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ABSTRACT

Particle simulations of plasma are important for understanding
plasma dynamics in space weather and fusion devices. However,
production simulations that use billions and even trillions of com-
putational particles require high memory capacity. In this work,
we explore the latest persistent memory (PM) hardware to enable
large-scale plasma simulations at unprecedented scales on a sin-
gle machine. We use WarpX, an advanced plasma simulation code
which is mission-critical and targets future exascale systems. We
analyze the performance of WarpX on PM-based heterogeneous
memory systems and propose to make the best use of memory
hierarchy to avoid the impact of inferior performance of PM. We
introduce a combination of static and dynamic data placement, and
processor-cache prefetch mechanism for performance optimization.
We develop a performance model to enable efficient data migration
between PM and DRAM in the background, without reducing avail-
able bandwidth and parallelism to the application threads. We also
build an analytical model to decide when to prefetch for the best use
of caches. Our design achieves 66.4% performance improvement
over the PM-only baseline and outperforms DRAM-cached, NUMA
first-touch, and a state-of-the-art software solution by 38.8%, 45.1%
and 83.3%, respectively.
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1 INTRODUCTION

Plasma simulations are critical for understanding plasma dynamics
in space weather and fusion devices [3, 34, 36]. The particle-in-cell
(PIC) method is an important model that enables large-scale plasma
simulations on high-performance computing (HPC) systems [4, 10,
33, 36]. The PIC method uses computational particles to simulate
plasma particles, such as electrons and protons. High-fidelity PIC
simulations often use billions and even trillions of particles, which
require high memory capacity.

Persistent memory (PM), exemplified by the Intel Optane DC
PM [13], provides a solution to meet the requirement of high
memory capacity in HPC applications. For instance, the Intel Op-
tane PM can provide up to six terabyte (TB) memory on a single
machine. However, there is a performance gap between PM and
DRAM [13, 25]. Read and write bandwidth of the Optane PM are
only 38% and 16% that of DRAM, respectively. Hence, PM often
comes with a small DRAM (tens of gigabytes) to boost performance.
As a result, PM and DRAM form a heterogeneous memory (HM)
system. How to place and migrate data between PM and DRAM
to enjoy the speed of DRAM and capacity of PM remains active
research [7, 11, 22, 26, 39, 40].

In this paper, we leverage the latest PM hardware to enable large-
scale plasma simulations. We analyze the performance and develop
a performance model for optimizing PIC codes on PM-DRAM sys-
tems. Our performance analysis and optimization use a state-of-
the-art electromagnetic PIC code called WarpX [33]. Nonetheless,
the optimization strategies derived from this work are generally
applicable to other PIC-based simulation codes.

WarpX [33] is a mission-critical application designed for effi-
cient executions on large-scale HPC systems and future Exascale
machines. WarpX enables high-fidelity modeling of many complex
processes, such as laser- and beam-driven plasma accelerators. As
a PIC method, WarpX has high memory footprints for simulating
particles moving in electromagnetic fields. The memory footprint
scales up with the number of particles and field size. For example,
the recent production run on 4,096 nodes on the Cori supercom-
puter simulates 62 billions of particles and consumes up to 8.9 TB
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memory. Therefore, a large memory capacity is a key enabler for
large-scale simulations in WarpX.

Our performance analysis identifies two challenges in optimizing
WarpX on PM-based systems. First, WarpX has frequent read/write
with a streaming-like access pattern, which intensifies memory
accesses. Given the low bandwidth of PM compared to DRAM, this
access pattern is unfavorable. Second, the WarpX code uses tens of
millions of data objects and frequent memory (de)allocation. These
data objects include long-lived data structures for particles, fields,
and metadata, as well as short-lived buffers for communication and
computation. Managing such a large number of data objects with
diverse properties on DRAM and PM is complex.

We introduce a set of techniques to optimize the performance of
WarpX on PM. Data objects are characterized and classified based
on their lifetime and memory access patterns. This information
guides their placement and migration on PM and DRAM at runtime.
Ideally, frequently accessed data objects are placed into DRAM.
However, due to the limited DRAM capacity and the large problem
size in production runs, only some data objects or even partial data
objects can fit into DRAM. To address this challenge, we make the
best use of memory hierarchy and employ a combination of data
migration and processor-cache prefetch mechanisms. In particular,
we partition long-lived large data objects and migrate their parti-
tions between PM and DRAM. We prefetch frequently reused data
from PM to processor caches without using limited DRAM space.

To achieve efficient migration between PM and DRAM, we need
to address two challenges. First, migrating data consumes memory
bandwidth. However, the application also needs to access memory.
Hence, data migration can compete with the application threads
for memory bandwidth. Second, data migration uses helper threads
in the background, other than the application threads, to avoid ex-
posing data migration into the critical path. However, using helper
threads reduces the availability of processor cores for the applica-
tion threads. An optimal number of helper threads should expedite
data migration without causing performance loss in the application
threads. To address the above challenges, we develop a perfor-
mance model to decide the optimal number of helper threads for
data migration. Our model considers the constraints on memory
bandwidth and core availability in realistic simulations. Based on
the performance model, we use a lightweight runtime algorithm
combined with runtime profiling and empirical observations to
select and adapt the data migration between PM and DRAM for
different input problems.

To enable efficient prefetch from PM to processor caches, we
must decide when to prefetch, and the prefetch must be just early
enough such that the data is in the caches right before computation
without eliminating useful data or wasting cache space. We build an
analytical model to decide when to prefetch based on an abstraction
of memory accesses in WarpX.

We summarize the paper contributions as follows.

o We demonstrate and quantify the benefits of leveraging PM to
enable large-scale plasma simulations in a mission-critical appli-
cation called WarpX.

e We characterize the memory management, bandwidth consump-
tion, and data object lifetime and access patterns in WarpX pro-
duction simulations. We analyze the implication of the charac-
terization for performance optimization on PM-based systems.

o We make the best use of memory hierarchy based on static and
dynamic data placement strategies, and processor-cache prefetch
guided by performance modeling.

e We improved the WarpX execution on Optane-only by 66.4%
and outperformed DRAM-cached, the NUMA first-touch policy,
and a state-of-the-art HM solution by 38.8%, 45.1% and 83.3%,
respectively.

2 BACKGROUND

The WarpX particle-in-cell code. WarpX leverages MPI+OpenMP
parallelism. It has two components, i.e., PICSAR [28] for particle-
in-cell (PIC) routines at the innermost level and AMReX [44] for

adaptive mesh refinement (AMR). A WarpX simulation may consist

of multiple levels of resolution. Each level is an AMR level in the

AMReX library and performs a PIC simulation at the resolution of

that level.

PIC codes typically have the following characteristics. Field
and particles are the main data structures, and particles consume
the most memory footprint. The core PIC routines include four
phases — current deposition, field solver, field gather,
and particle pusher.In current deposition, all particles are
iterated to deposit their charge and moments to the fields. In field
solver, alinear system from the discretized Maxwell’s equations is
solved to compute electric and magnetic fields on the grid. During
field gather, forces from the fields are calculated for each particle,
which then in particle pusher, are used to update the location
of particles. Both current deposition and field gather have
mostly regular data access to the particles, exhibiting streaming-
like read access in current deposition and read-write access in
field gather.

Communication happensin field solver and particle pusher.
Most communication in field solver is point-to-point (P2P) be-
tween neighbor processes for halo exchange. Both collective and
P2P communications are used in particle pusher for communi-
cating particles that move from one subdomain to another.

The Intel Optane DC PM. The Intel Optane DC Persistent
Memory Module (PMM) is the first large-scale byte-addressable PM.
The Intel Purley platform used in our study is equipped with Op-
tane PM DIMMs and DRAM DIMMs. Each socket has six memory
channels, and each is shared by a DRAM DIMM and a PMM DIMM.
In total, there are 12 PM DIMMs and DRAM DIMMs, respectively,
on two sockets. An Optane PM DIMM may have 128, 256, or 512
GB capacity, enabling up to 6 TB memory capacity on a single ma-
chine [13]. The latency to PM is measured as 174 ns for sequential
reads and 304 ns for random reads, in contrast to 79 ns and 87 ns to
DRAM [25]. The bandwidth to PM on one socket is 39 GB/s for read
and 13 GB/s for write, while DRAM achieves 104 GB/s and 80 GB/s
bandwidth on the same platform. There are two modes in PMM:
memory mode and app-direct mode. In the memory mode, DRAM
becomes a hardware-managed cache to PMM. Running the applica-
tion on DRAM-cached PMM to use both DRAM and PMM requires
no application modifications. In the app-direct mode, accesses to



Table 1: Compare the memory capacity and simulation scale
on supercomputers

Largest problem

Supercomputer Mem capacity per node (in terms of particles)
Sierra 320GB DRAM 10.6 trillions
Summit 608GB DRAM 18.9 trillions
Aurora 256GB DRAM (est.) 8.8 trillions
Taihu Light 32GB DRAM 1.1 trillions
Optane-based 1692GB (1.5TB PM + 192GB DRAM) 58.6 trillions

PM and DRAM can be explicitly controlled at the application level,
either through a DAX-based file system [31] or exposing PM as
separate NUMA nodes.

Enabling Large-Scale Simulations with PM. Using the Op-
tane persistent memory, we can significantly increase the memory
capacity per node to enable fine-grained and large-scale scientific
simulations. An Optane-based machine has up to six TB mem-
ory [13], while a node in main-stream supercomputers has at most
hundreds of GB (see Table 1). Given a fixed number of nodes, using
the Optane PM allows us to perform scientific simulation previously
unachievable due to limited memory capacity.

Table 1 presents an example case that performs a numerical sim-
ulation of a laser-driven plasma accelerator (i.e., the laser-wakefield
accelerator) using WarpX [8]. This simulation uses a large num-
ber of particles in the time and space scales to gain knowledge on
plasma structures towards a full-scale numerical study of the next
generation laser-wakefield accelerator systems. Such numerical
studies provide insights for compact high-energy colliders [16].

In this example, we assume the same simulation configuration as
that in a production run on 4,942 nodes on the Cori supercomputer.
Table 1 compares the largest simulation scale that can be supported
on each supercomputer. The simulation scale is defined as the
number of simulated particles — a larger number indicates a larger
simulation scale. Clearly, Memory capacity is one main constraint
on the simulation scale. The memory consumption of WarpX is
calculated based on the estimation of the sizes of particles, fields,
metadata, and temporal data objects.

Table 1 shows that an Optane-based supercomputer can enable
larger-scale simulations than other supercomputers. Compared
with Summit and Sierra (the top two supercomputers in the top500
list by April 2020) that use hundreds of Gigabytes of DRAM per
node, the Optane-based supercomputer increases the simulation
scale by 3.1x and 5.5%, respectively.

3 PERFORMANCE CHARACTERIZATION

We develop a heap profiler and a phase profiler to characterize
the memory usage and bandwidth consumption in the application.
The heap profiler tracks dynamic memory allocations and collects
information on each allocation (data object). The phase profiler
collects hardware events from performance counters and associates
them to specific execution phases in the application.

Heap profiler interposes common memory management rou-
tines in C and C++, e.g., malloc, calloc, the operator new and
its variants, posix_memalign, Linux-specific aligned_alloc and
valloc. It collects the metadata of data objects, including size, time
of allocation/deallocation, and lifetime (defined as the interval be-
tween allocation and deallocation). The timestamps of allocation
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Figure 1: The number of memory allocation/deallocation
across iterations.

and deallocation are used to map to specific execution phases. The
tool also supports postmortem analysis of the profiling results.

Phase profiler use specific APIs to track execution phases. The
user inserts the APIs into the WarpX code to mark execution phases.
The API implementation includes two functionalities. First, it trig-
gers a set of auxiliary external scripts to invoke the Linux perfor-
mance profiling tool perf to collect information from hardware
performance counters. Also, it invokes the Intel PCM [32] to collect
memory bandwidth data.

3.1 Profiling Results

We use a representative laser-driven simulation configuration for
profiling. The input problem uses 704x704x5664 cells and 8.4 billion
particles (see Problem B in Table 5). The peak memory consumption
exceeds 1.2 TB on DRAM-cached Optane (memory mode).

Memory allocation and deallocation analysis. We use the
heap profiler to track memory allocation/deallocation in each it-
eration of the WarpX execution. Figure 1 presents the results for
the first seven iterations. The profiling results show that millions
of memory allocation and deallocation occur in each iteration.
Across iterations, the number of memory allocation and deallo-
cation varies. Such a massive amount of data objects, which are as
resulted from frequent allocation and deallocation, imposes chal-
lenges in profiling at either data object level [12, 24, 39] or memory
page level [2, 6, 14, 40, 42].

Data object lifetime and size. We classify the distribution of
lifetime and size of data objects. Table 2 reports the classification
in the second iteration of the WarpX simulation. Other iterations
exhibit similar distributions. A data object is alive after its allocation
and before its deallocation. We categorize a data object as short-
lived if its lifetime is within one iteration and long-lived otherwise.
We observe that 92.7% of data objects are short-lived in the WarpX
simulation. Furthermore, these short-lived data objects only account
for less than 10% of the peak memory consumption of WarpX. This
characterization motivates us to use a small DRAM space to host
repeatedly allocated/freed short-lived data objects and avoid data
movement between DRAM and PM. This static placement strategy
is described in Section 4.1.

Execution time breakdown. We measure the time of major
execution phases (Section 2). Each iteration of the main computa-
tion loop performs these major phases. Some “add-ons” execution
(such as load redistribution and moving window) may also occur in
some iterations, counted as others. Table 3 reports the breakdown
of the execution time.

Overall, the particle pusher and current deposition phases
account for about 84% of the total simulation time. Particle pusher



Table 2: The distribution of object size.

Bin Short-lived data object Long-lived data object
(MiB) | Accumulated Peak Accumulated Peak
footprint footprint footprint footprint
0,1) 897.7 GiB 10.4 GiB 840.3 GiB 840.3 GiB
[1,2) 34.3 GiB 10.8 GiB 1.9 GiB 1.9 GiB
[2,9) 262.5 GiB 66.0 GiB 285.5 GiB 285.5 GiB
(4.8) 144.0 MiB 16.0 MiB 543.0 MiB 543.0 MiB
[8,16) 96.0 MiB 16.0 MiB 14.0 MiB 14.0 MiB
[16,32) 192.0 MiB 32.0 MiB 28.0 MiB 28.0 MiB
[32,64) 384.0 MiB 64.0 MiB 0 0
[64,+c0) |  768.0 MiB 1.6 GiB 0 0

Table 3: The breakdown of execution time.

Particle Current Field | Field
", Others
pusher | deposition | solver | gather
Ave. time 300.8s 132.0s 47.2s 25.2s 9.9s
Percentage 58% 26% 9% 4.9% 2.1%
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Figure 2: Memory bandwidth consumption in major phases.

reads the fields and updates the position of each particle. Current
deposition reads each particle and updates the current densities
on fields. These phases dominate the execution time and the read-
/write accesses to the main memory. Therefore, we employ fine-
grained dynamic data management to optimize their performance.
We describe the dynamic strategy in Section 4.3.

Memory bandwidth analysis. We measure the memory band-
width in major phases and report in Figure 2. We observe that the ex-
ecution of WarpX is not bounded by DRAM/PM bandwidth in most
of the execution time (e.g., field gather and particle pusher).
When the memory bandwidth utilization is low, e.g., about 10%,
prefetching data to DRAM would not constraint the bandwidth used
by the application. Thus, performance improvement becomes feasi-
ble. However, since data prefetching consumes memory bandwidth,
using it in bandwidth-intensive phases (e.g., current deposit)
may cause performance loss in the application. The bandwidth
analysis motivates us to develop a performance model to optimize
data prefetching at runtime (Section 4.3).

4 PERFORMANCE OPTIMIZATION ON PM

We propose a runtime system, called WarpX-PM (Figure 3), to man-
age data placement on DRAM and PM automatically. WarpX-PM
partitions DRAM into four spaces to store data objects with differ-
ent functionality and access patterns in WarpX. The metadata space
stores metadata updated infrequently but accessed frequently. The
temporary space stores short-lived data objects frequently allocated
and freed. Those short-lived data objects share and reuse the tem-
porary space without causing data movement between DRAM and
PM. The migration space acts as a software-managed DRAM cache

2 0
[t el -
é temporary writeback . =
QO space |migration particle <
space data
i prefetch
metadata
space field data :

Figure 3: The overview of data management on Optane-
based HM.

to prefetch particles from PM before they are used in computation.
Finally, the free space stores the maximum possible field data.

We combine static and dynamic strategies, and processor-cache
prefetch mechanism for data placement in the four spaces. Except
for the migration space managed for dynamic data placement, the
other three spaces are used for static data placement. We use per-
formance modeling to guide the data copy between DRAM and
PM without disturbing the WarpX performance. We also build an
analytical model to decide when to prefetch for the best use of
caches. Our designs are described in detail as follows.

4.1 Static Data Placement

WarpX-PM uses static placement to addresses the fundamental lim-
itations in the memory mode. This memory mode uses DRAM as a
direct-mapped hardware cache. Consequently, some performance-
critical data objects are evicted from DRAM due to iterative ac-
cesses to large data objects, such as particles and fields. Examples of
performance-critical data objects include metadata and temporary
data, where metadata is used to compute the simulation domain
iteratively, and temporary data is used to adjust the size of data
objects during the computation. These performance-critical data
objects are frequently referenced but only consume a small portion
(less than 10%) of the total memory consumption. In the memory
mode, these data objects are frequently moved between DRAM
cache and PM, a typical manifestation of cache thrashing.

Static data placement takes effect on all execution phases. WarpX-
PM pins the performance-critical data objects to DRAM to avoid
moving them between DRAM and PM as in the memory mode.
Depending on their lifetime, they can be categorized as long-lived
and short-lived, and placed into the metadata space and temporary
space, respectively. We describe the management of these two kinds
of performance-critical data objects as follows.

Long-lived, performance-critical data objects are mostly meta-
data and are placed in the metadata space in DRAM directly. In
WarpX, the whole simulation domain is decomposed into many
boxes distributed over MPI ranks. Each box contains a fraction of
fields and particles. Metadata is used to record the distribution of
boxes in the simulation domain. For instance, FArrayBox is a part of
box metadata for iterating particles in a box. Metadata are allocated
before the main computation loop and only freed after the whole
computation finishes — long-lived. During their life span, metadata
are frequently accessed, and their size remains unchanged.

Short-lived, performance-critical data objects are typically allo-
cated and freed within one iteration of the main computation loop.
These data objects include communication buffers and the memory
space used for resizing the data objects during the computation.
WarpX-PM allocates these data objects on demand in the temporary



initial boxes, fields , particles
2 int k = prefetch_distance

i« for(int step = 0; step < numsteps_max; ++step) {
amrex :: ParallelFor (bx in boxes)
{

7 Particle &p = particles.get(bx)

8 compute (p)

9 Fields &f = fields.get(p)

10 warpx_pm_prefetch (fields . get(p+k))

1 compute (f)

Figure 4: Applying prefetching techniques in WarpX.

space, which is a pre-allocated memory space in DRAM. To ensure
the pre-allocated temporary space is large enough for all temporary
data objects throughout the computation loop, WarpX-PM uses the
following algorithm.

WarpX-PM uses the first iteration of a simulation to measure the
peak memory consumption of WarpX. Then, WarpX-PM deducts
the sizes of particles, fields, metadata, and a fixed buffer per MPI
rank for the migration space from the peak memory consumption.
The resulted size is used to reserve the temporary space. This ap-
proach provides an estimation of the peak memory consumption of
short-lived, performance-critical data objects. Across iterations, the
peak memory consumption of these data objects may vary, mostly
due to communication buffers. The variance is typically small (tens
of MB). If the temporary space is exhausted, WarpX-PM increases
the temporary space on demand to accommodate.

After the metadata, temporary, and migration spaces are allo-
cated, the remaining space in DRAM is used as the free space, which
is used to hold fields as much as possible. Fields are frequently ac-
cessed in all phases. WarpX-PM chooses fields instead of particles
for static data placement because fields are not allocated in contigu-
ous memory space. Hence, maintaining their location information
and copying them between DRAM and PM incur high overhead.
Besides, fields are smaller but more intensively accessed than par-
ticles, showing better data locality in processor caches. If fields
cannot be completely placed in DRAM, we use a cache prefetch
mechanism to fetch fields from PM to the last level cache to avoid
PM’s negative performance impact (see Section 4.2).

The static data placement completes after the first iteration. The
memory allocation overhead is negligible because only three spaces
need to be managed. Furthermore, using the pre-allocated tempo-
rary space reduces the overhead of frequent memory (de)allocation
for short-lived data objects.

4.2 Cache Prefetch

Motivation. Fields are not dynamically migrated between PM and
DRAM as particles, because fields are not contiguously allocated
as particles, but spread across the memory address space, which
leads to either highly inefficient page-level migration or costly
engineering efforts for object-level migration. We do not prefetch
particles because particles can be timely migrated to DRAM using
the dynamic migration mechanism and prefetch data from DRAM
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Figure 5: Performance of prefetch fields data at various
prefetch distances. Performance is normalized to “NP” (no
prefetch). Blue indicates performance improvement, and
red indicates performance loss.

to the cache leads to negligible performance improvement in WarpX
(see Section 6).

Prefetch method. WarpX-PM triggers prefetch before compu-
tation by leveraging iterative structures in each execution phase.
Figure 4 depicts the prefetch method in WarpX-PM. Each phase is
characterized with a loop. Within each iteration of the loop, some
field data are retrieved (Line 9) and then used for computation (Line
11). In the iteration i, WarpX-PM prefetches the field data for the
next (i + k)th iteration, where k is a tunable parameter (named
prefetch distance).

The prefetch effectiveness highly depends on k. If k is too small,
prefetch cannot finish before the computation on fields happens;
If k is too large, prefetched fields have a risk of being eliminated
from the cache due to cache conflicts. Ideally, k should be just large
enough such that when fields are prefetched into the cache, compu-
tation on those fields is about to start. To understand the impact of
k, we use a range of k and measure the performance of each phase.
Figure 5 shows the results normalized by the performance without
prefetch in Problem F (see Table 5 for this problem). Depending on
the computation time of each phase, the optimal k is different from
one phase to another.

Performance modeling to guide prefetch. We propose to use
performance modeling to decide k, and the performance modeling is
based on our abstraction on memory accesses in WarpX. In essence,
when a phase processes particles one by one, for each particle,
memory accesses are characterized with a combination of accessing
particle metadata, the field of the particle, and the particle itself. This
combination provides a basic unit for particle-based computation.
k quantifies the number of basic units whose computation time is
just enough to allow the preftech of the field data for one unit to
complete.

Based on the above discussion, we formulate the calculation of k
in Equation 1, where the numerator is the time to prefetch the field
data for one particle, and the denominator is the execution time to
work on one basic unit (i.e., processing one particle). The numerator
is further expanded in Equation 2, which models the prefetch time,
including instruction issue and execution cost (), and memory
access latency. Since the fields could spread into DRAM and PM,
DRAM/PM access latency in Equation 2 is weighted by the ratio
of the fields in DRAM (fieldspram) to the fields in PM (fieldspyy).
This indicates that if the fields are completely placed in PM, then
fieldsprap is 0. The DRAM/PM access latency is assumed to be
constant in Equation 2, but weighted by 1 and 2 to model the



potential impact of internal buffers in memory devices (especially
PM devices) [37].

k= prefetch_time (1)

exe_time_on_one_basic_unit

prefetch_time =a + mem_access_time

jeld.
=a + f1X ]w x DRAM_access_latency+
fieldspy
ield.
p2x(1- %) x PM_access_latency

)

To use the above equations, we use the following method. The
denominator (the execution time) in Equation 1 is measured at run-
time by each MPI process after the data placement is enforced based
on Sections 4.1-4.3. , f1 and 2 in Equation 2 are calculated using
a microbenchmark offline. In particular, we develop a microbench-
mark that spreads a collection of field data across DRAM and PM.

We change the ratio of the field data in DRAM and PM (f;".ld;# ,
relaspmy
prefetch them one by one, and measure the latency. Given the la-

tency measured with different ratios (%), we calculate

a, 1 and B2 using linear regression. DRAM_access_latency and

PM_access_latency in Equation 2 are measured using LMBench [21].

fieldspram

Fieldspar is determined after the static data placement at runtime.

4.3 Dynamic Data Placement

The dynamic strategy takes effect at particle pusher, current
deposition, and field solver. The accesses to particles mainly
occur in these phases. The dynamic placement copies particles into
DRAM in batches and only copies them back to PM if particles
are updated in the computation. Particles consume at least 50% of
memory consumption. For a large input problem, particles alone
may unlikely fit in DRAM. However, directly accessing particles in
PM in particle computation causes performance loss due to the low
memory bandwidth. WarpX-PM uses software-managed particle
prefetching to copy batches of particles into the migration space so
that computation always accesses particles in DRAM.

ParticleContainer is the primary data object for particles. It
contains an array of particle structures, each representing a parti-
cle and recording its position, velocities, ID, and the owner CPU.
Thus, ParticleContainer occupies a contiguous space in physical
memory. In each of the particle pusher, current deposition,
and field solver phases, all particles in the ParticleContainer
are iterated in a streaming-like access pattern at the granularity
of FArrayBox. WarpX-PM leverages this characteristic to partition
each phase into intervals based on the time of processing particles
in FArrayBox. At an interval i, WarpX-PM copies a batch of parti-
cles needed for the next interval i + 1 to DRAM. This data copy is
expected to finish before the interval i + 1. If particles are updated
in the interval i + 1, they are copied back to PM in the interval i + 2.
Given the streaming-like patterns to access particles, there is no
data dependency between intervals.

To implement the particle prefetching strategy, two challenges
must be addressed. First, WarpX-PM needs to decide the number
of threads to copy particle batches. WarpX-PM uses helper threads

Table 4: Notation for performance modeling

Source Symbol Description
BWDRAM_to PM () | BW of copying data from DRAM to PM
Hardware | gyPM_to DRAM() | Bw of copying data from PM to DRAM
parameters BWax Peak memory bandwidth
Thrd,qx Maximum number of hardware threads
App related iatain, datay,; SDizes of da-ta co-pied in/ouf of DRAM
parameters cp ata copying time for an interval
Teomp WarpX execution time of an interval
Thrd,p Number of threads to copy data
Thrdcomp Number of threads for application
Teomp Optimal execution time of an interval

instead of application threads to copy particles to avoid delay-
ing the execution of application threads. Using a large number of
helper threads accelerate data copy but reduces processor cores
and memory bandwidth available for WaprX execution. Using a
small number of helper threads increases the risk of exposing data
copy into the critical path of WaprX execution if data copy can-
not finish in time. Second, the decision of the number of helper
threads must be adaptive and lightweight. Different input problems
or MPI/OpenMP configurations may consume memory bandwidth
differently and need different numbers of helper threads for the
best performance.

Performance Modeling. We introduce a performance model-
based approach to decide the optimal number of helper threads for
each phase. All intervals in the same phase use the same number
of helper threads while different phases may use different numbers
of helper threads. Table 4 summarizes the notations used in the
performance model.

data copy time (T.,) in an interval i includes the time to copy
data needed by the interval i + 1 from PM to DRAM (7.), and the
time to copy data updated in the interval i — 1 from DRAM to PM
(1530).

datajp,

WPM_to_ DRAM (T hr dcp)

T (Thrdey) = 3
®)

datagy;
WDRAM_to_PM (T hr dcp) ’

TG (Thrdep) = —

where data;, and datayy; are the size of data to be copied in and out

of DRAM for an interval; BWPM-t0-PRAM (Thyq, ) and BWPRAM_to_PM (Thrq, )

are the data copy bandwidth in and out of DRAM. These bandwidths
are functions of the number of helper threads (Thrd.,). Therefore,
T., is also a function of Thrd.,.

Equation 3 considers performance difference between copying
data from DRAM to PM and from PM to DRAM. In our implementa-
tion, copying data in two directions happens in parallel. If memory
bandwidth is not a bottleneck, we have

Tep = max (T

in Tgut), (@)

Overlap constraint. Copying data happens in parallel with WarpX
execution. The data copy time should be no longer than the WarpX
execution time, i.e.,

Tep (Thrdcp) < Teomp (Thrdcomp)a (5)



where T;om, is the execution time of an interval when the particles
accessed by the interval are all in DRAM. T.o,m, is a function of the
number of application threads (Thrdcomp) in an MPI rank.

Bandwidth constraint. The bandwidth consumption due to copy-
ing data should not reduce the bandwidth available for WarpX
execution. Assume that without copying data, the bandwidth con-
sumption of WarpX execution is BW,om,, including both read from
and write to PM.

BWeomp (Thrdeomp) + BWPM-10-DRAM (Tppq. )

+ BWDRAMJO,PM(Thrdcp) < BWpax /N
(6)

where BW,,.x is the peak memory bandwidth constrained by the
hardware and N is the number of MPI ranks (We assume BW,,,,, is
evenly partitioned between MPI ranks). BW,,,.» needs to satisfy the
following equation to prevent performance loss.

BWiax = max( BWn?(ﬁcAM‘m‘PM, BW’if]\/]I(_to_DRAM) ™)

PM AM
BWDRAM_to PM and B EM_to_DRAM 4re the peak memory band-

width supported by hardware from DRAM to PM and from PM to
DRAM, respectively.

Thread constraint. The number of application threads and helper
threads should be no larger than the maximum number of threads
assigned to an MPI rank (Thrdpax), ie.,

Thrdcomp + Thrdep < Thrdmax. 8)

Optimization goal. Assume that 7/,,,,, is the execution time for
an interval, given Thrdcomp and Thrd,, threads for WarpX execution
and copying data, respectively. T,,,, is a function of Thrd.,m, and
Thrd.p. The goal of our performance modeling is to minimize 7,,,,,

(Equation 9), subject to the constraints of overlap (Constraint 5),
bandwidth (Constraint 6) and threads (Constraint 8), i.e.,

min(TC'omP(Thrdcomp, Thrdcp)). 9)

BWnax and Thrd,,q. are known from offline profiling; BWPRAM to PM ()
and BWPM-to_DRAM (y are measured by a microbenchmark at various

numbers of data copy threads; datayy; and data;, are known from

FArrayBox, whose value is set at the beginning of each iteration.

Therefore, based on dataeys and data;,, we can calculate T, using

Equation 4 given Thrd.,.

We build T, () based on online profiling and empirical observa-
tion. In particular, we use an interval in the second iteration of the
main computation loop to measure the execution time online, and
use Thrdmax as Thrdeom, during the execution of the interval. This
measurement is done after static data placement and after loading
the required particles by the interval into DRAM. Furthermore, we
empirically observe that the execution of WarpX using various in-
put problems is not bounded by memory bandwidth on Optane (see
Section 3.1); Using Thrdpax as Thrdeomp gives the best performance.
Using Thrdmax — 1 and Thrdpax — 2 s Thrdeomp give less than 10%
performance loss, while using the number of threads smaller than
Thrdmax — 2 for Thrdeom, causes more than 20% loss. Hence, we use
the measured online execution time as the result of Teomp (Thrdcomp),
when Thrdcomp € [Thrdmax — 2, Thrdmax]. We do not consider other
cases of Thrdcom, to avoid performance loss of WarpX execution.

Note that this approach gives us a high requirement on data copy
overhead because of Constraint 5.

We employ a similar approach to build BWeom, (). We measure
memory bandwidth in an interval in the second iteration of sim-
ulation and using Thrdmax as Thrdcomp. This memory bandwidth
is used for Thrdcomp € [Thrdmax — 2, Thrdmax]. We do not consider
other cases to avoid performance loss.

We use the following approach to find the optimal Thrdcom, and
Thrd., to minimize T7,,,, (). We use Constraints 6 and 8 to select the
numbers of helper threads to meet the bandwidth constraint. Then,
among the selected numbers, we use Constraint 5 to find those that
meet the overlap constraint. Finally, we choose the smallest number
as the optimal number of helper thread from those selected numbers.
Given the constraints, the WarpX execution time is minimized,
Teomp = Teomp (Thrdmax).

Our modeling approach is lightweight, because we avoid exhaus-
tive search of all combinations of Thrdcom, and Thrd., by eliminat-
ing those that can obviously cause performance loss. The overhead
to find the optimal is almost zero.

5 IMPLEMENTATION DETAILS

WarpX-PM is implemented as a patch to WarpX and AMRex. Run-
ning WarpX with WarpX-PM on Optane (or other HM) requires no
efforts from the user. We release WarpX-PM in [1]. The statistics of
modifications given by git diff is 15 files changed, 1031 insertions(+),
12 deletions(-).

WarpX-PM uses pthread to implement helper threads for each
MPI rank. For static data placement, data objects that needed to
be placed in DRAM are allocated into DRAM NUMA nodes using
numa_alloc_local(). For dynamic data placement, each MPI process
pre-allocates a 500MB temporary space in DRAM to copy particles
between DRAM and PM. We use 500MB because the dynamic data
placement handles particles batch by batch, and the batch size is de-
termined by FArraybox. The size of all particles in one FArraybox
is bounded by 500MB. All MPI processes evenly partition DRAM
initially. To accommodate the size variance of short-lived data ob-
jects across interations, WarpX-PM increases the temporary space
by reserving extra 100MB DRAM space for each rank.

Avoiding NUMA effects is important for high performance on
an Optane-based machine with multiple sockets, each equipped
with both DRAM and PM [25]. We observe that allocating data in
remote DRAM and PM nodes (i.e., DRAM and PM on the remote
socket) leads to up to 2x performance loss for large input problems
in WarpX. To address this NUMA effect, in WarpX-PM, once an MPI
rank is pinned to a processor, those DRAM spaces for static and
dynamic data placements are allocated from local DRAM NUMA
nodes. Also, all data objects of the MPI process are allocated from
local PM nodes.

WarpX-PM implements the model-guided cache prefetching in
warpx_pm_prefetch() based on _mm_prefetch intrinsic. This op-
eration prefetches cache lines in the field data to the processor’s
last-level cache by pointer chasing the metadata related to field
data. WarpX-PM uses high-performance data copying to implement
data placement based on AVX-512 streaming load/store intrinsics
and multi-threading. Alternatively, we could use a page migration



Table 5: Input problems used in evaluation

ID | Type # of cells # of particles | Peak consumption
A | Laser-driven (512, 512, 4096) | 1.1B 228.5 GiB

B | Laser-driven (704, 704, 5664) | 8.4B 1.2 TiB

C | beam-driven (512, 512, 4096) | 2.1B 306 GiB

D | beam-driven (864, 864, 7200) | 10.7B 960 GiB

E | Uniform-plasma | (384, 384, 3104) | 3.7B 525 GiB

F | Uniform-plasma | (512, 512, 4096) | 8.6B 1.2 TiB

G | Laser-driven (256, 256, 2048) | 134.2M 19.2 GiB

" The names of particle species of A, E, F and G are set to electrons; the names of B are set to electrons,
ions and beam; the names of C and D are set to driver, plasma_e, plasma_p, beam and driverback. The
blocking factor is 32.

Table 6: Platform Specifications

Processor 24 Gen Intel Xeon Scalable processor
Cores 2.4 GHz (3.9 GHz Turbo frequency x 24 cores (48 HT) X 2 sockets
L1-icache private, 32 KB, 8-way set associative, write-back
L1-dcache private, 32 KB, 8-way set associative, write-back
L2-cache private, IMB, 16-way set associative, write-back
L3-Cache shared, 35.75 MB, 11-way set associative, non-inclusive write-back
DRAM six 16-GB DDR4 DIMMs X 2 sockets (192 GB in total)
PM six 128-GB Optane DC NVDIMMs X 2 sockets (1.5 TB in total)
Interconnect || Intel UPI at 10.4 GT/s, 10.4GT/s, and 9.6 GT/s

mechanism such as move_pages() and mmap() to implement data mi-
gration between DRAM and PM instead of data copying. However,
these data migration mechanisms work at the page level, requiring
setting up a mapping between data objects and pages, which is
difficult to implement at the user level. Furthermore, these mecha-
nisms can cause frequent TLB misses because of page remapping,
which leads to performance loss [42]. Note that our data copying
mechanism in WarpX does not impact program correctness because
our implementation has no pointer alias - the pointers pointing to
the old data is updated after data copying.

6 EVALUATION
6.1 Experimental Setup

Table 6 summarizes the hardware features of our testbed. When
the Optane DC PMM is in app-direct mode and exposed as NUMA
nodes, we use numactl [18] to control data placement on PMM and
DRAM. The platform runs Fedora 29 (Linux 5.1.0). We use the Intel
Processor Counter Monitor (PCM) tool [32] to access hardware
counters to collect core activities and off-core events.

Table 5 summarizes input problems for evaluation. They come
from various plasma accelerator simulations with a wide range of
memory consumption (up to 1.2TB). We use WarpX 20.04, OpenMPI
4.0.2 and GCC 7.5.0. For all problems except Problem G (a relatively
small input), we run 10 iterations and report average execution time
per iteration. There is less than 1% difference in average execution
time if we use more than 10 iterations. For Problem G, we run
30 iterations to report average execution time, because average
execution time becomes stable only after 20 iterations.

6.2 Evaluation Results

Overall performance. We compare WarpX-PM with Optane-only
(i.e., no DRAM) and two common strategies (i.e., NUMA first-touch
and memory mode) to use Optane-based systems. We evaluate
Problems A-F in Table 5. All these problems have peak memory
consumption larger than DRAM (192 GB). For Problem G, all data

objects can be placed in DRAM, i.e., little performance difference
between NUMA first-touch, memory mode, and WarpX-PM.

Figure 6 reveals that WarpX-PM performs the best in all cases.
On average, WarpX-PM outperforms memory mode, Optane-only,
and NUMA first-touch by 38.8%, 66.4%, and 45.2%, respectively. We
notice that NUMA first-touch performs worse than memory mode
and WarpX-PM. NUMA first-touch decides data placement based on
when data allocation happens, instead of memory access patterns,
which leads to sub-optimal data placement if a performance-critical
data object is allocated at a later stage of execution. For example,
particles are allocated before fields in WarpX, and NUMA first-
touch places particles in DRAM, which forces fields to go to PM
because of limited DRAM capacity. However, fields is more fre-
quently accessed throughout simulation — placing it into PM leads
to substantial performance loss. WarpX-PM avoids this problem be-
cause it prioritizes the placement of fields over particles on DRAM.

WarpX-PM outperforms memory mode because it avoids DRAM-
cache thrashing for small and short-lived data objects. DRAM-cache
thrashing happens due to accesses to the large data object — particles.
Without application knowledge, the DRAM cache may evict small
and short-lived data objects to make space for particles.

We find that WarpX execution has large performance variance
in memory mode (up to 30.5%) for Problem A. This problem has
peak memory consumption slightly larger than DRAM. Such per-
formance variance in memory mode has been confirmed by Intel,
and imposes a big challenge on controlling performance variability
in HPC applications. WarpX-PM avoids this performance variance
because of its static placement of critical data objects.

Performance breakdown. We quantify the performance im-
provement from static data placement, cache prefetch, and dynamic
data placement in Figure 7. For each problem, we report the per-
iteration time in the memory mode as the baseline (M). For compar-
ison, we run WarpX-PM with only static data placement (S), with
static data placement and cache prefetch (P), and with all the three
techniques (D). WarpX-PM with the three proposed techniques
achieves the best performance in all problems. Different input prob-
lems exhibit different sensitivity to these techniques. For instance,
cache prefetch achieved over 12%-16% improvement in Problem B
and C while problem A and E are more sensitive to dynamic data
placement.

For large input problems (e.g., Problems B and D with 1.2TB peak
memory consumption), static data placement outperforms memory
mode by 29% on average. Memory mode cannot work well for the
large input problems because metadata and temporary data are
not efficiently cached in DRAM. On average, static data placement
effectively speedup field gather and others by 10% and 7% in
all input problems, compared to memory mode. Field gather
and others involve large metadata and access to temporary data
objects. Static data placement effectively prevents data migration
in these two phases and thus avoids the migration overhead.

Dynamic data placement improves the performance of particle
pusher, current depositionand field solver by 11%, 17%, and
12%, compared to static data placement. By proactively migrating
particles from PM to DRAM, dynamic data placement outperforms
memory mode and static data placement by 34% and 41%.
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Figure 8: Performance comparison between IAL (a state-of-
the-art page migration solution for HM) and WarpX-PM.

Comparison with state-of-the-art. We compare WarpX-PM
with a state-of-the-art page migration system for HM, named im-
proved active list (IAL) [42]. This system improves an existing page
replacement mechanism in the Linux kernel (i.e., an FIFO-based
active list). Among the 7 input problems listed in Table 5, we can
only run three of them successfully with IAL. Running other prob-
lems with IAL has either 10x lower performance than WarpX-PM
or segmentation faults.

Figure 8 reveals that WarpX-PM outperforms IAL by 83.3% on
average and up to 96.6%. There are three main reasons for the infe-
rior performance of IAL. First, IAL is a reactive approach - it takes
effects only after it collects enough information on memory ac-
cesses. This indicates that it cannot efficiently prefetch data objects
into DRAM to reduce data movement cost. Second, IAL periodically
samples memory page accesses to identify page hotness. Finding
hot pages from a large amount memory pages (tens of millions)
incurs significant overhead. Third, IAL heavily relies on helper
threads to enable parallel page migration for high performance.
However, IAL does not consider the impact of using helper threads
on the WarpX execution. Using an excessive number of helper
threads decreases computation capability available for WarpX and
consumes large memory bandwidth, which negatively impact the
WarpX performance.
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Figure 9: Memory bandwidth consumption in one iteration.

Memory bandwidth analysis. Figure 9 depicts read/write band-
width for memory mode and WarpX-PM. We use input Problem F,
because its peak memory consumption is the largest and pressures
the memory bandwidth. Compared with memory mode, WarpX-PM
consumes higher DRAM bandwidth, indicating that fast memory
accesses happen more often in WarpX-PM to make best use of
DRAM. More specifically, for execution phases that only involve
static data migration (i.e., field gather and others), PM band-
width consumption is lower than memory mode, indicating the
effectiveness of static data placement. For execution phases that
involve dynamic data migration ( current deposition, field
solver and particle pusher), WarpX-PM has higher PM band-
width than memory mode. This is because dynamic data placement
prefetches data objects before they are accessed, but data prefetch
overhead is hidden by overlapping with the computation.

NUMA effects. Optane-based systems have multiple sockets,
each with DRAM and PM DIMM:s. Efficient data placement is not
only about using DRAM or PM but also about avoiding memory
accesses to a remote socket. We compare memory mode, NUMA



Table 7: Quantifying the memory traffic between NUMA
nodes.

Problem ID Remote DRAM traffic (GB)
Memory mode | First-touch | WarpX-PM
A 0.92 1.01 0.01
B 4.08 3.75 0.02
C 3.69 4.76 0.02
D 18.09 23.90 0.05
E 1.01 0.90 0.01
F 2.22 2.28 0.01
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Figure 10: Last-level cache hits (top) and misses (bottom) in
one iteration in problem F.

first-touch with WarpX-PM to quantify NUMA effect by tracking
memory traffic between two sockets. We use six input problems
whose peak memory consumption is larger than DRAM to allow
us to evaluate the NUMA effect fully. Table 7 shows the results.

The results show that WarpX-PM has the lowest inter-socket
traffic (close to zero). Memory mode is not NUMA-aware and cannot
cache accesses to remote PM in a local DRAM [9]. The NUMA first
touch policy is NUMA-aware, but data may be distributed to remote
DRAM when the local DRAM is exhausted. WarpX-PM avoids these
problems by explicitly placing data in local buffers (Section 5).

Effectiveness of cache prefetch. Figure 11 compares the model-
guided selections of prefetch distance with selections based on ex-
haustive search. The exhaustive search-based selection represents
the best possible performance, though infeasible at runtime due to
its high cost. Among 30 cases (i.e., five phases in six input problems),
our model agrees with the exhaustive search in 20 cases. In the
remaining 10 cases, the performance difference between our model
and exhaustive search is less than 5%. In all cases, our model leads
to performance improvement (i.e., 9%-20%).

We evaluate the impact of the model-guided cache prefetch on
traffic to the processor’s last-level cache. Figure 10 reports the
number of last-level cache hits and misses for Problem F. The results
show that WarpX-PM significantly increases the number of last-
level cache hits with spikes orders higher than that without prefetch.
The increased cache hits only occurs in field gather, particle pusher,
and current deposition, where particles are accessed in a streaming-
like pattern, but not in field solver, where particles are not accessed.
Meanwhile, our model-guided prefetch causes no increases in the
number of cache misses.

Effects of performance modeling. We evaluate the effective-
ness of the performance model in determining the number of helper

threads. The performance variance due to different numbers of
helper threads is the same across phases. Hence, we use the same
number of helper threads for all phases for evaluation. We manually
sweep the number of helper threads and compare their performance
with the automatically adapted performance in WarpX-PM. Fig-
ure 12 shows the results. For Problem A, B, C, and E, the optimal
number of helper threads is two. For Problem D and F, the optimal
number of helper thread becomes one. WarpX-PM achieves similar
performance as the optimal one in all problems. We note an over
30% performance loss when more than two helper threads are used.
As the number of helper threads increases, the available processor
cores for the computation in WarpX simulation decreases, which
prolongs the total execution time.

WarpX-PM at scale. Because of hardware limitation, we cannot
evaluate WarpX-PM on multiple Optane-based machines. However,
WarpX-PM focuses on intra-node data movement optimization,
and significantly improves performance without impacting com-
munication patterns and application algorithms. We expect that
WarpX-PM can be applied on larger scales without decreasing ap-
plication scalability.

7 RELATED WORK

HPC workloads Many works have explored PM-based HM for
HPC [7, 19, 20, 22, 26, 29, 39-41]. Nguyen et. al [22] introduce a
multi-version octree on PM to enable adaptive mesh simulation
on PM. Unimem [39] uses performance modeling to decide data
placement for MPI-based HPC applications. Siena [26] explores rich
organizations and configurations of HM architecture for HPC appli-
cations to determine optimal system designs. Tahoe [40] combines
a machine learning model and an analytical model to predict appli-
cation performance across multiple memory components for task-
parallel programs. NVStream [7] uses non-temporal store and delta
compression to reduce overhead for maintaining crash consistency
and reduce I/O traffic for HPC workloads. These works use emulated
PM to demonstrate their functionality. Recent works are character-
izing HPC applications on Optane [19, 23, 27, 29, 35, 38, 41]. Patil et.
al [23] measure performance of HPC mini-apps under different con-
figurations of Optane DC PMM and reveal potential performance
benefits of using PM-based heterogeneous memory in HPC. Differ-
ent from above works, our work focuses on performance analysis
and optimization of a production-level code (WarpX) for realistic
simulations on real PM hardware.

Database and graph workloads. Recent works also propose
various performance optimizations of databases and graph work-
loads on the Optane PM [5, 9, 15, 17, 30, 43]. Yang et. al [43] ana-
lyze the Optane architecture to optimize database and file system.
TimeStone [15] solves the problem of poor scalability of durable
transaction memory (DTM) on Optane by adopting multi-version
concurrency control and a DRAM buffer. RECIPE [17] converts con-
current DRAM indexes to crash-consistent indexes on Optane. Gill
et. al [9] evaluate four graph analytics frameworks and optimize
performance by mitigating the NUMA effect of Optane. ATMem [5]
employs a sampling-based profiler to select performance-critical
data regions in graph applications on Optane.
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Figure 12: Compare the performance of WarpX-PM with the performance using one to eight helper threads. WarpX-PM always

achieves the optimal performance.

8 CONCLUSIONS

The emerging large-capacity PM enables high-resolution large-scale
scientific simulations. However, leveraging PM for production-level
HPC codes on realistic problems remains to be investigated. In this
paper, we focus on WarpX, a mission-critical plasma simulation
code, as a use case to study PM implications on its performance. We
demonstrate the PM benefits in simulation scales and propose a set
of performance optimization strategies driven by detailed perfor-
mance analysis. We improved the WarpX execution on Optane-only
by 66.4% and outperformed DRAM-cached, the NUMA first-touch
policy, and a state-of-the-art HM solution by 38.8%, 45.1% and 83.3%,
respectively.
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