invalidate cache lines after cache flushing. This means that cache
blocks need to be reloaded into the cache when they are re-accessed,
which causes extra performance loss. To account for such cases,
we double our estimation on the overhead of flushing cache blocks.
The whole workflow of EasyCrash includes four steps.

Step 1: Running a crash test campaign without persisting data
objects. We collect the data inconsistent rate of candidates of critical
data objects and calculate corresponding application recomputabil-
ity. We also measure the recomputability of each code region (i.e.,
¢k, 1 < k < W) in this test campaign.

Step 2: Selection of data objects. We calculate the correlation
between the inconsistent rate of data objects and application re-
computability to decide critical data objects.

Step 3: Selection of code regions. We run another crash test
campaign that persists critical data objects at each code region with
highest frequency to measure the best recomputability of each code
region (c;"%*,1 < k < W). The output of this step is the selection
of code regions and how frequently to persist data objects in the
selected code regions.

Step 4: Production run. Just run the application, and EasyCrash
automatically manages cache flushes.

We discuss time cost for crash test campaigns in Section 8.

Application preparation. The above steps introduce minor
changes to the application. The application changes include two
parts: (1) Allocating data objects that are updated in the main com-
putation loop with an EasyCrash API Those data objects are can-
didates of critical data objects, and their addresses are passed into



EasyCrash for potential cache flushing during production runs. (2)
Identifying the end of first-level inner loops with an EasyCrash
APL Those places delineate code regions. Appendix A.4 shows the
APIs provided by EasyCrash and an example on how to use them.
For (1) and (2), the compiler can annotate the application with the
APIs, freeing the programmer from changing the application.

6 EVALUATION

In this section, we study whether EasyCrash can effectively improve
application recomputability and what is the runtime overhead of
EasyCrash. In the next section, we evaluate system efficiency of
EasyCrash in large scale systems in the context of C/R mechanisms.
We use the benchmarks shown in Table 1. To calculate application
recomputability, we use the method in Section 4.1 for crash tests.

We use two platforms for our study. One platform is an emulated
NVM with traditional DDR4 DRAM. Table 8 in Appendix A.6 shows
hardware details for this platform. This platform is commonly used
in the existing work [26, 27, 42, 61, 104] and represents the future
NVM as main memory, because its performance (latency and band-
width) is the same as that of DRAM. The other platform is a system
with Intel Optane DCPMM. Table 9 in Appendix A.6 shows hard-
ware details for this platform. In the rest of the paper we report
results for Intel Optane DCPMM. The results for the DRAM-based
NVM emulation are in Appendix A.6.

We set ts as 3% in this section. We also use ts = 2% and 5% for
the sensitivity study. In all tests, the runtime overhead is effectively
bounded by t;. But a smaller ¢ leads to less frequent persistence
operations. As a result, a few benchmarks (e.g., FT) cannot meet
the recomputation requirement imposed by 7. We show the results
of t; = 3% in this section. We do not present the results for EP,
because its inherent recomputability is 0. Even with EasyCrash, its
recomputability is less than 3%, and EasyCrash cannot bring benefit
in system efficiency according to our model (Equation 4). Selection
of data objects and code regions is summarized in Appendix A.5.

Recomputability improvement. Figure 7 shows application
recomputability after using EasyCrash. To reveal the effectiveness
of our two techniques (i.e., selecting data objects and selecting code
regions), we first measure recomputability without using the two
techniques, shown as “without EasyCrash” in the figure. Then we
select data objects and persist them at the end of each iteration of
the main computation loop, shown as “selecting data objects”. We
then select code regions to persist the selected data objects with
selected frequencies, shown as “selecting code regions”.

To show the effectiveness of EasyCrash, we also compare the best
recomputability with the results of applying EasyCrash. We obtain
the best recomputability by persisting critical data objects at each
code region (if the code region has a loop structure, then we persist
critical data objects with the highest frequency, i.e., persisting them
at the end of each iteration of the loop). Note that the method to get
the best recomputability is very costly (shown in the last column
of Table 2), which is not a practical solution for HPC. In addition,
we do not show results for persisting all data objects, because in
Section 5, we have shown that persisting critical data objects can
achieve very similar recomputability as persisting all data objects.
We have the following observations from Figure 7.
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Figure 7: Application recomputability with different techniques.

(1) EasyCrash achieves very high recomputability. Except for CG,
the recomputability of applying EasyCrash is pretty close to the
best one, with a difference of only 5% on average. For CG, there is a
big difference (49%), because many successful recomputation tests
in CG require extra iterations, which is not acceptable in EasyCrash
due to the concerns on runtime overhead. Note that even with the
big difference, EasyCrash still brings 4% improvement in system
efficiency for CG (shown in Section 7).

(2) EasyCrash significantly improves application recomputability.
This fact is especially pronounced in the benchmarks MG, botsspar
and kmeans. We see 56%, 77%, and 93% improvement for the three
benchmarks respectively. The average recomputability of all bench-
marks after using EasyCrash is 75%, while it is 28% before using
EasyCrash. Also, EasyCrash is able to transform 47% of crashes that
cannot correctly recompute into the correct computation.

Performance study. We measure runtime overhead of persist-
ing critical data objects at critical code regions with EasyCrash but
with no crash triggered. We leverage CLWB [55] for best perfor-
mance of cache flushing. Table 2 summarizes the execution time of
persisting critical data objects for once (i.e., one persistence opera-
tion), the number of persistence operations with EasyCrash, and
total execution time with persistence operations. In the rest of this
section, the total execution time is normalized by the execution time
without any persistence operation.

In general, the runtime overhead is no larger than 2.9% (bounded
by ts = 3%). For comparison purpose, we show the overhead of
persisting all candidate data objects at the end of each iteration
of the main computation loop (shown in the fifth column of the
table), which is a case without the selection of data objects and code
regions. This case cause 26% overhead on average, much larger than
EasyCrash. We also evaluate the overhead of achieving the best
recomputability by persisting critical data objects with the highest
frequency. The runtime overhead is 54% on average, which is much
larger than EasyCrash.

Write Reduction. We compare EasyCrash and the in-memory
C/R mechanism in terms of the number of extra writes. For Easy-
Crash, the extra writes come from persisting critical data objects
at critical code regions. As discussed in Section 2.1, when cache
blocks of critical data objects are clean or not resident in the cache,
flushing them does not cause any write in NVM. For C/R mecha-
nism, the extra writes come from (1) making a copy of data objects
and (2) cache line eviction because of loading checkpoint data into
the cache when making data copy [8]. We use NVCT to measure
the number of writes in NVM. Whenever a dirty cache block is
written back to NVM, we count the number of writes by one.



Table 2: Normalized execution time. “Norm” = “normalized”. “EC” =
“EasyCrash”. “best” = “the best recomputability”

. - . Norm. Norm. Norm. exe.
Time for persisting | # of persistence . . X -

critical data for once| operations exe. time exe. time time achieving
with EC | without EQ the best.
CG <0.001 s 75 1.004 1.20 1.24
MG 0.045 s 40 1.018 1.37 1.31
FT 0.043 s 80 1.023 1.42 1.36
1S 0.041's 10 1.018 1.31 1.74
BT 0.042's 100 1.018 1.31 1.63
Sp 0.041s 100 1.021 141 1.77
LU 0.049 s 125 1.021 1.42 1.80
botsspar 0.041s 200 1.029 1.58 1.77
LULESH 0.039 s 293 1.027 1.54 1.73
kmeans <0.001 s 36 1.000 1.00 1.00
Average ~0.034's 106 1.018 1.26 1.54
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To enable a fair comparison with EasyCrash, we perform C/R
in two ways: (1) We checkpoint critical data objects, and (2) we
checkpoint all data objects (excluding read-only ones). Also, we
assume that checkpoint happens only once. This is a rather con-
servative assumption favoring the checkpointing mechanism. The
checkpoint could happen more often (depending on system failure
rate and application execution time), which causes more extra num-
ber of writes. We consider the system failure rate and application
execution time to evaluate the effects of checkpoint in Section 7.

Figure 8 shows the number of write normalized by total num-
bers of writes in NVM without EasyCrash and C/R. On average,
EasyCrash adds 16% additional writes, while C/R adds 38% and
50% for the two methods of checkpointing respectively. Also, for
those benchmarks with large data objects (e.g., FT, SP, and LU with
data objects 10x larger than last level cache size), EasyCrash is
especially beneficial since the number of extra writes in a persis-
tence operation is bounded by last level cache size. A larger data
object indicates that EasyCrash flushes more clean cache lines or
non-resident cache blocks without causing actual writes. For bench-
marks with small data objects (e.g., CG with data objects smaller
than or similar to the last level cache size), EasyCrash is not benefi-
cial to reduce the number of writes, but writing those small data
objects does not usually cause a serious endurance problem.

7 END-TO-END EVALUATION

We evaluate EasyCrash in the context of large-scale parallel systems
running time-consuming HPC applications with a C/R mechanism.
To enable convincing evaluation, we need different system scales
with various configurations, which is expensive to achieve. We de-
velop an emulator based on performance models and performance
analysis in Section 6.
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Basic assumptions. We assume that the checkpointing pro-
cess does not have any corruption. This is a common assump-
tion [13, 16]. We model coordinated checkpointing, which is the
most common practice of C/R in HPC and commonly used in the
recent work [13, 74, 75] (we model and discuss uncoordinated check-
pionting in Appendix A.10 for the completeness of the paper). With
the coordinated checkpointing, all nodes take checkpoints at the
same time with synchronization. The checkpoints are saved in fast
local storage and then asynchronously moved to remote storage
nodes. When a crash happens in one node and the application
cannot successfully run to the completion or pass the acceptance
verification after restarting using EasyCrash, all nodes will go back
to the last checkpoint. Note that with EasyCrash, the application
has a high probability to successfully recompute after restart. Hence,
the checkpoint interval with EasyCrash is longer.

Performance modeling. Our emulator includes system and
application related parameters. We summarize the system related
parameters as follows.

(1) MTBF: Mean time between failures of the system without Easy-
Crash. MTBFgasycrash is MTBF with EasyCrash. Since the
average application recomputability with EasyCrash is 77%
(Section 6), we have MTBFgqsycrash = MTBF/(1 = 77%).
T_chk: The time for writing a system checkpoint. The check-
point on each node is written into local SSD (not in NVM main
memory) and then gradually migrated to storage nodes (the data
migration overhead is not included in T_chk). Such a multi-level
checkpoint mechanism is based on [74]. The checkpoint data
should not be written into NVM-based main memory, because
it significantly reduces memory space useful for applications.

T_r: The time for recovering from the previous checkpoint.

Similar to the existing work [16], we assume T_r = T_chk.

(4) T_sync: The time for synchronization across nodes. We use the
assumption in [13]: The synchronization overhead is a constant
value, and we use 50% of the checkpoint overhead as T sync.

(5) T:The checkpoint interval, based on Young’s formula [105], T =
V2 X T chk x MTBF. This formula has been shown to achieve
almost identical performance as in realistic scenarios [35].

(6) T_vain: The wasted computation time. When the application
rolls back to the last checkpoint, the computation already per-
formed in the checkpoint interval is lost. As proved by Daly [29],
on average, half of a checkpoint interval for computation is
wasted (i.e., T_vain = 50% X T).

@
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We summarize the application related parameters as follows.

(1) Rgasycrash: The application recomputatbility achieved by us-
ing EasyCrash.

(2) ts: The runtime overhead introduced by EasyCrash because of
persisting critical data objects (e.g., 3% in our evaluation).

Based on the above notations, we use performance models to
evaluate system efficiency. The system efficiency is the ratio of the
accumulated useful computation time (u) to total time spent on the
system (Total_Time), which is (u/Total_Time). We assume that the
accumulated useful computation takes checkpoints N times; and
during the whole computation, the crash happens M times.

Equation 6 models the total time spent on the HPC system with-
out using EasyCrash. The equation includes useful computation



and checkpoint time (N X (T + T_chk)), and the cost of recovery us-
ing the last checkpoint (M X (T _vain+T_r + T_sync)). The number
of crashes (M) is estimated using Equation 7.

Total_Time = NX (T +T_chk)+MX(T_vain+T_r+T_sync) (6)

Total_Time
= " MTBF @
EasyCrash improves HPC system efficiency by avoiding large re-
covery cost from the last checkpoint and increasing the checkpoint
interval. EasyCrash also brings ignorable runtime overhead. Equa-
tion 8 models the total execution time with EasyCrash (Total_Time’),
where N” and T’ are the number of checkpoints and their interval
when using EasyCrash, and M’ is the number of crashes that have
to go to the last checkpoint for recovery, and M”” is the number of
crashes that use EasyCrash to recompute successfully.

Total_Time =N’ x (T” + T_chk) +

M’ X (T_vain’ + T_r + T_sync) + 8)
M" x (T_r" + T_sync)
M’ =Mx (1~ REasyCrash)’ M =M x REasyCrash )

With EasyCrash, the checkpoint interval (T”) becomes longer (T’ >
T), and also should include a small runtime overhead (t;). As a
result, the number of checkpoints (N’) becomes smaller (N’ < N),
and the checkpoint overhead (N’ X T,jx) becomes smaller. With
and without EasyCrash, the useful computation remains similar
because of small runtime overhead of EasyCrash. To calculate T’,

2 X T_Chk X MTBFEasyCrash'

With EasyCrash, once a crash happens, the system either goes
to the last checkpoint with recovery overhead modeled as (M’ x
(T_vain + T_r + T_sync)), or uses EasyCrash to restart and suc-
cessfully recompute with recovery overhead modeled as (M’ x
(T_r" + T_sync)). With NVM and EasyCrash, the recovery cost T_r
becomes T/, which becomes smaller, because we load data objects
from NVM-based main memory, not from local SSD or storage
node. T/ is estimated using the total data size of non-readonly data
objects divided by NVM bandwidth.

Choice of parameters. The time spent on writing a checkpoint
to persistent storage depends on hardware characteristics. A mod-
ern HPC node normally has 64 to 128 GB memory. For nodes using
SSD and NVMe, the average I/0O bandwidth is 2 GB/s; For nodes
using HDD, the average I/O bandwidth is around 20 MB/s to 200
MB/s [14, 100]. As a result, we choose the checkpointing overhead
(T _chk) as 32s, 320s, 3200s to represent different hardware scenar-
ios. A similar set of values is used in previous efforts [13, 16, 35]. We
emulate the system with 100,000 nodes for a long simulation time
(10 years, i.e., Total_Time is 10 years). Previous work [69] shows
that systems in such a scale usually experience around 2 failures
per day (MTBF = 12 hours). Based on this data, we scale MTBF as
in [13] for 200,000 and 400,000 nodes. As a result, MTBF for them
are 6 and 3 hours respectively.

Results for system efficiency. Figure 9 shows the system ef-
ficiency with and without EasyCrash under different checkpoint
overhead. We show the benchmarks with the lowest and highest
recomputability (FT and SP respectively), and the average recom-
putability of all benchmarks. The results for other benchmarks can
be found in Appendix A.9. EasyCrash improves system efficiency

we use Young’s formula, T/ =
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Figure 9: System efficiency without and with EasyCrash when the
system MTBF is 12 hours. The x-axis shows different checkpointing
overhead. “Avg” stands for “average”.
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Figure 10: System efficiency for CG without and with EasyCrash
when the system scales from 100,000 to 200,000 and 400,000 nodes

by 2%-24%. On average, the system efficiency with EasyCrash is
improved by 2%, 3% and 15% when the checkpoint overhead is 32s,
320s, and 3200s respectively.

Furthermore, we evaluate the system scalability with EasyCrash.
We evaluate all benchmarks but only present CG because of space
limitation. Results for other benchmarks can be found in Appen-
dix A.9. Figure 10 shows the efficiency with and without EasyCrash
at different system scales. With EasyCrash the system efficiency
always outperform that without EasyCrash. This trend is consistent
with all benchmarks. The system with EasyCrash achieves better
efficiency as the system scale increases.

Determining 7. To ensure the system with EasyCrash has higher
efficiency than with C/R, the application recomputability must be
higher than a threshold 7 (see Section 5.2). Given Total_Time and
Equations 8 and 9, we calculate a lower bound of Rg 45y crash, Which
is 7 (see Equation 12 in Appendix A.8 for details).

8 DISCUSSIONS

Determining how/when to use EasyCrash. To decide whether
to use EasyCrash, we need multiple information, including (1) sys-
tem MTBEF, (2) checkpoint overhead, (3) the application recom-
putability with EasyCrash to select data objects and code regions
and estimate efficiency benefit, and (4) the acceptable minimum
performance loss ts. For (1), (2) and (4), it is reasonable to assume
that the system operator has such information. With (1), (2) and (4),
the recomputability threshold 7 can be calculated.

For (3), we use crash tests (Section 5.3). For an application taking
long execution time, repeatedly performing crash tests is time-
consuming, but if the application is commonly used and repeatedly
executed in production, then the cost of crash tests is amortized. For
those applications that are time-consuming but not executed very
often, we propose the following solution based on an observation
shown in Appendix A.7.



Our observation reveals that by using EasyCrash to persist crit-
ical data objects at selected code regions, the application using
different input problems ¢ shows the similar recomputability. Our
evaluation with ten benchmarks, each of which uses four input
problems, shows that the variance of recomputability is less than
9%. Hence, we can use a small input problem to reduce evaluation
cost. In our evaluation, using the smallest input problem for crash
tests to estimate recomputability for the largest input problem, we
reduce test time by more than 99%. Crash tests for each benchmark
can be finished in less than 14 minutes using two 48-core machines
shown in Table 8. The rationale to support the above solution is
that EasyCrash judiciously chooses critical data objects and code
regions, hence effectively guarantees application recomputability.

To reduce evaluation cost, we cannot use an arbitrarily small
input problem. Our empirical observation reveals that to enable
accurate estimation of application recomputability for a large input
problem, the size of all non-critical data objects in the application
using a small input problem should be at least 2x larger than the last
level cache size. This is because data accuracy loss for non-critical
data objects is not bounded by EasyCrash when a crash happens;
The application relies on hardware caching effect to persist them.
If most of them can be fit into the cache and not persisted often,
data inconsistent rate can be high and application recomputability
can be reduced, which results in an under-estimation of application
recomputability for the large input problem.

What kind of application is not suitable? Two categories
of applications are not suitable for EasyCrash. (1) Applications
with small data objects and small memory footprint. When a crash
happens to the application, most of the application data are resident
in the cache and lost. To ensure high recomputability, we have to
persist data objects frequently, which causes high runtime overhead.
(2) Applications with no tolerance for computation errors. These
applications regard any application outcome different from that of
the golden run as incorrect. Many of our crash-and-restart tests
generate outcomes different from those of the golden run, but these
tests pass the acceptance verification.

For (1), the system can disable EasyCrash and only employ the
traditional checkpoint mechanism to handle failures. Because of
the small memory footprint of the application, the checkpoint is
small and can be stored in NVM with small overhead.

For (2), when the application outcome is different from that of
the golden run, the users can claim a silent data corruption (SDC)
happens [44, 98]. With the acceptance verification, many applica-
tions treat this kind of SDC as benign and ignorable. Examples
of these applications include many iterative solvers and machine
learning training workloads, which have been leveraged in the re-
cent approximate computing research [18, 72, 73, 83, 84, 93]. The
applications that cannot tolerate SDC cannot use EasyCrash.

Why not flush the whole cache hierarchy using WBINVD?
WBINVD is an x86 instruction that writes back all dirty cache lines
in the processor’s private caches to main memory and invalidates
the private caches [51]. Using WBINVD, there is a potential to skip
the selection of data objects, simplifying EasyCrash. However, we
do not use it because of the following reasons. (1) WBINVD is a

®The application using different input problems should use the same algorithm and
does not have control flow difference between input problems.
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privileged instruction, preventing the program to perform cache
flushing at the user level; (2) After executing WBINVD, the processor
does not wait for the shared caches to complete their write-back
before proceeding with instruction execution. There is no guarantee
on when flushing shared caches is completed, even with fence
instructions. (3) WBINVD is costly, especially on a manycore platform,
because of cache coherence overhead.

9 RELATED WORK

Some efforts focus on establishing crash consistency in NVM [25,
33, 59, 96, 97] by software- and hardware-based techniques. Build-
ing an atomic and durable transaction by undo- and redo-logging
mechanisms in NVM is the most common method to enforce crash
consistency [21, 33, 49, 97]. Some work on NVM-aware data struc-
tures [96, 103] re-design specific data structures to explicitly trigger
cache flushing for crash consistency. However, the existing work
can impose big performance overhead and extensive changes to
the applications, which may not be acceptable by HPC. Different
from the above work that relies on strong guarantees on crash
consistency and heavily involves programmers to enforce crash
consistency, EasyCrash enables automatic exploration of applica-
tion recomputability without extensive changes to applications.

A few recent efforts focus on using NVM for HPC fault toler-
ance [8, 37, 104]. They avoid flushing caches for high performance,
and rely on algorithm knowledge [104] or high requirements on
loop structures [8, 37] to recover computation upon application
failures. EasyCrash is significantly different from them: EasyCrash
aims to explore application’s intrinsic error resilience and leverage
consistent and inconsistent data objects for recomputation; Easy-
Crash is general, because it does not have high requirement on
code structure or application algorithms.

Approximate computing trades computation accuracy for better
performance by leveraging application intrinsic error resilience.
LetGo [13] is an example of approximate computing. Once a failure
happens, LetGo continues application execution. EasyCrash is sig-
nificantly different from LetGo. EasyCrash loses dirty data in caches
when a crash happens, and selectively flushes data objects in some
code regions to guarantee the improvement of system efficiency.
Letgo does not lose data in caches and provides no guarantee on the
improvement. LetGo does not consider differences of code regions
and data objects in their impacts on application recomputability.
EasyCrash is highly NVM oriented, while LetGo is not.

10 CONCLUSIONS

The emergence of NVM provides many opportunities for HPC to
enable scalable scientific simulation and high system efficiency.
However, how to integrate NVM into HPC is challenging, because
of high requirements of HPC on performance, resource consump-
tion, and code maintenance. This paper focuses on leveraging the
non-volatility of NVM for HPC under failures. We introduce a novel
methodology that relaxes the requirement on crash consistency
(but with constraints) for smaller memory consumption, higher
system efficiency, smaller number of writes and few application
modification. Based on the characteristics of error resilience intrin-
sic to HPC applications, we demonstrate the great potential of this
methodology with a spectrum of HPC applications.
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Appendix A DISCUSSIONS

We add the following discussions to supplement the paper. The dis-
cussions present a survey on HPC applications (Appendix A.1), the
memory organization in Optane DCPMM (Appendix A.2), NVCT
configuration for application recomputability study (Appendix A.3),
model annotations and APIs in EasyCrash design and an example
to show how to use EasyCrash (Appendix A.4), some details on the
selection of data objects and code regions after using EasyCrash (Ap-
pendix A.5), performance evaluation results with emulated NVM
based on DRAM (Appendix A.6). The discussions also add justifica-
tions on our proposed solutions to avoid the overhead of crash tests
based on the correlation between small and large input problems
(Appendix A.7), formulation to calculate r (Appendix A.8), more
end-to-end evaluation results for coordinated checkpointing (Ap-
pendix A.9), and extension of performance modeling in Section 7 to
consider uncommon uncoordinated checkpointing (Appendix A.10).

A.1 A Survey on HPC Applications

We study 60 HPC applications from the following benchmark suites,
SPEC OMP 2012 [2], Rodinia [22], SPEC CPU 2006 [1], PBBS [92],
NPB [11], PARSEC [15], and six representative HPC applications [4,
5, 31, 39, 47, 67]. Table 3 reveals that all of these applications in
various scientific and engineering fields have a main computation
loop which dominates the execution time, and 51 of them have a
verification phase.

A.2 Memory Organization in Optane DCPMM

Figure 11 shows memory organization in Optane DCPMM. In the
app-direct mode, DRAM and NVM are logically and physically
placed side by side. DRAM and NVM shares a physical address
space but with different addresses. With this mode, cache flushing
writes back cache blocks to NVM. When a crash happens and the
application restarts, data objects in DRAM are lost and loaded from
last checkpoint, and data objects in NVM are loaded from a memory

mapped file [50, 88, 97].

| DRAM |

| CPU |

{
< Memory Bus
/\

| NVM

Figure 11: Memory organization in Optane DCPMM.

A.3 Cache Configuration in NVCT

We use NVCT to examine data objects in main memory and caches
after a random crash happens. Table 4 shows the configuration of
the cache hierarchy for our application recomputability study.

A.4 Model Annotation and EasyCrash APIs
Table 5 summarizes model parameters used in Section 5. Table 6
shows the APIs provided by EasyCrash.

An example. Figure 12 shows an example of how the user uses
EasyCrash APIs listed in Table 6. This example is a multi-grid
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(MG) numerical kernel from NPB benchmark suite (We see MG in
Section 3 too).

When using EasyCrash, the user is expected to use Intel PMDK [49]
to create a memory-mapped heap file in NVM and load data objects
(after a crash) from the file in NVM. PMDK uses environment vari-
ables to control location and size of memory mapped file to load
data objects. The user uses the EasyCrash’s customized memory
allocation API to identify all candidate data objects, shown in Lines
4 and 5 in Figure 12. The user also need to insert the API easycrash()
to specify code regions and main loop. In this example, the API
is inserted at the end of first level inner loops and the main loop,
which is exemplified in Lines 13,17,21,25, and 27. Note that if there
is no first-level inner loop, the user is free to insert the API at the
end of the main loop or other code regions.EasyCrash automati-
cally decides which data objects should be persisted (Section 5.1)
and where to persist them (Section 5.2) to maximize application
recomputability. Based on the decisions, EasyCrash persists critical
data objects by cache flushing exemplified in Lines 19, 20 and 22 in
Figure 2a.

1 #include <libvmmalloc.h>
2 #include <libeasycrash.h>

easycrash_mem_alloc (NR+sizeof (double));
easycrash_mem_alloc (NR+sizeof (double));
¢ void main(int argc, char ««~argv) {

int it;

i double u =
5 double r =

8 initialize ();
9 for (it = 1; it++) {//main comp loop
10 for () { // a first—level inner loop; Rl

it <= nit;

for () {...}/

easycrash ();

a second—level inner loop

for () {

/ a first—level inner loop; R2
easycrash ();

19 for () { // a first—-level inner loop; R3

21 easycrash ();

23 for () { // a first—level inner loop; R4
easycrash ();

2 }
27 easycrash ();
s }

29 //result verification

Figure 12: MG with a few changes to use EasyCrash. The changes
are highlighted with blue.

A.5 Results of Selection of Data Objects and
Code Regions After Applying EasyCrash

Selection of data objects. In Section 5.1, we explain how Easy-
Crash selects data objects as critical data objects. Leveraging the
statistical correlation analysis, EasyCrash selects data objects from



Table 3: HPC Applications in our study. “Iter” = “have an iterative code structure?”. “Veri” = “have a verification phase?”.

ID # | Benchmarks Iter. | Veri. ID # | Benchmarks | Iter. | Veri. ID# | Benchmarks Iter. | Veri.
1| md Y Y 21 | astar Y Y 41 | CG Y Y
2 | bwaves Y Y 22 | libquantum Y N 42 | MG Y Y
3 | nab Y Y 23 | sjeng Y N 43 | FT Y Y
4 | bt331 Y Y 24 | hmmer Y N NPB 44 | IS Y Y
5 | botsalgn Y Y 25 | gobmk Y N 45 | EP Y Y
6 | botsspar Y Y 26 | gamess Y Y 46 | BT Y Y
SPEC 7 | ilbdc Y Y 27 | mile Y Y 47 | SP Y Y
(OMP) 8 | fma3d Y Y SPEC 28 | zeusmp Y N 43 | LU Y Y
9 | swim Y Y CPU 29 | gromacs Y Y 49 | blackscholes Y Y
10 | mgrid331 Y Y 30 | cactusAMD Y Y 50 | ferret Y Y
11 | applu331 Y Y 31 | leslie3d Y N 51 | dedup Y Y
12 | smithwa Y Y 32 | namd Y Y PARSEC 52 | canneal Y Y
13 | kdtree Y Y 33 | soplex Y N 53 | fluidanimate Y Y
14 | imagick Y Y 34 | calculix Y N 54 | swaptions Y Y
15 | Kmeans Y Y 35 | lbm Y N 55 | LULESH [67] Y N
16 | Hotspot3D Y Y 36 | wrf Y Y 56 | gromacs [5] Y Y
Rodinia 17 | KNN Y Y 37 | tonto Y Y Individual 57 | mpiBLAST [31] Y Y
18 | backprop Y Y 38 | SORT Y Y HPC apps 58 | PENNANT [39] Y Y
19 | Myocyte Y Y PBBS 39 | RDUPS Y Y 59 | SuperLU [4] Y Y
20 | Streamcluster Y Y 40 | SF Y Y 60 | miniFE [47] Y Y
Table 4: Cache configuration in NVCT for our crash tests in Sec- Table 5: Model annotation
tion 4.
Parameter | Description
L1 Cache: 32KB and 8-way set associativity P # of candidates of critical data objects
L2 Cache: 1MB and 12-way set associativity R Spearman’s rank correlation coefficient
L3 Cache: 19.25MB, 11-way set associativity ar The ratio of the accumulated execution time of the code
Cache Line Size: 64 byte region k to the total execution time of the application
Write Policy: write-back, write-allocation Ck Recornpl.xtability of the Cf’_(ie region k
Eviction Policy: LRU policies Y Application recomputability i _
Ix The performance loss due to persistence operations in
the code region k
some candidates and persists the selected data objects to improve Ls Runtime ovFrhead because of persistence operations in
application recomputability. Table 7 shows the results of selection the application i i —
of data objects for benchmarks listed in Table 1. 4 T},Ie system efficiency goal for long-running applications
. . . . with EasyCrash
Selection of Code Reglons. In‘S.ectlon 32, V.Ve explain how N and M # checkpoint and # crashes in the whole system time
EasyCrash selects code regions as critical code regions. EasyCrash W + code resions in th Ticati
. > ) . : gions in the application
persists critical data objects at critical code regions. Table 1 shows Vi # crashes that go to the last checkpomnt for recovery after
total number of code regions in each benchmark. More details on using EasyCrash
which code regions are selected can be found from our open source M # crashes that use EasyCrash to recompute successfully
code’. Any para. | The corresponding parameters after applying EasyCrash
with
A.6 Performance Evaluation with “prime”
DRAM-based NVM Emulation g zest reljomputability of the code region k after persisting
ata objects
We evaluate EasyCrash on two platforms. In Section 6, we use Intel < The freiluency to persist data objects in a loop-based code
Optane DCPMM,; In this section, we use DRAM to emulate NVM. region
Tables 8 and 9 summarize the two platforms we use for evaluation ¥ Recomputability when using x as the frequency for cache
(including crash emulation and performance study). flushing in the code region k

Effectiveness of EasyCrash. Figure 13 shows the application
recomputability before and after we apply EasyCrash on the DRAM-
based NVM emulation platform. Similar as Section 6, we report how
different techniques(i.e., selecting data objects and selecting code
regions) helps improve application recomputability. To show the
effectiveness of EasyCrash, we also show the best recomputability

"https://github.com/NVMCrashTester/NVCT/tree/master/Benchmarks
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results, and compare them with those after applying EasyCrash.
The measurement method for the best recomputability results is
described in Section 6. The overhead of achieving the best recom-
putability is very high (shown in the last column of Table 10), which



Table 6: EasyCrash APIs

Signature Description
void* easycrash_mem_alloc(size_t size); A customized memory allocation API to identify candidate data objects
for EasyCrash.

void easycrash();

An API to identify the end of first-level inner loop (or code region if there
is no inner loop).

Table 7: The candidates of critical data objects and selected critical data objects for benchmarks listed in Table 1.

Benchmarks Candidates of critical data objects Selected critical data objects

CG X, I,p,q 2 P, q

MG ur u

FT tyl, ty2, u0, ul tyl, ty2, u0, ul

IS key_array, key_buff1, key_buff2, bucket_ptrs bucket_ptrs

BT us, vs, ws, gs, tho_i, square, u, rhs, ue, fjac, njac, lhs us, vs, ws, gs, tho_i, square, u

LU u, rsd, fret, gs, rho_i, rsdnm, a, b, ¢, d, au, bu, cu, du u

SP u, us, vs, ws, gs, rho_i, speed,square, rhs, cv, rhon, rhos, rhoq, lhs, lhsp, lhsm u, us, vs, ws, gs, rho_i, speed, square
botsspar tmp tmp
LULESH m_x,m_y,m_zm_xd,m_ydm_zdm_xddm_yddm_zddm_fx, m_fy, m_fz, m_symmX, m_symmY, m_symmZ m_symmX, m_symmY, m_symmZ
kmeans cluster_centres cluster_centres

Table 8: DRAM-based NVM emulation platform.“Mem.” stands for
“main memory”.

CPU:  Two Xeon Gold 6126 processors (Skylake) @ 2.6 GHz
Mem.: DDR4 129GB BW: 106 GB/s Latency: 87 ns

Table 9: Optane DCPMM platform.“Mem.” stands for “main mem-

»

ory”.

CPU:
Mem.:

Two Xeon(R) Platinum 8260L CPU @ 2.4 GHz
Optane DCPMM 1.5TB
Bandwidth: read: 39 GB/s
Latency: sequential: 174 ns

write: 13GB/s
random: 304 ns

means the method to get the best recomputability is not a practical
solution.

Figure 13 shows that EasyCrash achieve very high recomputabil-
ity. The difference between the best recomputability and the recom-
putability after applying EasyCrash is only 9% at most. Except for
CG, the recomputability after applying EasyCrash is pretty close
to the best one, with a difference of only 4% on average. Further-
more, EasyCrash significantly improves application recomputabil-
ity. The average recomputability of all benchmarks after applying
EasyCrash is 82%, while it is 28% before applying EasyCrash. The
above observations are consistent with what we have on the Op-
tane DCPMM platform shown in Section 6. Compared with the
application recomputability on Optane DCPMM, the application
recomputability on the emulated NVM is slightly better (by 5% on
average). This is because the emulated NVM has higher memory
bandwidth and lower latency than Optane DCPMM, which allows
EasyCrash to persist data objects more frequently. In summary,
EasyCrash effectively adapts to the hardware changes to improve
application recomputability, and shows great potential for future
NVM.
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100%

ﬁ
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G MG FT IS BT w SP botsspar LULESH kmeans
Figure 13: Application recomputability with different methods. Fig-
ure annotation: “EC”, “best”, and “VFY” stand for EasyCrash, best

recomputability, and verified recomputability, respectively.

Performance overhead. We measure runtime overhead in-
curred by EasyCrash. Table 10 reports execution time of persisting
critical data objects for once (i.e., one persistence operation) and
the number of persistence operations performed by EasyCrash;
Table 10 also shows application execution time normalized by exe-
cution time without any persistence operation.

Compared with the overhead of persisting all candidate data ob-
jects at the end of each iteration of the main computation loop (19%
on average), EasyCrash is much lightweight. The runtime overhead
with EasyCrash is no larger than 2.5% (bounded by ts = 3%). We
also evaluate the overhead of achieving the best recomputability
by persisting critical data objects at the end of each iteration of the
loop in each code region (i.e., the highest cache flushing frequency).
The runtime overhead is 35% on average, which is much larger than
EasyCrash.

A.7 Recomputability Correlation between
Small and Large Input Problems

In Section 8, we propose a solution to avoid expensive crash tests
and enhance the usability of EasyCrash. The solution is based on
the observation that given an application, its recomputability for



Table 10: Normalized execution time. “Norm” = “normalized”. “EC”
= “EasyCrash”. “best” = “the best recomputability”

. - . Norm. Norm. Norm. exe.
Time for persisting | # of persistence . . X -

critical data for once| operations exe. time exe. time time achieving
with EC | without EQ the best.
CG <0.001 s 75 1.004 1.20 1.24
MG 0.035 s 40 1.012 1.26 1.24
FT 0.032's 80 1.016 1.22 1.12
1S 0.030 s 10 1.011 1.15 1.43
BT 0.034 s 200 1.025 1.10 1.34
Sp 0.034 s 200 1.022 1.23 1.55
LU 0.033 s 250 1.025 1.23 1.58
botsspar 0.030 s 200 1.015 1.28 1.62
LULESH 0.030 s 293 1.016 1.25 1.43
kmeans <0.001 s 36 1.000 1.00 1.00
Average %~ 0.026 s 138 1.015 1.19 1.35

small and large input problems is similar and correlated. In this
section, we present our study that makes the observation.

For each benchmark in our evaluation (Table 1), we try three
more input problems (in total, we have four input problems for
each benchmark in our evaluation). Those input problems are sum-
marized in Table 11. We persist the same critical data objects at the
same code regions for all input problems. For all input problems,
we use the same frequency to persist data objects (The frequency
is the same as the one used in Appendix A.6.).

Figure 14 shows application recomputability for all input prob-
lems. The figure reveals that application recomputability remains
stable across input problems. The variance of application recom-
putability is less than 9%. More importantly, using a small input
problem can significantly reduce crash test time for a large input
problem. Table 12 shows crash test time, including the time to per-
form two crash test campaigns (see Section 5.3) for various input
problems. We use two machines described in Table 8, each of which
uses 48 cores to run crash tests. The crash test times increase as
the input problem becomes bigger. Using the input 1, the crash test
time is less than 14 minutes for each benchmark, while using the
input 3, the crash test time is up to 20 hours. Using the input 1,
we significantly reduce crash test time for the input 3 (the input
problem used in Section 6) by up to 152 times (68 times on average).

A.8 Formulation of Calculating r

7 is a threshold to guarantee the improvement of system efficiency
after using EasyCrash. The improvement of system efficiency (A, f)
is modeled in Equation 10 based on the definition of system effi-
ciency. In particular, the system efficiency is the ratio of useful
computation (N X T) to total execution time (Total_Time). To en-
sure the improvement of system efficiency with EasyCrash, we
must have A pp > 0.

Arr o N’ XT’ NxT
ff = Total Time Total Time

(10)

We replace T” and T in Equation 10 with Equations 6 and 8
respectively, and get a new formulation shown in Equation 11.
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Aeff = ((N - N/) X T_chk +
Mx REasyCrash x(T_r - T’_r) +
1
Total _Time

(11)
Since Agrp > 0, we have Equation 12 based on Equation 11.
Equation 12 gives a lower bound of Rg4sycrash, Which is 7.

M x (T _vain — (1 = Rggsycrash) X T _vain)) x

(N’ = N) X T_chk + M x (T’ _vain — T_vain)
MX(T_r—T’'_r +T’_vain)

REasyCrash >

(12)

A.9 More End-to-End Evaluation Results for
Coordinated Checkpointing

In Section 7, we show system efficiency and scalability for a few
benchmarks because of space limitation. In this section, we add
results for all benchmarks. Figure 15 shows the system efficiency
without and with EasyCrash. EasyCrash improves system efficiency
for all benchmarks. On average, EasyCrash improves system effi-
ciency by 2%, 6% and 20% when the checkpointing overhead is 32s,
320s and 3200s respectively. We further evaluate system scalability
with and without EasyCrash.

Figure 16 shows the results for scalability evaluation. For all
benchmarks, with EasyCrash the system efficiency is always better
than without EasyCrash. When the system scale is 400,000 nodes,
we achieve the largest improvement in system efficiency: The im-
provement is 4% and 27% on average, when the checkpointing
overhead is 32s and 3200s respectively. Also, the the improvement
of system efficiency becomes larger when the system scale becomes
larger, demonstrating the effectiveness of EasyCrash.

A.10 Modeling of Uncoordinated
Checkpointing
With uncoordinated checkpointing [38], each process has auton-
omy to take checkpoints, and there is no synchronization between
processes when checkpointing happens. Processes record the de-
pendencies among their checkpoints caused by message exchange
during failure-free computation, for the benefit of failure recovery.
During a recovery, processes need to iterate to find a consistent
state among all checkpoints taken by processes.

Our modeling of uncoordinated checkpointing is an extension
of the modeling of coordinated checkpointing in Section 7. The
modeling of uncoordinated checkpointing considers the differences
between the two checkpointing mechanisms, which are summa-
rized as follows. (1) With uncoordinated checkpointing, the time
for writing a checkpoint can he hidden. This means that when
one process takes a checkpoint, another process is doing computa-
tion, effectively overlapping computation time with checkpointing
time. (2) With uncoordinated checkpointing, the recovery time is
longer, because of the search of a globally consistent state among
all checkpoints.

Based on the above discussion, we make changes to the fol-
lowing model parameters of coordinated checkpointing to model
uncoordinated checkpointing. Other parameters remain the same.



Table 11: Benchmark information for crash experiments. “fp” = “footprint”; “DO” = “data object”.

Benchmarks in}i‘;tfl izl input f2 izl inpu: 3 T input ? T
input ! P crltl&fa input mem P cntl&fa input mem P cr\tléa input mem P crmc‘a
P size DO size P size DO size P size DO size P size DO size
CG CLASS A 55MB 290KB CLASS B 398MB | 1.7MB CLASS C 947MB 2.3MB CLASS D 9GB 7.2GB
MG CLASS A 431MB | 310MB CLASS B 431MB | 310MB CLASS C 3.4GB 1.2GB CLASS D 27GB 10.8GB
FT CLASS A 321MB | 257MB CLASS B 1.25GB 1GB CLASS C 5.1GB 4.0GB CLASS D 80GB 64GB
IS CLASS A 762MB 4KB CLASS B 1.0GB 4KB CLASS C 1GB 4KB CLASS D 2GB 8KB
BT CLASS A 815MB 23MB CLASS B 950MB | 91MB CLASS C 1.43GB 361MB CLASS D 11GB 5.6GB
LU CLASS A 820MB 10MB CLASS B 936MB | 41MB CLASS C 1.4GB 164MB CLASS D 9GB 2.5GB
SP CLASS A 827MB | 24.8MB CLASS B 965MB 99MB CLASS C 1.47GB 394MB CLASS D 11GB 6.1GB
botsspar | ™30 05 | 364MB | 15MB | 00710 1 GR | 191MB | ™20 0701 | 374G | 2.45GB GB | ™71 | 78GB | 4.29GB
(test) (train) (ref) ©
LELUSH s=50 870MB 860KB =80 1.1GB 1.5MB s=100 1.41GB 20MB s=120 1.88GB 37MB
kmeans 819200.txt 3.1MB 20B kdd_cup.txt 222MB 20B 100000_34.txt | 805MB 20B 300000_34.txt | 860MB 20B
EMinputl Minput2 @input3 Ninput4
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Figure 14: Application recomputability with different problems as application input.

[SHENE} %)
2% 888 e8yes gy 2 8 g 8
Qo [ a v « (<] —
= O v =2 2 T Q0 = O v
s 8 ¢« mamgmgi s 8 2 &
e}
£ O €
o
_DAX
chk =32s

IS_EC

BT_EC
LU_EC

chk =320s

O O [SEENE) S}
g 8w 8w 28 884 eE8ey e
o @ 4 = v = a o
S 5 7 8 ¥ $ggkE 2R 2EH 53F g8
o O £ @ = 2 o £ ®
84 =2 ¢ g 4O o
5 2 & 5 2 &
e = Q =
chk =3200s

Figure 15: System efficiency without and with EasyCrash when the system MTBF is 12 hours. The x-axis shows checkpoint overhead.

e T chk: The time for writing a system checkpoint. It can
be completely hidden (i.e., T_chk = 0), no hidden at all, or
somewhere in between. In the worst case, the checkpointing
overhead is completely exposed to the critical path of com-
putation. We model the checkpoint overhead as T_chk =
a X T_chk_co, where T_chk_co is the time for writing a co-
ordinated checkpointing, and « quantifies how much check-
pointing overhead is hidden (0 < a < 1).

T _r: The time for a recovery. This is the search time to
identify a globally consistent state, which is dominated by
1/O time for reading previous checkpoints until a globally
consistent state is found. On average, half of all checkpoints
needs to be read to identify a globally consistent state. Hence,
T_r_unco=n/2XT_r_co, where T_r_unco and T_r_co are
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the recovery time for uncoordinated and coordinated check-
pointing respectively, and n is the number of checkpoint
intervals when the crash happens (0 < n < N and N is total
number of checkpoint intervals without any crash). Similar
to the existing work [16, 41], we assume T_r_co = T_chk_co.
T_sync: The time for synchronization across nodes. T_sync =
0.

T_vain: The wasted computation time. When the applica-
tion rolls back to a globally consistent checkpoint, the com-
putation already performed between the checkpoint and
crash point is lost. On average, half of useful computation is
wasted per recovery (i.e., T_vain = n X T X 1/2, where T is
the checkpoint interval, and n is the number of checkpoints
taken since the application starts.).
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Figure 16: System efficiency without and with EasyCrash when the system scales from 100k to 200k and 400k nodes.
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Table 12: Crash test time with NVCT
input1 | input?2 | input3 input 4
CG 4m50s 29m18s 275m22s 710m22s
MG 6m30s 28m14s 854m46s 843m21s
FT 2m48s 25m10s 362m46s | 2362m22s
IS 1m42s 8m36s 26m58s 38m34s
BT 11m48s | 244m36s | 804m22s | 3204m46s
LU 13m42s | 322m48s | 1196m14s | 4602m54s
SP 7m10s | 154m46s | 481m26s | 1962m46s
botsspar | 6m50s | 90m26s | 358m46s | 1222m42s
LULESH | 5mi8s 21m8s. 50m18s 62m34s
kmeans 2m46s 4m26s 20m34s 86m42s

Choice of parameters. The choice of T_chk depends on com-
munication patterns in the application (e.g., how intensively com-
munication happens, and dependencies between message exchanges).
In our evaluation, we use 0, T_chk_co, 1/2T_chk_co corresponding
to the cases of best performance, worst performance of checkpoint-
ing, and in between. The choice of T_r and T_vain depends on the
value of n. Given crash randomness, n can be any value between
1 and N. But the case of n = N or any large value in the range
of [1, N] is rare, because a large-scale system without any crash
for a long time is rare. Given the checkpoint interval and typical
crash frequency, we empirically decide that n is in the range of
[1, 5]. Furthermore, for each case of n (we have five cases of n),
we calculate T_r and T_vain, and then use the average values of
T_r and T_vain of the five cases as the final values of T_r and
T_vain. This method is used to ensure that our model is general
and representative.

Similar as Section 7, we emulate the system with 100,000 nodes
for along simulation time of 10 years. As shown in previous work [69],
such a system usually experiences two failures per day (MTBF = 12
hours).

Results for system efficiency. Figure 17 shows the system ef-
ficiency with and without EasyCrash with various uncoordinated
checkpointing overhead (T_chk_unco = a X T_chk_co, a =0, 1/2,1
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Figure 17: System efficiency without and with EasyCrash when the
system MTBF is 12 hours. The x axis shows different overhead of
uncoordinated checkpointing.

and T_chk_co = 32s, 320s, 3200s). We evaluate all benchmarks from
Table 1, and we show average recomputability of all benchmarks, as
well as two benchmarks with the lowest and highest recomputabil-
ity (i.e., FT and SP respectively). In general, EasyCrash improves
system efficiency by 1% to 60% for uncoordinated checkpointing.
Moreover, as o becomes larger, the improvement of system effi-
ciency with EasyCrash is larger. This result is interesting, because
a larger « indicates that the overhead of uncoordinated checkpoint
is not hidden very well. Using EasyCrash, we can effectively reduce
the impact of this overhead on system efficiency.
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Figure 18: System efficiency for CG without and with EasyCrash
when the system scales from 100,000, 200,000 to 400,000 nodes. Dif-
ferent subfigures show system efficiency with different overheads
of uncoordinated checkpointing.
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Compared with using EasyCrash for coordinated checkpointing
in Section 7, using EasyCrash for uncoordinated checkpointing
causes larger improvement in system efficiency. This is because
uncoordinated checkpointing suffers from a larger cost for failure
recovery than coordinated checkpointing. Using EasyCrash, the
system is able to restart immediately from the crash without rolling
back to the last globally consistent state, which significantly reduces
recovery cost.

Furthermore, we evaluate the system scalability with EasyCrash
and coordinated checkpointing. Figure 18 shows the results for CG,
but the performance trend is consistent for all benchmarks: As the
system scale is larger, the system with EasyCrash achieves higher
efficiency.
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