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How to accurately and efficiently label data on a mobile device is critical
for the success of training machine learning models on mobile devices.
Auto-labeling data on mobile devices is challenging, because data is in-
crementally generated and there is a possibility of having unknown labels
among new coming data. Furthermore, the rich hardware heterogeneity
on mobile devices creates challenges on efficiently executing the auto-
labeling workload. In this paper, we introduce Flame, an auto-labeling
system that can label dynamically generated data with unknown labels.
Flame includes an execution engine that efficiently schedules and exe-
cutes auto-labeling workloads on heterogeneous mobile processors. Eval-
uating Flame with six datasets on two mobile devices, we demonstrate
that the labeling accuracy of Flame is 11.8%, 16.1%, 18.5%, and 25.2%
higher than a state-of-the-art labeling method, transfer learning, semi-
supervised learning, and boosting methods respectively. Flame is also
energy efficient, it consumes only 328.65mJ and 414.84mJ when labeling
500 data instances on Samsung S9 and Google Pixel2 respectively. Fur-
thermore, running Flame on mobile devices only brings about 0.75 ms
additional frame latency which is imperceivable by the users.

CCS Concepts: •Heterogeneous Hardware→Mobile Processors; •Data
Labeling→ Incremental Learning.
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data labeling, mobile devices
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1 INTRODUCTION
Machine learning (ML) has been increasingly utilized in mobile
devices (e.g., face and voice recognition and smart keyboard).
However, many ML applications running on mobile devices (such
as smartphone) mainly focus on ML inference not ML training.
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Recently, training machine learning (ML) models on mobile de-
vices instead of on clouds attracts more and more attention, be-
cause of the concerns on data privacy, security and network band-
width of using clouds for training [Eom et al. 2015; Konečnỳ et al.
2016]. For example, Google trains a RNN model on mobile de-
vices for keyboard-based input prediction with federated learn-
ing [Konečnỳ et al. 2016]. However, data generated on mobile
devices usually do not have labels, causing difficulty of training
ML models (especially supervised ML models). How to accurately
and efficiently label data on mobile devices is critical for the suc-
cess of training ML models on mobile devices. Using automatic
labeling is a solution to address the above problem. Studies of
automatic labeling in the past decade have been focused on data
stored on servers [Haas et al. 2015; Ratner et al. 2017; Varma and
Ré 2018; Yang et al. 2018]. Those approaches do not consider hard-
ware resource constraint and only work well on static datasets
(i.e., the number of data instances and labels are pre-determined
and fixed).

Compared with data labeling on servers, labeling data gener-
ated on mobile devices faces some unique challenges.

Hardware resource constraint. The existing methods [Ratner
et al. 2017; Varma and Ré 2018] build labeling functions based on
supervised machine learning models to label data. Each labeling
function works well for only a portion of data. Hence a large num-
ber of labeling functions (usually more than 100) are needed to
have high data coverage. However, using those functions requires
abundant computational resources and memory space (e.g., tens
of GBs), while mobile devices typically do not have. The label-
ing method on mobile devices must be lightweight to make data
labeling feasible.

Labeling of dynamic data. Data on a mobile device are dy-
namically generated in a streaming manner; Those dynamically
generated data can belong to a new label unseen in the existing
set of labels. For example, in real-world mobile applications, such
as image classification, the number of the labels is not fixed, and
new unseen labels may occur at any time during the usage. When
the data instances belong to new unseen labels (e.g., new types of
flowers), those mobile applications can not recognize the emer-
gence of the new unseen labels.

Using heterogeneous hardware in mobile processors. Mo-
bile processors are often equipped with rich heterogeneity for
high energy efficiency and performance [Liu et al. 2019b; Wu
et al. 2019]. For example, Samsung S9 has eight CPU cores, a GPU,
and a Hexagon Digital Signal Processor (DSP). The rich hardware
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heterogeneity makes the workload scheduling complicated, be-
cause we must comprehensively analyze the characteristics of the
workloads and choose proper computing units for high energy
efficiency and performance.

To address the above challenges, we introduce Flame, an auto-
labeling system for mobile processors. Flame is featured with
mobile hardware-aware algorithms and system designs.

To overcome the hardware resource constraint, Flame includes
a new lightweight method, named clustering with minimal im-
purity, to build a number of labeling functions. After the clusters
are built based on a limited number of labeled data instances,
Flame replaces the data instances within the same cluster by the
cluster’s prototypes to reduce the computation overhead. The de-
cision boundary of each labeling function is determined by its
prototypes. Any data instance falling outside the decision bound-
aries of all the labeling functions is identified as a data instance
potentially with a new label. Flame interprets the presence of
a sufficiently large number of such data instances with strong
cohesion among themselves as the emergence of a new label.
Furthermore, because of the dynamic characteristics of the data
to be labeled on mobile devices, the labeling functions must be
updated from time to time to capture the accurate distribution
of data. In Flame, because each labeling function consists of a
number of prototypes, and updating the labeling functions is just
a matter of updating its prototypes.

To guarantee the labeling accuracy, Flame uses two estimators,
Association and Purity, to measure the labeling confidence of
each labeling function. We theoretically show that the use of these
estimators can guarantee the labeling accuracy. Finally, Flame
uses an ensemble method to gather the labeling confidence of
labeling functions to determine final labels.

To utilize the heterogeneous hardware, Flame is featured with a
hardware heterogeneity-aware execution engine to run the auto-
labeling algorithm (§4). The execution engine determines which
part of the computation should be placed on a particular com-
puting unit (CPU, GPU or DSP) based on the characteristics of
workload and hardware. Some computation of Flame is placed
on GPU to shorten execution time, because the computation
can offer high thread-level parallelism and efficiently leverage
fast shared-memory on GPU. Some computation is placed on
DSP (the most power-efficient computing unit), when the energy
consumption of the computation is high. The execution engine
also coordinates the interaction between CPU and DSP to avoid
wakeup latency suffered by CPU for energy saving. We summarize
major contributions as follows.

• We propose a fast, accurate, and lightweight auto-labeling sys-
tem, Flame, for mobile devices. It is the first system to label data
dynamically generated on mobile devices. We implement it on
two realistic mobile phones (Samsung S9 and Google Pixel2).
• The labeling accuracy of Flame is 11.8%, 16.1%, 18.5%, and

25.2% higher than that of Snuba [Varma and Ré 2018] (a state-of-
the-art auto-labeling system), transfer learning, semi-supervised
learning algorithms and boosting methods respectively. Also,
Flame can detect unseen labels while all other systems cannot.

DSP Multi-Core CPU GPU

System Network on Chip Bus

Heterogeneous Mobile Processors

User Apps
(Gmail, etc)

Services
(Auto-labeling, etc)

Run in Foreground Run in Background

Applications

Fig. 1. An example of heterogeneous mobile processors.

• Flame has high energy efficiency. It consumes only 328.65mJ
and 414.84 mJ when labeling 500 data instances on Samsung
S9 and Google Pixel2 respectively, while the full energy of their
battery is 3.88 × 104 and 3.49 × 104J respectively. This makes
Flame a highly feasible system for mobile phones.
• Flame running on a mobile phone has minimum impacts on

the user experience of using another application. Flame brings
only 0.75 ms additional frame latency to the user application.

2 BACKGROUND ON MOBILE PROCESSORS
We introduce background information in this section.
Heterogeneous mobile processors. The modern mobile proces-
sors in mobile devices are characterized with hardware hetero-
geneity. Figure 1 shows such an example commonly found in
many mobile devices (e.g., Samsung S9, Google pixel2, Huawei
P8 and Xiaomi Mi 10). In our study, we use mobile devices, each
of which has eight-core CPU (four slow cores and four fast cores),
mobile GPU, and DSP. DSP is typically the most power-efficient
computing unit in a mobile device [Codrescu et al. 2014]. How-
ever, DSP is not good at handling some operations (e.g., square
root and division).
Mobile applications. The applications running on mobile de-
vices can be classified as foreground and background applica-
tions. The mobile system usually sets a higher priority to run the
foreground applications to enable smooth interaction between
the user and mobile devices. The background applications have
low priority to be scheduled and run by the mobile system. The
background applications are not expected to introduce significant
latency to the foreground applications. Flame is a background
application.

3 MODEL DESIGN
Figure 2 overviews our auto-labeling model. Flame includes three
components, Labeling Functions Generation: a labeling function
generator to generate a number of labeling functions for assigning
labels. Labeling Functions Self-adaption: a self-adaptive strategy
to update the existing labeling functions, detect the emergence of
new unseen labels in a dynamic setting, and build new labeling
functions for the data instances belong to new unseen labels. La-
beling Results Guarantees calculates a labeling confidence value
for each labeling function during data instance labeling, and then
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Fig. 2. An overview of the model design in Flame. (1) Labeling Functions Generation generates a number of labeling functions (LFs) based on the user labeled
data instances, each labeling function includes several prototypes. (2) Labeling Functions Self-adaption applies the LFs on the dynamic unlabeled data, these
LFs can be updated by the Flame. Furthermore, Flame can detect the emergence of new labels and building new labeling functions for the data instances with
new labels. (3) Labeling Results Guarantees calculates a labeling confidence value for each labeling function, then it aggregates all the labeling confidence
values, finally, it assigns labels for unlabeled data instances. (4) The labeled data instances can be used to train discriminative classification models, such as a
deep neural network.

aggregates and verifies the labeling results of Flame for an unla-
beled data instance. The input/output of Flame is discussed as
follows.

Input data. The input data of Flame is a small number of la-
beled data and a large number of unlabeled data. The labeled
data is represented as 𝐷𝐿 = {𝑥𝑖 , 𝑦𝑖 }𝑁𝐿

𝑖=1, where 𝑥𝑖 ∈ 𝑅𝑑 is the
𝑑-dimension features of the data 𝑖 and 𝑦𝑖 ∈ 𝑌 = {1, 2, ...,𝐶}
is the associated label (𝐶 different known labels in total). The
non-stationary unlabeled data is represented as 𝐷𝑈 = {𝑥𝑡 }𝑁𝑈

𝑡=1
(𝑥𝑡 ∈ 𝑅𝑑 ), where 𝑁𝑈 ∈ [0,∞) is the number of unlabeled data.
In our setting, 𝑁𝑈 can be large, as the new data is continuously
generated.

Output data. The output of Flame is the confidence of a label
𝑦𝑖 ∈ 𝑌

′
= {1, 2, ...,𝐶, ...,𝐶′} for data 𝑥𝑖 in the unlabeled dataset𝐷𝑈 ,

where𝑌
′

is the set of result labels including known labels and new
unseen labels (𝐶

′ ≥ 𝐶). Here,𝐶
′ ≥ 𝐶, which indicates that some

unseen labels that are not in 𝑌 may appear in 𝑌
′
, as new data is

incrementally generated. The final labeling confidence value is
calculated through an ensemble method in Flame (§3.3).

3.1 Labeling Functions Generation
We design a lightweight method to generate labeling functions. Ex-
isting studies [Ratner et al. 2017; Yang et al. 2018] use supervised
machine learning models (e.g., Decision Tree, K-Nearest Neigh-
bor) to build labeling functions. However, these methods cannot
work well on mobile devices because of two reasons. First, the
data generated on mobile devices are seldom labeled. Therefore,
using the labeling functions built based on supervised learning
models causes low labeling accuracy. Second, a large number of
labeling functions (more than 100) are needed to have high data
coverage, which requires abundant computational resources and
memory space.

We design an impurity-based clustering method to determine
the boundary of each labeling function. A cluster is completely
pure if the data instances within this cluster belong to the same
label (along with some unlabeled data). Given a limited amount
of labeled data, the goal of impurity-based clustering is to create

a number of clusters by minimizing the intra-cluster dispersion,
and at the same time by minimizing the impurity of each cluster,
we refer it as Clustering with Minimal Impurity. In order to deter-
mine the boundary of each labeling function in fine granularity,
each created cluster is further divided into a number of cliques. A
clique of a cluster is a group of data instances with cohesion larger
than 0.5 in the corresponding cluster, the cohesion is calculated
by a commonly used method called q-NSC [Haque et al. 2016].

Then, we use the prototype of a clique to replace the data in-
stances in that clique. A prototype indicates the best exemplar of
the data instances within a clique. The corresponding prototypes
of all the cliques of a cluster could provide a concise represen-
tation for the entire raw data instances within a cluster. In this
paper, a prototype of a clique is defined as below,

DE�NITION 1. Prototype: the prototype of a clique is a tuple de-
noted by 𝑝 =< 𝜇, 𝑟, 𝑑, 𝑛, 𝑓 >, where 𝜇 is the centroid of the clique, 𝑟
represents the radius of the clique,𝑑 denotes the sum of squared Eu-
clidean distance from data instances in the clique to 𝜇,𝑛 is the total
number of data instances in the clique, and 𝑓 is a vector recording
the number of data instances belonging to different labels in the
clique.

The 𝑓 is referred as frequencies in the rest of the paper. Here
is an example of 𝑓 , 𝑓 = (𝑓1, 𝑓2, ..., 𝑓𝑡 ), where each element 𝑓𝑖 in
𝑓 is the frequency of the corresponding label 𝑦𝑖 assigned to the
data instances. Finally, each cluster is represented by one or more
prototypes depending on the data distribution in the cluster. Each
prototype is denoted by 𝑝𝑖 𝑗 , where the subscript 𝑖 indicates the
index of the 𝑖𝑡ℎ built cluster, 𝑗 > 0 is the prototype index. We
denote the set of prototypes for cluster 𝑖 by P𝑖 , i.e., 𝑝𝑖 𝑗 ∈ P𝑖 .
Figure 3 depicts an example of the relationship among cluster,
cliques, and prototypes.

The boundary of each labeling function is determined by a col-
lection of one or multiple prototypes. Flame maintains a labeling
function pool which is represented as 𝐿𝐹 , assuming 𝐿𝐹 contains
𝐾 labeling functions, that is, 𝐿𝐹 = {𝑙 𝑓𝑖 , ..., 𝑙 𝑓𝐾 }, where 𝑙 𝑓𝑖 ∈ 𝐿𝐹 is
an individual labeling function. Each labeling function 𝑙 𝑓𝑖 could
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Fig. 3. Illustration of the cluster, cliques, and prototypes. In this example,
the cluster consists of three non-overlapping cliques, each of which is repre-
sented by its prototype. The cliques of a cluster can also be overlapped to
cover all the data instances.

Algorithm 1: PrototypeInitialization (𝐷𝑖 𝑗 )
Input:𝐷𝑖 𝑗 : the data instances in clique𝐶𝑖 𝑗 of cluster 𝑖
Output: 𝑝𝑖 𝑗 : the initialized prototype for clique𝐶𝑖 𝑗

1 𝜇𝑖 𝑗 =
1
|𝐷𝑖 𝑗 |

∑
𝑥 ∈𝐷𝑖 𝑗

𝑥 ; // |𝐷𝑖 𝑗 | is the size of 𝐷𝑖 𝑗

2 𝑟𝑖 𝑗 ← max𝑥 ∈𝐷𝑖 𝑗
∥𝑥 − 𝜇𝑖 𝑗 ∥22;

3 𝑑𝑖 𝑗 ←
∑
𝑥 ∈𝐷𝑖 𝑗

∥𝑥 − 𝜇𝑖 𝑗 ∥22;
4 𝑛𝑖 𝑗 ← |𝐷𝑖 𝑗 |;
5 𝑓 ← (𝑓1, ..., 𝑓𝑖 + 1, ..., 𝑓𝐶 );
6 return 𝑝𝑖 𝑗

consisted by𝑀 prototypes, therefore, 𝑙 𝑓𝑖 in 𝐿𝐹 is represented as
𝑙 𝑓𝑖 = {𝑝𝑖1, ..., 𝑝𝑖𝑀 }.
Prototype initialization. The initialization for the prototypes is
based on the limited number of labeled dataset 𝐷𝐿 = {𝑥𝑖 , 𝑦𝑖 }𝑁𝐿

𝑖=1.
Here, the number of labels in 𝐷𝐿 may be small when compared
to the eventual labels that may occur over time. Data instances
associated with label𝑦𝑖 ∈ 𝑌 are denoted by 𝐷𝑖 . 𝐷𝑖 consists of𝑀
cliques (𝐶𝑖1, ...,𝐶𝑖𝑀 ) and the data instances in clique𝐶𝑖 𝑗 are repre-
sented as𝐷𝑖 𝑗 . We create a prototype for each clique by selecting a
data instance from𝐷𝑖 𝑗 , uniformly at random. Algorithm 1 details
the prototype initialization process for a given label𝑦𝑖 ∈ 𝑌 .
Objective function. When building the labeling functions using
the Clustering with Minimal Impurity method, the objective is to
minimize the dispersion and impurity of clusters. We formulate
the objective function as follows,

𝑂𝑏 𝑗 (𝑥) =
∑𝐾

𝑖=1

∑𝑀

𝑗=1

∑
𝑥 ∈𝐷𝑖 𝑗

∥𝑥 − 𝜇𝑖 𝑗 ∥2

+ 𝜆
∑𝐾

𝑖=1

∑𝑀

𝑗=1
𝐴𝐷𝐶𝑖 𝑗 × 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑖 𝑗 (1)

In Equation 1, the first term is used to minimize the dispersion of
data instances within the scope of each prototype;𝐾 is the total
number of labeling functions in 𝐿𝐹 ;𝐷𝑖 𝑗 is the set of data instances
within the scope of the prototype 𝑝𝑖 𝑗 ; and 𝜇𝑖 𝑗 is the centroid of
the prototype 𝑝𝑖 𝑗 . The second term in Equation 1 is used to min-
imize the impurity of data instances in each clique, and 𝜆 is a
hyper-parameter controlling the importance of the second term.
The impurity is constructed based on labeling diversity and the
entropy value of data instances in the scope of a prototype, and it
is calculated as𝐴𝐷𝐶𝑖 𝑗 ×𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑖 𝑗 , where𝐴𝐷𝐶𝑖 𝑗 is the Aggregated
Dissimilarity Count (ADC) of the prototype 𝑝𝑖 𝑗 and 𝐸𝑛𝑡𝑟𝑜𝑡𝑦𝑖 𝑗 is

the entropy of the prototype 𝑝𝑖 𝑗 .𝐴𝐷𝐶𝑖 𝑗 is calculated as follows,

𝐴𝐷𝐶𝑖 𝑗 =
∑
𝑥 ∈𝐷𝑖 𝑗

𝑀∑
𝑗=1

𝐷𝐶𝑖 𝑗 (𝑥, ℓ), (2)

where 𝐷𝐶𝑖 𝑗 (𝑥, ℓ) denotes the Dissimilarity Count (DC) of a data
instance𝑥 in the prototype 𝑝𝑖 𝑗 having the label ℓ , it is calculated as
the total number of labeled instances in that prototype belonging
to labels other than ℓ .That is,

𝐷𝐶𝑖 𝑗 (𝑥, ℓ) = |𝐿𝑖 𝑗 | − |𝐿𝑖 𝑗 (ℓ) |, (3)

where |𝐿𝑖 𝑗 | is the total number of labeled data instances within the
scope of prototype 𝑝𝑖 𝑗 , and |𝐿𝑖 𝑗 (ℓ) | is the number of instances in
the prototype 𝑝𝑖 𝑗 belonging to label ℓ . The entropy in Equation 1
is calculated as follows,

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑖 𝑗 =

𝐶
′∑

ℓ=1
(−
|𝐿𝑖 𝑗 (ℓ) |
|𝐿𝑖 𝑗 |

× log(
|𝐿𝑖 𝑗 (ℓ) |
|𝐿𝑖 𝑗 |

)), (4)

where |𝐿𝑖 𝑗 (ℓ) ||𝐿𝑖 𝑗 | is the prior probability of the label ℓ ,𝐶
′

is the num-
ber of labels.

Algorithm 2: UpdatePrototypes (𝑥𝑛𝑒𝑤 ,P𝑖 ,𝑇𝑖 )
Input: 𝑥𝑛𝑒𝑤 : new coming data instance in cluster 𝑖,

Pi: current prototypes set of cluster 𝑖,
𝑇𝑖 : threshold value for cluster 𝑖,

Output: Updated Prototypes:P𝑢
𝑖

1 𝑘 ← |P𝑖 |; // Current number of prototypes in P𝑖
2 𝐷𝑛𝑒𝑤

𝑖 𝑗
= arg min𝑗=1,...,𝑘 ∥𝑥𝑛𝑒𝑤 − 𝜇𝑖 𝑗 ∥22;

3 if 𝐷𝑛𝑒𝑤
𝑖 𝑗

< 𝑇𝑖 then
// Update the prototypes P𝑖

4 𝜇𝑖 𝑗 ← 1
𝑛𝑖 𝑗+1 (𝑥𝑛𝑒𝑤 + 𝑛𝑖 𝑗 ∗ 𝜇𝑖 𝑗 );

5 𝑑𝑖 𝑗 ← 𝑑𝑖 𝑗 + 𝐷𝑛𝑒𝑤𝑖 𝑗
;

6 𝑛𝑖 𝑗 ← 𝑛𝑖 𝑗 + 1;
7 else

// Create a new prototype 𝑝𝑖,𝑘+1
8 𝑝𝑖,𝑘+1 ← 𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙 (𝑥𝑛𝑒𝑤); // Algorithm 1

9 P
𝑢
𝑖
= P𝑖 ⊕ 𝑝𝑖,𝑘+1;

10 𝑇𝑢
𝑖
← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑇𝑖 ,P𝑢𝑖 ); // Update the threshold

11 for 𝑝𝑖 𝑗 , 𝑝𝑖𝑘 ∈ P𝑢𝑖 do
// Merge close prototypes

12 if ∥𝜇𝑖 𝑗 − 𝜇𝑖𝑘 ∥22 < 𝑇𝑢
𝑖

then
13 𝜇𝑖 𝑗 =

𝜇𝑖 𝑗+𝜇𝑖𝑘
2 ;

14 𝑑𝑖 𝑗 ← 𝑑𝑖 𝑗 + 𝑑𝑖𝑘 ;
15 𝑛𝑖 𝑗 ← 𝑛𝑖 𝑗 + 𝑛𝑖𝑘 ;
16 P

𝑢
𝑖
= 𝑅𝑒𝑚𝑜𝑣𝑒 (𝑝𝑖𝑘 ,P𝑢𝑖 )

17 returnP𝑢
𝑖

3.2 Labeling Functions Self-Adaption
In this section, we introduce how the built labeling functions
adapt to the dynamic datasets. Flame can update the prototypes of
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the labeling functions and it can also build new labeling functions
for those new coming labels.
Labeling functions update. Since each labeling function is con-
sisted by a number of prototypes, the labeling functions can be
updated by updating its prototypes. We use a threshold to deter-
mine whether a new coming data instance 𝑥𝑛𝑒𝑤 can be associ-
ated to any of the existing prototypes in P𝑖 of cluster 𝑖. If 𝑥𝑛𝑒𝑤
is close to a prototype 𝑝𝑖 𝑗 ∈ P𝑖 , then we update 𝑝𝑖 𝑗 . If not, we
create a new prototype using Algorithm 1 and add it toP𝑖 . Algo-
rithm 2 describes the prototype update process. We first compute
a threshold 𝑇𝑖 associated with the cluster 𝑖 using all its existing
prototypes, i.e., 𝑇𝑖 = mean(𝑑𝑖 𝑗 ) + 0.5 ∗ std(𝑑𝑖 𝑗 ) for all 𝑝𝑖 𝑗 ∈ P𝑖 .
Here, mean and std are the mean and standard deviation of sum
of squared distances in each prototype of cluster 𝑖. We then com-
pute the closest prototype for the new coming data instance 𝑥𝑛𝑒𝑤
by arg min𝑗=1,...,𝑘 𝐷

𝑛𝑒𝑤
𝑖 𝑗

, where𝐷𝑛𝑒𝑤
𝑖 𝑗

= ∥𝑥𝑛𝑒𝑤 − 𝜇𝑖 𝑗 ∥22, 𝑘 is the cur-
rent number of prototypes inP𝑖 (line 2). If 𝐷𝑛𝑒𝑤

𝑖 𝑗
< 𝑇𝑖 , then the

prototype 𝑝𝑖 𝑗 is updated (line 3-6). If not, then a new prototype
is created using 𝑥𝑛𝑒𝑤 (line 7-9). The prototype update process
may generate a large number of prototypes. Too many prototypes
can cause overfitting, furthermore, storing large number of proto-
types consumes too much memory space. To avoid this scenario,
we determine whether any two given prototypes in P𝑖 can be
merged using the the updated threshold𝑇𝑖 (line 11-16). At last,
the updated prototype is returned (line 17).
New labels detection. Before building new labeling functions for
the new unseen labels, Flame needs to detect the appearance of
unseen labels first. Similarly to some existing methods [Mitchell
et al. 2018], we compute the new unseen labels detection thresh-
old𝑇 𝑖𝑛𝑒𝑤 for each cluster 𝑖 to reject data instances belong to new
unseen labels and assign labels for data instances with existing
labels. We refer it as Nearest Mean Clustering (NMC).

Due to the dynamic characteristics of the data to be labeled,
Flame requires to continuously update prototypes. An optimal
threshold value for𝑇 𝑖𝑛𝑒𝑤 should be determined based on the cur-
rent data patterns. Here, we assume that data of a same label
follow a Gaussian distribution. Applying the average inner-cluster
distance with a small range of float for each cluster, we obtain
the statistic for confidence threshold. A cluster C𝑖 is consisted by
𝐾 cliques, the centroids of these cliques are 𝜇𝑖1, ..., 𝜇𝑖𝐾 . For the
cluster C𝑖 , we have,

𝑑𝑖𝑠𝑡𝑖 =
1
∥C𝑖 ∥

∑
𝑥 ∈C𝑖

min
𝑗=1...𝐾

∥𝑥 − 𝜇𝑖 𝑗 ∥22 (5)

where ∥C𝑖 ∥ is the size of the cluster C𝑖 , min𝑗=1,...,𝐾 ∥𝑥 − 𝜇𝑖 𝑗 ∥22
means the distance of data instance 𝑥 to it’s nearest prototype
𝑝𝑖 𝑗 ∈ P𝑖 . The desired threshold value𝑇 𝑖𝑛𝑒𝑤 for cluster C𝑖 is calcu-
lated by𝑇 𝑖𝑛𝑒𝑤 = 𝑑𝑖𝑠𝑡𝑖 +𝜔 ∗𝑠𝑡𝑑𝑖 , where 𝑠𝑡𝑑𝑖 is the standard deviation
of ∥𝑥 − 𝜇𝑖 𝑗 ∥22.

The boundary of a labeling function 𝑙 𝑓𝑖 ∈ 𝐿𝐹 is determined by it
prototypes. Each prototype corresponds to a “hypersphere” in the
feature space with a centroid and radius. The coverage of a label-
ing function 𝑙 𝑓𝑖 is the union of the hyperspheres encompassed by
all prototypes in 𝑙 𝑓𝑖 . To assign a label for a new instance 𝑥𝑛𝑒𝑤 by
the labeling function 𝑙 𝑓𝑖 , we compute the distance set 𝐷𝑖𝑛𝑒𝑤 from
𝑥𝑛𝑒𝑤 to the nearest prototype by min𝑗=1,...,𝐾 ∥𝑥 − 𝜇𝑖 𝑗 ∥22. Finally,

we select the minimum distance from set 𝐷𝑖𝑛𝑒𝑤 , i.e., min𝐷𝑖𝑛𝑒𝑤 , If
min𝐷𝑖𝑛𝑒𝑤 is less than the threshold𝑇 𝑖𝑛𝑒𝑤 , the label of 𝑥𝑛𝑒𝑤 is from
one of the existing labels. Else, 𝑥𝑛𝑒𝑤 is regarded as a data instance
with an unknown label.

When the data instance 𝑥𝑛𝑒𝑤 is from one of the existing la-
bels, we assign the labels for 𝑥𝑛𝑒𝑤 as follows. Assume the value
of min𝐷𝑖𝑛𝑒𝑤 ’s corresponding prototype is 𝑝𝑖 𝑗 . In the prototype
𝑝𝑖 𝑗 , 𝑓𝑚𝑎𝑥 is the highest frequency value in the frequency vector
𝑓 , then 𝑓𝑚𝑎𝑥 ’s corresponding label 𝑦 will be assigned to data in-
stance 𝑥𝑛𝑒𝑤 . Each 𝑙 𝑓𝑖 ∈ 𝐿𝐹 maintains an assigned label for the
data instance 𝑥𝑛𝑒𝑤 and a labeling confidence value (§3.3) for its
labeling result. The label of the data instance 𝑥𝑛𝑒𝑤 is determined
by taking the majority vote among all labeling functions.
Build new labeling functions. Flame builds new labeling func-
tions for the data instances belong to new unseen labels. When
the data instance 𝑥𝑛𝑒𝑤 is potentially with a new label, it will be
stored into a buffer 𝐵. Flame periodically checks the buffer 𝐵 and
applies our clustering with minimal impurity (§3.1) method on
the data instances in buffer 𝐵 to build the new labeling functions.
Therefore, Flame can incrementally incorporate new label infor-
mation from data instances in 𝐵. At last, those data instances that
belong to the new label are removed from 𝐵, and the released
space is used to collect the subsequent data instances potentially
belong to other new labels.

3.3 Labeling Results Guarantees
Labeling confidence calculation. In Flame, each labeling func-
tion 𝑙 𝑓𝑖 ∈ 𝐿𝐹 uses a metric (𝐶𝑜𝑛𝑓𝑖 ) to quantify its labeling confi-
dence for a data instance 𝑥 . Flame employs two heuristics, i.e.,
association and purity to estimate the𝐶𝑜𝑛𝑓𝑖 (𝑥). After each indi-
vidual labeling function’s confidence value𝐶𝑜𝑛𝑓𝑖 (𝑥) (𝑖 = 1, .., 𝐾)
acquired, Flame combines these values together to get the entire
labeling functions 𝐿𝐹 ’s labeling confidence value𝐶𝑜𝑛𝑓 (𝑥).

The closest prototype from 𝑥 in labeling function 𝑙 𝑓𝑖 is 𝑝𝑖 𝑗 . The
𝑝𝑖 𝑗 is the 𝑗𝑡ℎ prototype of 𝑙 𝑓𝑖 , ℓ𝑚𝑎𝑥 is the label having highest
frequency in 𝑝𝑖 𝑗 . The Association and Purity of the prototype 𝑝𝑖 𝑗
are calculated as follows:

• Association is calculated by 𝑅𝑖 𝑗 −𝐷𝑖 𝑗 (𝑥), where 𝑅𝑖 𝑗 is the radius
of 𝑝𝑖 𝑗 and 𝐷𝑖 𝑗 (𝑥) is the distance between 𝑥 and 𝑝𝑖 𝑗 . If 𝐷𝑖 𝑗 (𝑥) is
small, it means𝑥 is close to the prototype𝑝𝑖𝑘 , then (𝑅𝑖 𝑗 −𝐷𝑖 𝑗 (𝑥))
is large which leads to a high the association and confidence of
labeling.
• Purity is calculated by |𝐿𝑖 𝑗 (ℓ𝑚𝑎𝑥 ) |

|𝐿𝑖 𝑗 | , where |𝐿𝑖 𝑗 | is the sum of all
frequencies in 𝑝𝑖 𝑗 , and |𝐿𝑖 𝑗 (ℓ𝑚𝑎𝑥 ) | is the frequency of ℓ𝑚𝑎𝑥 in
𝑝𝑖 𝑗 . A large 𝐿𝑖 𝑗 (ℓ𝑚𝑎𝑥 ) means the high purity of the prototype
𝑝𝑖 𝑗 , which also leads to a high confidence of labeling.

We denote the Association and Purity of the labeling function
𝑙 𝑓𝑖 as 𝐴𝑖 and 𝑃𝑖 respectively. Given the 𝐴𝑖 and 𝑃𝑖 of the labeling
function 𝑙 𝑓𝑖 , its confidence value𝐶𝑜𝑛𝑓𝑖 (𝑥) is calculated as below,

𝐶𝑜𝑛𝑓𝑖 (𝑥) = 𝐴𝑖 (𝑥) × 𝑃𝑖 (𝑥), (6)

Labeling confidence aggregation. Flame calculates the confi-
dence value𝐶𝑜𝑛𝑓𝑖 (𝑥) for each 𝑙 𝑓𝑖 in 𝐿𝐹 for a given data instance
𝑥 . These confidence values are normalized between 0 and 1, and
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Fig. 4. Execution time and energy consumption breakdown of different com-
ponments in Flame. Here, “LFG” is short for Labeling Functions Generation,
“LFS” is short for Labeling Functions Self-adaptation, “LCC” is short for La-
beling Confidence Calculation, and “LCA” is short for Labeling Confidence
Aggregation.

then aggregated together to calculate the overall labeling confi-
dence of all labeling functions as follows,

𝐶𝑜𝑛𝑓 (𝑥) = max
ℓ∈𝑌 ′
{
𝑀∑
𝑖=1

1(𝑙 𝑓𝑖 (𝑥) = ℓ) ×𝐶𝑜𝑛𝑓𝑖 (𝑥)} (7)

where 𝐶𝑜𝑛𝑓 (𝑥) is the aggregated labeling confidence for data
instance 𝑥 , 1(𝑙 𝑓𝑖 (𝑥) = ℓ) is an indicator function returns 1 if
𝑙 𝑓𝑖 (𝑥) = ℓ and returns 0 otherwise. After 𝐶𝑜𝑛𝑓 (𝑥) is calculated
by Equation 7, we have a threshold 𝜏 to decide if𝐶𝑜𝑛𝑓 (𝑥) is high
enough. If it is higher than 𝜏 , the label is assigned; Otherwise,
the data instance is added into the buffer 𝐵 for further new un-
seen labels detection (§3.2). The value of 𝜏 is specified by the
programmer. We empirically determine 0.6 < 𝜏 < 0.8 based on
the sensitivity study using datasets listed in Table 1.

4 SYSTEM DESIGN
Flame has four components, Labeling Functions Generation (§3.1),
Labeling Functions Self-adaption (§3.2), Labeling Confidence Cal-
culation and Labeling Confidence Aggregation (§3.3). Figure 1
shows the execution time and energy consumption breakdown for
the four components in Flame. The results are received by labeling
3000 data instances in Samsung S9 by Flame. We can see Labeling
Functions Generation and Labeling Functions Self-adaption to-
gether consume more than 60% of time, and Labeling Confidence
Calculation component consumes about 40% of energy. Given a
mobile device with three heterogeneous processing units (CPU,
GPU and DSP), we map the four components to the three pro-
cessing units based on the workload characteristics of the four
components and hardware. Furthermore, we use a performance
model to decide the optimal way to utilize fast shared-memory in
GPU when running the workload of Labeling Functions Genera-
tion. We also use a performance model to coordinate the usage of
CPU and DSP while reducing the wake-up rate of CPU for high
performance. We discuss our system design in detail as follows.

4.1 Leverage GPU
Flame uses GPU to run Labeling Functions Generation and La-
beling Functions Self-adaption, because these two components

spend more than 60% of time and the clustering with minimal
impurity method (§3.1) used by these two components is suit-
able for parallelism. Therefore, we run these two components on
mobile GPU to speedup the labeling task. We do not offload the
two components to DSP, because they involve heavy computation
(such as square root), which cannot be efficiently processed on
DSP [Georgiev et al. 2014]. To reduce execution of Labeling Func-
tions Generation, we make the best use of fast shared-memory
on GPU to store data instances and centroids, which brings a
challenge. In particular, the fast memory has a rather small capac-
ity. For example, in our platform (a Samsung S9 mobile phone),
shared memory is only 64KB. We store some data instances and
centroids in shared memory, such that they do not have to be
repeatedly fetched from slow global-memory to build labeling
functions. To host as many data instances in fast memory as pos-
sible, we apply a sampling method to approximate data instances
without impacting labeling accuracy. In particular, given a data
instance (an image), we use spatial sampling which selects every
𝑛-th row for sampling where 𝑛 is determined based on the image
size [Maier et al. 2019].

There is a non-trivial tradeoff between placing centroids in
shared memory and placing data instances in shared memory.
To enable high-performance memory accesses to data instances,
Flame fetches a batch of data instances (𝑛𝑑 ) into shared memory
and then processes them one by one in shared memory. Leverag-
ing the spatial locality, fetching 𝑛𝑑 data instances together causes
less global memory accesses. To get the nearest centroid for each
data instance in shared memory, Flame must access all centroids.
To enable high-performance memory accesses to centroids, Flame
also fetches centroids to shared memory batch by batch (the batch
size is 𝑛𝑐 ). Placing too many data instances (or too many cen-
troids) in shared memory can cause frequent data movement to
fetch centroids (or data instances).

We formulate the above discussion to decide the optimal num-
bers of data instances (𝑛𝑑 ) and centroids (𝑛𝑐 ) to be placed on
shared memory as follows. Assume that the total number of data
instances to be processed on GPU is 𝑁𝑑 , the total number of cen-
troids is 𝑁𝑐 , the execution time of processing 𝑛𝑑 data instances
and 𝑛𝑐 centroids on shared memory is 𝑡 , and the time to transfer
𝑛𝑑 data instances and 𝑛𝑐 centroids from GPU global memory to
shared memory is 𝑡𝑑 and 𝑡𝑐 respectively. The total execution time
𝑇 to process 𝑁𝑑 data instances and 𝑁𝑐 centroids is modeled as
follows. We want to minimize𝑇 under the constraint of shared
memory capacity (𝑀𝑒𝑚𝑠ℎ𝑎𝑟𝑒𝑑 ).

𝑇 = min
𝑛𝑑 ≥0,𝑛𝑐 ≥0

⌈𝑁𝑑
𝑛𝑑
⌉ · 𝑡𝑑 + ⌈

𝑁𝑐

𝑛𝑐
⌉ · 𝑡𝑐 + ⌈

𝑁𝑑

𝑛𝑑
⌉ · ⌈𝑁𝑐

𝑛𝑐
⌉ · 𝑡, (8)

subject to 𝑛𝑑 + 𝑛𝑐 ≤
𝑀𝑒𝑚𝑠ℎ𝑎𝑟𝑒𝑑

𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒
, 𝑛𝑑 ≥ 0, 𝑛𝑐 ≥ 0. (9)

where 𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒 is the size of a data instance. In Equation 8, ⌈𝑁𝑑

𝑛𝑑
⌉ ·

𝑡𝑑 denotes the time to transfer 𝑁𝑑 data instances from global
memory to share memory, ⌈𝑁𝑐

𝑛𝑐
⌉ ·𝑡𝑐 denotes the time to transfer𝑁𝑐

centroids from global memory to share memory, and ⌈𝑁𝑑

𝑛𝑑
⌉ · ⌈𝑁𝑐

𝑛𝑐
⌉ ·𝑡

denotes the execution time to process 𝑁𝑑 data instances and 𝑁𝑐
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centroids on GPU. 𝑡𝑑 , 𝑡𝑐 , and 𝑡 are measured offline. Flame solves
the above programming problem using the ALGLIB [solver [n.d.]]
(a cross-platform numerical analysis and data processing library).

4.2 Leverage DSP and CPU
Flame runs Labeling Confidence Calculation on DSP (not on CPU
or GPU), because Labeling Confidence Calculation is the most
energy-consuming component: It takes 41.6% of energy consump-
tion of the whole auto-labeling workflow. Compared with GPU
and CPU, DSP consumes the least power [Codrescu et al. 2014].
Furthermore, Flame runs Labeling Confidence Aggregation on
CPU, not on DSP or GPU. Because this component involves a
large amount of division and square root computation, which are
not supported effectively on DSP [Codrescu et al. 2014]; This com-
ponent has low thread-level parallelism, making it less efficient
to run on GPU either.

The workload execution on CPU and DSP introduces inevitable
interaction between CPU and DSP. In particular, the execution
of Labeling Confidence Aggregation has dependency on Label-
ing Confidence Calculation. Only after Labeling Confidence Cal-
culation is done on DSP, Labeling Confidence Aggregation can
be executed on CPU. We use a common mechanism in mobile
phones, the remote procedure call (particularly named FastRPC
in our evaluation platforms, Samsung S9 and Google Pixel2 mo-
bile phones) for interaction between CPU and DSP.
Wake up CPU by DSP. CPU must be woken up by DSP if the exe-
cution on DSP takes too long time [Snapdragon [n.d.]] (e.g., a few
seconds) and such wake-up operation on CPU takes 60 mJ, which
is very energy-consuming. In Flame, once DSP finishes Labeling
Confidence Calculation for a batch of data instances, which typ-
ically takes 23.6 seconds, the intermediate results generated by
DSP must be transferred to CPU cores for Labeling Confidence
Aggregation. At this moment, DSP must wake up CPU. Compared
to the power consumption to wake up CPU, the energy consump-
tion for data transfer between DSP and CPU is relatively small.
This is because data transfer between CPU and DSP consists of
simply passing data instances to be labeled, remote invocation
parameters, and labeling confidence values calculated by DSP,
which is typically 74 KB per transfer and consumes only 3.3 mJ.
In general, the rate of waking up CPU is critical to the energy con-
sumption of Flame. We must reduce the wake-up frequency to
maintain low-energy consumption.

To minimize the wake-up frequency, we define the CPU wake-
up interval and formulate it as follows. The CPU wake-up interval
is defined as the time duration from the point where a batch of
intermediate results is transferred from DSP to CPU to the point
where the next batch is transferred. The CPU wake-up interval
heavily depends on memory capacity in DSP and data instance
size. Larger memory capacity or smaller data instance size causes
longer CPU wake-up interval, and vice versa. Furthermore, DSP
processes data instances batch by batch, and processes data in-
stances within the same batch in parallel. Given DSP memory
capacity (𝑀𝑒𝑚𝑑𝑠𝑝 ), memory consumed by DSP invocation pa-
rameters (𝑀𝑒𝑚𝑝𝑎𝑟𝑎), the size of each data instance (𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒 ), and
the number of threads used by DSP (𝑛𝑡 ), the number of batches
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Fig. 5. The interaction between CPU and DSP.

of data instances is𝐺 , where𝐺 = ⌈𝑀𝑒𝑚𝑑𝑠𝑝−𝑀𝑒𝑚𝑝𝑎𝑟𝑎

𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒×𝑛𝑡 ⌉. The CPU
wake-up interval △ 𝑇 is formulated as follows.

△ 𝑇 = 𝛾 +
𝐺−1∑
𝑖=0
{ max
𝑗 ∈[0,𝑛𝑡−1]

𝑡𝑖 𝑗 } + 𝜌 (10)

where 𝛾 is the time to transfer data instances and remote invo-
cation parameters from CPU to DSP, and 𝜌 is the time to trans-
fer calculated labeling confidence values for each data instance
from DSP to CPU. The CPU wake-up interval includes the time to
process a batch of data instances in DSP, which is formulated as
max𝑗 ∈[0,𝑛𝑡ℎ−1] 𝑡𝑖 𝑗 in Equation10, where 𝑡𝑖 𝑗 is the execution time
of 𝑗𝑡ℎ thread for 𝑖𝑡ℎ batch of data instances, where 𝑖 ∈ [0,𝐺 − 1]
and 𝑗 ∈ [0, 𝑛𝑡ℎ − 1], 𝑛𝑡 is the total number of threads in DSP. 𝛾
and 𝜌 are measured offline. Flame determines the maximum CPU
wake-up interval by using ALGLIB on Equation 10.
Data transfer for DSP. DSP needs to load data to be labeled from
CPU main memory to DSP local memory; DSP also needs to trans-
fer labeling confidence values for each data instance between
CPU and DSP. To load data from CPU main memory, we use slow
CPU cores, because we find that using fast CPU cores often causes
a crash on DSP because of a run-out-of-memory error, and us-
ing slow CPU cores does not have this problem. Such an error
happens because DSP cannot timely process the data in the local
memory before the new data comes in. We use fast CPU cores to
transfer data between CPU and DSP.
Overall workflow. Figure 5 generally depicts the interaction be-
tween CPU and DSP. It includes five stages. At Stage one, the slow
CPU cores transfer data instances to be labeled and initiates DSP
remote invocation. At Stage two, the FastRPC kernel driver re-
ceives the remote invocations and enqueues them up to wait for
the response from DSP. A buffer on DSP is used to store the data in-
stances to be labeled. At Stage three, once DSP is ready for labeling
the data instance, it dequeues invocations from the invocation
queue and dispatches them for processing. At Stage four, DSP
computes the labeling confidence values of data instances in par-
allel. At last, the labeling confidence values (i.e., the intermediate
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Table 1. Characteristics of datasets.

DATASETS APPLICATION # FEATURES # LABELS # INSTANCES

MNIST CLASSI�CATION 28 × 28 10 70,000
EMNIST CLASSI�CATION 28 × 28 62 814,255
IMAGENET CLASSI�CATION 224 × 224 100 60,000
CIFAR100 CLASSI�CATION 3 × 28 × 28 100 60,000
UCF50 RECOGNITION 320 × 240 50 15,000
UCF101 RECOGNITION 320 × 240 101 50,500

results) are transferred to fast CPU cores for labeling confidence
aggregation and labeling.

4.3 Implementation
We implement Flame using C++ with Native Development Kit
(NDK) on Android 9.0 and Android 8.0. The system is evaluated
on two mobile phones (Samsung S9 with Snapdragon 845 SoC and
Google Pixel2 with Snapdragon 835 SoC). Our implementation
includes about 8,000 lines of code in total. In our mobile platforms,
we have three types of mobile processors, which are GPU, fast
CPU and slow CPU. Each mobile platform has mobile GPU, fast
CPU, slow CPU, and DSP.

5 EVALUATION
We compare Flame with other baseline methods, in terms of la-
beling quality and performance. Our evaluation aims to achieve
the following four goals.
• Is the labeling quality of Flame better than that of the baseline

methods? (§5.1)
• Does Flame effectively utilize hardware heterogeneity of mobile

processors? (§5.2 and §5.3)
• Does each component of the Flame effectively boost the overall

labeling quality? (§5.4)
• Does Flame have imperceivable influences on user experiences

on mobile devices? (§5.5)
Experimental Setup. We use two mobile systems.
• Samsung S9: It uses Qualcomm Snapdragon 845 SoC and An-

droid 9.0 Pie operating system (OS). The 845 SoC includes a
4-core fast CPU, a 4-core slow CPU, an Adreno 630 mobile GPU,
and a Hexagon 685 DSP. The fast and slow CPU cores are dif-
ferent in terms of frequency, cache hierarchy, and instruction
scheduling. The CPU architecture has 4x Kryo 385 cores (Cortex-
A75) at up to 2.8 GHz (max) for performance and 4x Kryo 385
at 1.8 GHz (max) for efficiency.
• Google Pixel2: It uses Qualcomm Snapdragon 835 SoC and An-

droid 8.0 Oreo OS. The 835 SoC includes a 4-core fast CPU, a
4-core slow CPU, an Adreno 540 mobile GPU, and a Hexagon
682 DSP. The CPU architecture has 4x Kryo 280 at 2.45 GHz
(max) for performance and 4x Kryo 280 at 1.9 GHz (max) for
efficiency.

Datasets. Table 1 describes the six datasets used to evaluate Flame.
Those datasets are commonly used for classification or recogni-
tion, which are common applications in mobile devices. We test
Flame on both static and dynamic datasets. (1) Static Datasets.

All the labels are known and the data instances are not incremen-
tally generated. (2) Dynamic Datasets. We rearrange instances
in each dataset to emulate a dynamic environment where data
instances are incrementally generated with previously unseen
labels. For MNIST [Lecun [n.d.]], we randomly choose two labels
as known, and the rest eight labels as unknown and needed to be
detected by Flame. For EMNIST [Cohen et al. 2017], we randomly
choose six labels as known, and the rest 56 labels as unknown
and needed to be detected. For Cifar100 [toronto [n.d.]] and mini-
ImageNet [Vinyals et al. 2016], we randomly choose ten labels as
known, and the rest 90 labels as unknown. UCF50 [Reddy and
Shah 2013] and UCF101 [Soomro et al. 2012] datasets contain
59, and 101 types of human activities respectively, and they also
contain 13,421 short videos created for activity recognition. We
use the ffmpeg [github. [n.d.]] tool to extract raw images from the
above video datasets and feed the unstructured images to Flame
sequentially. We select six and ten types of activities as known for
UCF50 and UCF101 respectively, and the rest types of activities
as unknown and needed to be detected.

For those data instances with known labels, we sample a part of
them to form a subset 𝐷𝐿 . 𝐷𝐿 is used to build labeling functions
𝐿𝐹 for Flame at the beginning of auto-labeling. 𝐷𝐿 takes up to 5%
of all the data instances in a dataset. The rest of the dataset (𝐷𝑈 )
is used to simulate the scenario where new data is incrementally
generated for auto-labeling.
Baselines. We compare Flame with four baselines: (1) Boosting
(AdaBoost), which uses the labeled data to generate one complex
decision tree or multiple, simple decision trees to label unlabelled
data; (2) Semi-supervised learning, which uses both the labeled
and unlabeled data to assign labels; (3) Transfer learning, which
uses MobileNet_V3 [Howard et al. 2017] pre-trained on ImageNet
for labeling; (4) Snuba [Ratner et al. 2017], a state-of-the-art work
for auto-labeling on servers. Snuba cannot run on mobile devices
because of the lack of a set of system libraries. So we just report
its labeling accuracy.
Evaluation metrics. For the dynamic datasets, we use the fol-
lowing metrics to evaluate the labeling quality. (1) Accuracy(%)
=
𝑁𝑛𝑒𝑤+𝑁𝑒𝑥𝑖𝑠𝑡

𝑁
, where 𝑁𝑛𝑒𝑤 is the total number of data instances

with unknown labels correctly labeled, 𝑁𝑒𝑥𝑖𝑠𝑡 is the total number
of data instances with known labels correctly labeled, and 𝑁 is
total number of data labeled by the system. Let 𝐹𝑃 represent the
the number of data instances that should be assigned with known
labels but is mislabeled with unknown labels (i.e., previously un-
known labels); Let 𝐹𝑁 represent the number of data instances
that should be assigned with unknown labels but is mislabeled
with known labels; Let 𝑁𝑙 represent the number of data instances
assigned with unknown labels. We use the following two met-
rics based on 𝐹𝑃 , 𝐹𝑁 , and 𝑁𝑙 . (2) 𝑴𝒏𝒆𝒘 , the percentage of data
instances that should be assigned with unknown labels but is mis-
labeled with known labels, (𝑀𝑛𝑒𝑤 = 𝐹𝑁×100

𝑁𝑙
); and (3) 𝑭𝒏𝒆𝒘 : the

percentage of data instances that should be assigned with known
labels but is mislabeled with unknown labels, (𝐹𝑛𝑒𝑤 = 𝐹𝑃×100

𝑁−𝑁𝑙
).

Furthermore, we measure the performance of Flame in terms
of execution time and energy consumption. We measure the exe-
cution time using Flame to label 5000 data instances from each
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Table 2. Comparison of labeling accuracy on dynamic datasets between various baselines and different versions of Flame. “ACC” is the accuracy of the labeling
results; The notation “-” denotes failure of detecting unknown labels.𝑀𝑛𝑒𝑤 is the percentage of data that should be assigned with unknown labels but is
mislabeled with known labels; 𝐹𝑛𝑒𝑤 is the percentage of data that should be assigned with known labels. For𝑀𝑛𝑒𝑤 and 𝐹𝑛𝑒𝑤 , a lower value indicates a better
result.

METHODS MNIST EMNIST IMAGENET CIFAR100 UCF50 UCF101
ACC 𝑴𝒏𝒆𝒘 𝑭𝒏𝒆𝒘 ACC 𝑴𝒏𝒆𝒘 𝑭𝒏𝒆𝒘 ACC 𝑴𝒏𝒆𝒘 𝑭𝒏𝒆𝒘 ACC 𝑴𝒏𝒆𝒘 𝑭𝒏𝒆𝒘 ACC 𝑴𝒏𝒆𝒘 𝑭𝒏𝒆𝒘 ACC 𝑴𝒏𝒆𝒘 𝑭𝒏𝒆𝒘

BOOSTING 62.8 78.9 - 56.2 82.3 - 57.2 67.8 - 64.6 72.3 - 64.8 82.6 - 63.4 67.3 -
TRANSFER 76.8 62.4 - 72.6 64.8 - 65.7 58.3 - 70.6 69.4 - 70.2 64.4 - 66.7 61.9 -
SEMI-S 71.5 48.3 9.8 70.7 39.7 11.3 62.4 40.4 9.4 71.7 38.4 8.9 67.2 38.3 8.8 62.4 41.7 12.9
SNUBA 81.2 42.5 8.3 78.2 31.2 8.5 70.0 34.7 8.7 75.3 31.8 6.4 73.3 34.8 8.2 71.2 37.1 9.8
FLAME_C 87.3 23.6 3.7 85.4 22.8 5.9 86.2 31.1 7.9 85.7 23.9 5.7 86.3 34.4 6.4 83.7 28.4 8.7
FLME_CG 86.2 22.7 4.5 86.1 24.7 6.2 85.8 29.9 7.6 87.5 25.0 5.2 85.7 32.3 6.6 82.4 27.7 9.7
FLAME_FULL 86.7 22.9 5.7 85.3 23.9 6.9 87.2 30.3 8.1 85.8 23.7 6.1 87.1 33.7 6.9 84.8 26.9 8.3

Table 3. Comparison the accuracy of the discriminative model when train-
ing on the labeled datasets by baselines and Flame. The column “Highest
Accuracy of Baseline” means the highest accuracy achieved by the baselines.
The accuracy lift over the six datasets shows that labeling results of Flame
improves the model accuracy.

DATASETS HIGHEST ACCURACY OF BASELINE (%) FLAME (%) LIFT

MNIST 81.1 88.2 +7.1
EMNIST 76.6 84.1 +7.7

IMAGENET 75.2 84.6 +9.4
CIFAR100 72.3 79.6 +6.3

UCF50 78.3 85.2 +6.9
UCF101 76.5 83.7 +7.2

dataset in Table 1. We also measure the impact of Flame on user
interactions when running Flame on mobile systems.

5.1 LabelingQuality
Labeling quality on dynamic datasets. Table 2 shows the results.
In general, Flame performs best. We conclude the following. (a)
Flame outperforms the boosting and semi-supervised methods.
The average labeling accuracy of Flame is higher than that of the
two methods by 25.2% and 18.5% respectively. The reason is that
Flame has the ability to immediately detect new coming unknown
labels. This advantage is obvious when the number of unknown
labels in the dataset is large (e.g., ImageNet, Cifar100, UCF101); (b)
Flame outperforms the transfer learning method up to by 16.1%.
This is because the pre-trained model is directly used for labeling
without learning a representation of the data from scratch; (c)
Flame outperforms Snuba by 11.8%. Snuba’s labeling quality is
based on trained labeling functions and it fails to assign unknown
labels to data instances, because Snuba’s labeling functions can
not adapt to dynamic datasets; (d) The labeling quality of different
versions of Flame (i.e., CPU Only, CPU and GPU, and the full
featured version which uses CPU, GPU and DSP) does not vary
significantly. The slight variance in the labeling quality comes
from randomness in execution order of parallel threads in the
heterogeneous computing environment.
End-to-end impact. We evaluate the effect of using the auto-
labeled data to train DNN models. In our evaluation, we use
a DNN model with three fully-connected layers and each layer
contains 128 neurons, which is commonly deployed in mobile
phones [Sahin 2021]. We stop the training process until the DNN

model’s loss value converges. Table 3 shows the accuracy lift af-
ter using auto-labeled data from Flame. In general, the model
accuracy is improved by up to 9.4% over six datasets.

5.2 Analysis on Execution Time
We compare the execution time of different labeling methods. We
also show how our system design (§4) can reduce the execution
time of Flame.
Comparison with different versions of Flame. Figure 6 presents
execution time of labeling 5,000 data instances on Samsung S9
and Google Pixel2. We use three execution strategies to evaluate
the effectiveness of Flame: (1) using CPU Only; (2) using CPU
and GPU; and (3) using CPU, GPU and DSP (i.e., the full-featured
Flame). Figure 6 shows that compared with using CPU Only, using
CPU and GPU leads to an average of 2.1× speedup, because of
using GPU. Using the full-featured Flame, there is average 6.8×
performance improvement, because of using GPU and DSP. Flame
fully taps the capability of hardware heterogeneity in mobile pro-
cessors. Such a large reduction in execution time is not paid by
using larger energy consumption, discussed as follows.
Comparison with the baselines. Figure 7 presents the execution
time of labeling 5,000 data instances on Samsung S9 and Google
Pixel2 using different methods. Compared with the baselines,
Flame’s execution time is the shortest. Figure 7 shows that Flame
reduces the execution time by average 5.6×, 4.2×, and 3.8× re-
spectively, compared with the transfer learning, semi-supervised
learning, and the boosting methods. Such a reduction in execu-
tion time is because of two reasons: (1) Flame uses the lightweight
clustering with minimal impurity method (§3.1) to build the la-
beling functions; and (2) Flame uses Algorithm 2 to merge the
close prototypes to reduce the number of prototypes contained in
each labeling function, which significantly reduces computation
overhead in Flame.

5.3 Analysis on Energy Consumption
We analysis the energy consumption of different labeling methods
over the six datasets. We also analyze how full-featured Flame
saves energy, compared with the other two versions of Flame.
Comparison with different versions of Flame. Figure 8 shows
the energy consumption of the three strategies (CPU Only, CPU
and GPU, and the full-featured Flame) on Samsung S9 and Google
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Fig. 6. Comparison between the three versions of Flame in terms of execution time.

Table 4. Ablation study results of different components in Flame. We measure how the evaluation metrics change when involving different components in
Flame.𝑀𝑛𝑒𝑤 is the percentage of data that should be assigned with unknown labels but is mislabeled with known labels; 𝐹𝑛𝑒𝑤 is the percentage of data that
should be assigned with known labels but mislabeled with unknown labels.

DATASETS LABELING FUNCTIONS GENERATION LABELING FUNCTIONS SELF-ADAPTION LABELING RESULTS GUARANTEES
ACCURACY 𝑀𝑛𝑒𝑤 𝐹𝑛𝑒𝑤 ACCURACY 𝑀𝑛𝑒𝑤 𝐹𝑛𝑒𝑤 ACCURACY 𝑀𝑛𝑒𝑤 𝐹𝑛𝑒𝑤

MNIST +14.4 -5.1 -8.3 +7.8 -7.2 -5.1 +6.5 -4.2 -3.5
EMNIST +18.5 -8.8 -12.2 +12.5 -18.3 -17.1 +9.1 -7.7 -6.4
IMAGENET +21.3 -7.8 -13.7 +14.2 -25.4 -14.4 +9.1 -8.2 -8.4
CIFAR100 +24.1 -10.4 -13.1 +14.6 -27.3 -20.6 +12.9 -8.8 -7.7
UCF50 +17.7 -9.2 -11.0 +8.7 -13.5 -11.5 +11.1 -7.2 -6.1
UCF101 +19.5 -7.4 -12.8 +9.7 -23.3 -18.6 +12.7 -7.4 -9.8
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Fig. 7. Comparison between different labeling methods on two mobile
platforms in terms of execution time.

Pixel2 . The energy consumption in Figure 8 is normalized by that
of running Flame on Google Pixel2 with only CPU. Figure 8 shows
that the average energy consumption of using the strategies of
“CPU and GPU” and full-featured Flame is 73.4%, and 46.2% of
that of Flame using only CPU, respectively. Full-featured Flame
uses the least energy, which shows the advantage of using DSP.
Comparison with the baselines.Figure 9 shows energy consump-
tion of the semi-supervised learning, transfer learning, boosting,
and Flame. In Figure 9, energy results are normalized by the en-
ergy consumption of using the transfer learning. In general, Flame
consumes the least energy in all datasets. This is largely because
we offload the most energy-consuming component of Flame (La-
beling Confidence Calculation) to DSP (§4.2).

5.4 Micro-Benchmarking Results
We evaluate the components of Flame (i.e., Labeling Functions
Generation, Labeling Functions Self-adaption, and Labeling Re-
sults Guarantees) and show how each component can affect the
auto-labeling quality. Table 4 shows the results.
Labeling functions generation. We quantify the contribution of
Labeling Functions Generation (§3.1) to the labeling quality. Ta-
ble 4 shows that (1) compared with the other two components,
Labeling Functions Generation contributes more to the labeling
accuracy, and (2) including Labeling Functions Generation im-
proves the accuracy by up to 24.1% (Cifar100). We conclude La-
beling Functions Generation component is useful for improving
the labeling accuracy, especially for those datasets with a large
numbers of unknown labels (e.g., Cifar100 and ImageNet). Addi-
tionally,𝑀𝑛𝑒𝑤 and 𝐹𝑛𝑒𝑤 are decreased by up to 10.4% and 13.1%
respectively after involving Labeling Functions Generation. There-
fore, this component also boosts the capability of recognizing
unknown labels and known labels.
Labeling functions self-adaption. We quantify the contribution
of Labeling Functions Self-adaption component (§3.2) to the la-
beling quality. Table 4 shows that (1) Labeling Functions Self-
adaption leads to more reduction in 𝑀𝑛𝑒𝑤 and 𝐹𝑛𝑒𝑤 than the
other two components, indicating that it is more efficient to rec-
ognize unknown labels and known labels than the other two com-
ponents. (2) Labeling Functions Self-adaption is more helpful
to those datasets with a larger number of unknown labels. For
example, Cifar100 has 100 labels and MNIST has 10 labels. The re-
duction of𝑀𝑛𝑒𝑤 and 𝐹𝑛𝑒𝑤 on Cifar100 dataset is 27.3% and 20.6%
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Fig. 8. Comparison between the three versions of Flame in terms of energy consumption. The energy results are normalized by the energy consumption of
using full-featured Flame on each dataset.
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Fig. 9. Comparison between different labeling methods on two mobile
platforms in terms of energy consumption. The energy results are normalized
by energy consumption of using the transfer learning method on each
dataset.

respectively, while the reduction on Labelme dataset is only 7.2%
and 5.1% respectively.
Labeling Results Guarantees. We quantify the contribution of
Labeling Confidence Aggregation (§3.3) to the labeling quality. Ta-
ble 4 shows that (1) Labeling Confidence Aggregation improves the
accuracy by up to 12.9%, and (2)𝑀𝑛𝑒𝑤 and 𝐹𝑛𝑒𝑤 are decreased by
up to 8.8% and 9.8% respectively after involving Labeling Confi-
dence Aggregation.

5.5 Evaluation on User Experience
We run Flame in background as a service in mobile phones, in
order to avoid the impact of using Flame on the user applications
running in foreground. In this section, we evaluate the impact of
using Flame on the user experience. Android always sets higher
priority to the foreground applications compared to the back-
ground applications to provide prompt response to user input,
more resources are allocated to the foreground applications. Since
labeling is an intensive task, running it in background can reduce
its impact on user experience of other applications on the devices.
Therefore, We run Flame in background.
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Fig. 10. PassMark slowdown with auto-labeling running in background.
We compare Flame with other labeling methods in terms of PassMark
slowdown.

Impact on other applications. We evaluate how using different
labeling methods impacts the performance of another applica-
tion running in foreground. We use a benchmark PassMark [Pass-
Mark.2015. [n.d.]] as the user application. We use PassMark, be-
cause it involves CPU tests, memory tests, and graphics tests,
representing workloads with various characterization. Figure 10
shows the slowdown of PassMark while running various labeling
methods in background. In general, Flame has the least impact
on PassMark. (a) For the CPU tests, the full-featured Flame leads
to up to 4.6% and 6.1% slowdown in PassMark on Samsung S9 and
Google Pixel2 respectively. The CPU slowdown of the full-featured
Flame is up to 7.1× better than the baselines. (b) For the memory
tests, the full-featured Flame leads to up to 4.7% and 5.9% slow-
down in PassMark on Samsung S9 and Google Pixel2 respectively.
Compared to the baselines, the full-featured Flame achieves up to
5.7× and 5.9× slowdown improvement on Samsung S9 and Google
Pixel2 respectively. (c) For 2D graphic experience, the full-featured
Flame leads to up to 3.1% and 4.3% slowdown in PassMark on
Samsung S9 and Google Pixel2 respectively. Compared to the base-
lines, the slowdown improvement for 2D graphic experience is up
to 7.9× and 7.4× on Samsung S9 and Google Pixel2 respectively.
Impact on the interaction between the user and mobile de-
vices. We aim to find out whether running Flame affects a user’s
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Fig. 11. Impacts of using Flame on user experience. The response time in
the figure shows how fast the application reacts to user input events.
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Fig. 12. The frame latency distribution of using different versions of Flame
on user experience. Baseline is the frame latency without running Flame.

interactive experience with the mobile device. We perform our
tests using an application that models the user interaction with a
device by taking a user’s input from the touch screen and render-
ing a response on the screen. By analyzing the rendering latency
in response to the user input, we can quantitatively understand
the interactivity. We use Android dumpsys tool to measure the
latency. We use two metrics to quantify the latency: (1) response
time, i.e., the time for the mobile device to process the user input;
and (2) frame latency, i.e., the time to render a new frame based
on the user input. Figure 11 lists the 95th percentile response time
and Figure 12 lists the frame latency distribution under four differ-
ent configurations. These configurations are (1) without running
Flame (baseline), (2) running Flame on CPU (Flame: CPU Only),
(3) running Flame on CPU and GPU (Flame: CPU and GPU), and
(4) running Flame on CPU, GPU and DSP (Flame: full-featured).

Figure 11 shows that the response time increases by only 0.03
ms and 0.04 ms when running full-featured Flame on Samsung
S9 and Google Pixel2. Meanwhile, as Figure 12 shows, the median
frame latency only increases by 0.75 ms and 0.64 ms when running
full-featured Flame on Samsung S9 and Google Pixel2 respectively.
Such increase is very small, compared with the minimum thresh-
old of user-perceivable latency, 100 ms [Chen et al. 2019]. Figure 12
also shows that the additional frame latency caused by Flame: the
full-featured Flame causes negligible latency, compared with us-
ing CPU and GPU to run Flame. This means that involving DSP
into Flame does not affect the user’s graphic experience. For the
above testing results, we conclude that the impact of the labeling
tasks is not perceivable by users, because the minimum threshold
of perceivable latency is 100 ms [Chen et al. 2019].

6 RELATED WORK
Automatic labeling. We provide an overview of automatic label-
ing methods, which label data automatically based on generated

labeling functions using both labeled and unlabeled data. The
main challenge of auto-labeling is to build proper labeling func-
tions that can cover the most data instances in the dataset [Bach
et al. 2017; Blum and Mitchell 1998; Varma et al. 2017a,b; Varma
and Ré 2018; Wang and Rudin 2015; Wang et al. 2015; ?; ?]. Labeling
functions with high quality are difficult to be acquired. In [Varma
and Ré 2018], Varma et. al propose a method that uses machine
learning models to build labeling functions under weak super-
vision. Other work [Hastie et al. 2009; Ratner et al. 2017; Wang
et al. 2014; Weiss et al. 2016] uses distant supervision [Hastie et al.
2009; Joglekar et al. 2015; Weiss et al. 2016], in which the training
sets are generated with the help of external resources, such as
knowledge bases. Some recently proposed approaches [Ratner
et al. 2017; Sheng et al. 2008] demonstrate the use of proper strate-
gies to boost the labeling quality by ensemble technique [Bach
et al. 2017; Lao and Cohen 2010]. The existing approaches focus
on static datasets with fixed size and pre-determined number of
labels. Our work focuses on the dynamically increased datasets
on mobile devices. Our work has the capability to identify new
labels that are never seen before. To solve the hardware resource
constraint problem on mobile devices, we leverage processor het-
erogeneity to efficiently run the auto-labeling workload. Our work
not only labels dataset with high quality, but also is highly feasible
to be deployed on mobile devices.
Optimization of machine learning on mobile devices. Recently,
there are many existing efforts that optimize the performance of
machine learning models on both server side and edge side, in-
cluding dynamic resource scheduling [Di et al. 2021; Guo et al.
2016; He et al. 2021; Lane et al. 2016; LiKamWa and Zhong 2015;
Liu et al. 2021a, 2019a, 2021b, 2020; Ogden and Guo 2018], com-
putation pruning [Gordon et al. 2018; Li et al. 2018a, 2019; Ma
et al. 2020; Niu et al. 2020], model partitioning [Jeong et al. 2018;
Kang et al. 2017; Lane et al. 2016; Li et al. 2018b], model com-
pression [Fang et al. 2018; He et al. 2018; Liu et al. 2018], co-
ordination with cloud servers [Georgiev et al. 2016; Kang et al.
2017] and memory management [Fang et al. 2018; LiKamWa and
Zhong 2015]. Flame is different from them, because it focuses on
data labeling task on heterogeneous mobile processors. In par-
ticular, DeepX [Lane et al. 2016] proposes a number of resource
scheduling algorithms to decompose DNNs into different sub-
tasks on mobile devices. LEO [Georgiev et al. 2016] introduces a
power-priority resource scheduler to maximize energy efficiency.
NestDNN [Fang et al. 2018] compresses and prunes models based
on the available hardware resource on mobile devices.

7 CONCLUSION
Auto-labeling on mobile devices is critical to enable ML train-
ing on mobile devices. However, it is challenging to enable auto-
labeling on mobile devices, because of unique data characteris-
tics on mobile devices and heterogeneity of mobile processors. In
this paper, we introduce the first auto-labeling system for mobile
devices, named Flame, to address the above problem. Flame in-
cludes auto-labeling algorithms to detect unknown labels from
dynamic data; It also includes an execution engine that executes
labeling workloads on heterogeneous mobile processors.
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