MD-HM: Memoization-based Molecular Dynamics Simulations
on Big Memory System

Zhen Xie
zxiel0@ucmerced.edu
University of California, Merced

Wengqian Dong
wdong5@ucmerced.edu
University of California, Merced

Jie Liu
jliu279@ucmerced.edu
University of California, Merced

Ivy Peng Yanbao Ma Dong Li
peng8@lInl.gov yma5@ucmerced.edu dli35@ucmerced.edu
Lawrence Livermore National University of California, Merced University of California, Merced
Laboratory

ABSTRACT

Molecular dynamics (MD) simulation is a fundamental method for
modeling ensembles of particles. In this paper, we introduce a new
method to improve the performance of MD by leveraging the emerg-
ing TB-scale big memory system. In particular, we trade memory
capacity for computation capability to improve MD performance
by the lookup table-based memoization technique. The traditional
memoization technique for the MD simulation uses relatively small
DRAM, bases on a suboptimal data structure, and replaces pair-wise
computation, which leads to limited performance benefit in the big
memory system. We introduce MD-HM, a memoization-based MD
simulation framework customized for the big memory system. MD-
HM partitions the simulation field into subgrids, and replaces com-
putation in each subgrid as a whole based on a lightweight pattern-
match algorithm to recognize computation in the subgrid. MD-HM
uses a new two-phase LSM-tree to optimize read/write performance.
Evaluating with nine MD simulations, we show that MD-HM out-
performs the state-of-the-art LAMMPS simulation framework with
an average speedup of 7.6X based on the Intel Optane-based big
memory system.

CCS CONCEPTS

+ Computing methodologies — Modeling and simulation; Com-
puter graphics; « Information systems — Data structures.

KEYWORDS

Molecular Dynamics, Memoization, Big Memory, Key-Value Store,
Moment Algorithm

ACM Reference Format:

Zhen Xie, Wengian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li. 2021.
MD-HM: Memoization-based Molecular Dynamics Simulations on Big Mem-
ory System. In 2021 International Conference on Supercomputing (ICS °21),
June 14-17, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3447818.3460365

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICS ’21, June 14-17, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8335-6/21/06.

https://doi.org/10.1145/3447818.3460365

1 INTRODUCTION

Molecular dynamics (MD) simulation computes the interaction
between a collection of particles. It is a common and general com-
putational method, and gives scientists the ability to track particles
motion. MD plays important roles in various fields [9, 22, 40, 50, 85].
such as computational chemistry [34] and materials science [78],
bio-informatics [11], high performance applications [18, 57], etc.
For example, MD is an indispensable tool to interpret long time-
scale trajectories of relevant bio-molecular system for new drugs
and vaccines discovery [9, 40, 50]; MD at the nanoscale is often used
in semiconductor and integrated circuit design [22, 85] to study
thermodynamic properties. By performing MD simulation, these
systems and their thermodynamic properties can be obtained more
easily compared with experiments [36].

MD is typically compute-bound and not bounded by memory
bandwidth or capacity [39]. In particular, MD usually involves
a large number of particles; It iteratively computes energies and
forces between particles based on the computation of inter-particle
potentials. The calculation of potentials dominates the simulation
time (at least 90% of the total time) and has high computation inten-
sity (4.6-71.5 flops per byte) [29]. This calculation is based on a data
structure of a few bytes to represent a particle, consuming small
memory even for a large-scale simulation. For example, the bulk
silicon simulation for 1M particles consumes only 3.6 GB memory,
which is far less than typical memory capacity in a node. The tra-
ditional performance optimization on MD focuses on increasing
instruction-level and thread-level parallelism by loop vectorization,
data alignment, and structure transformation [3, 25, 49]. Such per-
formance optimization is bounded by processor’s theoretical peak
performance.

In this paper, we introduce a new method to improve perfor-
mance of MD by leveraging the emerging big memory system. In
particular, we trade memory capacity for computation capability
to improve MD performance by memoization. This method is moti-
vated by the emergence of big memory systems. Such a big memory
system is exemplified by the recent release of Intel Optane DC per-
sistent memory module (PMM), which is able to provide up to 9TB
main memory in a single machine. Such a big memory system can-
not be leveraged by the traditional performance optimization on
MD because of MD’s small memory consumption and compute-
boundness, but using memoization, we are able to transform large
memory capacity into performance benefit.

https://doi.org/10.1145/3447818.3460365
https://doi.org/10.1145/3447818.3460365

ICS ’21, June 14-17, 2021, Virtual Event, USA

The memoization technique, in nature, stores results of expensive
computation to a data structure, such as a lookup table, such that
when the same input happens, the results can be returned without
performing expensive computation. Existing work in MD builds
a small lookup table (hundreds of MB to tens of GB) on DRAM to
store pre-computed results [32, 35, 47, 54, 79]. Those efforts cannot
work well when applied to the big memory systems, because of the
following reasons. These reasons fundamentally limit the feasibility
of using the big memory to accelerate MD simulation.

First, the existing efforts replace the calculation of potential of
each pair of particles, which brings limited performance benefit
on the big memory systems. To ensure the performance benefit of
using memoization, the memory access latency to use the lookup
table must be smaller than the calculation of potential to be replaced.
Depending on processor architecture and particle-based model in
the MD simulation, the calculation of potential for each pair of
particles is at the range of tens of nanoseconds, which is smaller or
comparable to one-time search of the look up table on the traditional
DRAM. However, on the big memory platform whose most capacity
comes from slow memory (e.g., Optane DC persistent memory) with
the latency of a few microseconds for one-time search, replacing
the calculation of potential for a pair of particles with a search in
the lookup table cannot have performance benefit.

Second, the existing efforts limit the size of lookup table to tens of
GB due to the limited DRAM capacity, and the search performance
in the lookup table is not optimized for the TB-scale of the big mem-
ory. In particular, the existing efforts employ a one-dimensional
array. Such a data structure is not efficient to handle search and
insertion operations for a large scale lookup table, hence shrinks the
performance benefit brought by memoization on the big memory
systems.

Third, the existing efforts build the lookup table before MD
simulation. The table is loaded from hard drive at runtime. While
this method is feasible for a small lookup table, it causes rather
large storage cost for a TB-scale lookup table.

In this paper, we introduce a new memoization methodology
to accelerate MD simulation to address the above problems. In
particular, we partition the computation field in MD simulation
into subgrids, and replace all pairwise computation in a subgrid as
a whole. This brings much larger performance improvement than
the traditional pairwise-based approach. Furthermore, the lookup
table is based on a tree structure for fast search and dynamically
built at runtime. Leveraging the big memory capacity of persistent
memory, the lookup table can be at the scale of TB, leading to
high-quality MD simulation. However, using the new memoization
methodology, we face two challenges.

First, how to represent all pair-wise computation in a subgrid
such that we can efficiently identify and replace it as a whole is
challenging. Within a subgrid, particles are distributed randomly.
Using coordinates of particles in the subgrid to represent their dis-
tribution as a record in the lookup table would lead to massive
number of records, which causes high search overhead and large
memory consumption. Furthermore, different distributions of par-
ticles can represent the same computation, which can be leveraged
to increase the hit rate of the lookup table. For examples, a transla-
tional movement of particles in a subgrid causes a new distribution,
but the distance between particles after the movement remains

Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li

the same, hence computation of inter-particle potential remains
the same. However recognizing the distribution similarity across
movements is challenging, because of the difference in coordinates
before and after the movement.

Second, the read/write memory access pattern to the lookup
table changes over time, demanding the lookup table to provide
high performance for both reads and writes. The memory accesses
are dominated by writes in the beginning of the MD simulation, in
order to populate lookup table. Once the lookup table is populated,
the memory accesses are dominated by reads in the remaining
of the MD simulation. The common data structures to build the
lookup table, such as B*-tree [10] and LSM-tree [59], can provide
high performance for either reads or writes, but not both. Hence
they lack the flexibility to accommodate the variance of the memory
access pattern to the lookup table in the MD simulation.

To address the above challenges, we introduce a framework,
named MD-HM, to enable high performance memoization-based
MD simulation. To address the first challenge, we treat the distribu-
tion of particles in a subgrid as a pattern and introduce a lightweight
pattern recognition algorithm. The algorithm is not sensitive to the
translational movement of particles, which avoids repeated records
in the lookup table.

To address the second challenge, we introduce a new data struc-
ture (named two-phase LSM tree), which is a variant of the LSM tree.
The traditional LSM tree provides high performance for writes but
not reads. To address the above problem, the two-phase LSM tree
maintains the traditional multi-level structure in the LSM tree to
enable high-performance writes when writes dominate memory ac-
cesses in the beginning, but is compacted into a two-level structure
for a shorter read path when reads dominate memory accesses.

We summarize major constitutions as follows.

e We provide a memoization-based framework MD-HM that uses
big memory systems to accelerate MD simulations.

e We propose a two-phase LSM-tree to support efficient write and
read operations on lookup tables on NVM-DRAM;

e We introduce a computation replacement strategy to increase
replaced computation per lookup with ensured simulation stabil-
ity.

e We show that MD-HM outperforms the state-of-the-art frame-
work by 7.6x on average in nine MD simulations, and that MD-
HM on a single big memory node reaches the performance of
the numerical simulation on eight nodes.

2 BACKGROUND

MD simulations [4] model ensembles of particles, e.g., atoms and
molecules, in a gaseous, liquid, or solid state. MD simulations often
proceed in iterations of time steps. At each time step, interatomic
potentials are computed for each particle by prescribed potential
functions, and the position and velocity of particles are updated
by Newton’s laws of motion [37] for the next time step. During
MD simulations, stability is the most critical criterion to determine
simulation quality [2, 77]. The traditional MD simulation checks
some invariant (e.g., the energy invariant) during the simulation
to determine simulation stability. We use the energy invariant to
determine correctness and assist in our parameter selection.

MD-HM: Memoization-based Molecular Dynamics Simulations on Big Memory System

¢ o .\ [
“ole” ol @
Pattern 1 Pattern 2
. T ’ Subgrid ’ :
ubgri
6 Cutoff Distance . grid .

Pattern 3 Pattern 4
(a) Pairwise MD simulation (b) Subgrid MD simulation and corresponding patterns

Figure 1: Two methods to build the lookup table.

The computation of inter-atomic potentials dominates the simu-
lation time because, for each particle, it requires O(N 2) for mod-
eling pair-wise interactions between N particles - O(N?) in total.
On a modern processor, each pair computation typically takes 1078
to 1077 seconds [62, 86]. To reduce the computation cost, a cut-
off distance (denoted as D0 f) is often used to limit pair-wise
computation only to neighbor particles within D0 5 - Figure 1(a)
illustrates the pairwise computation for two types of particles.

Potential functions, such as Lennard-Jones, Tersoff, Gay-Berne,
and Stillinger-Weber [20, 51, 76], are parameterized only by the
distance between a pair. Therefore, if different pairs have the same
distance, the computation of potentials is the same. However, in
direct numerical simulations, such computation will be repeated.

Lookup tables are often used to reduce the repeated computa-
tion of potentials. For instance, pairwise lookup tables [35, 54] use
the distance between a pair of particles as the key and save their
potentials as the value. In particular, the cutoff distance is often dis-
cretized by linear or squared interpolations into many entries, each
having its potential saved in the lookup table [47]. To replace the
computation of potential, the distance between particles is looked
up from the lookup table. Its closest match (called target) and other
close-enough entries (called adjacent entries) are averaged to reduce
interpolation error [27, 46]. Hence, one table lookup may replace
one potential computation. Due to randomness in accesses and the
latency to memory, pairwise lookup methods only bring limited
performance benefits.

Subgrid-based lookup tables have been used in computational
fluid dynamics simulations [12, 45, 52] that divide the whole force
field into multiple subgrids. Such simulations progress by comput-
ing the potentials among all particles in a subgrid and then accu-
mulate potentials between subgrids. Those lookup tables use the
(hashed) coordinates of all particles in a subgrid as the key and save
the computation results in the subgrid as the value. Hence, one table
lookup could result in substantial computation reduction. Moreover,
using Locality Sensitive Hashing (LSH) algorithms [13, 41, 72] for
hashing the coordinates of particles in a subgrid would result in
similar keys (i.e., adjacent locations in a table) for similar subgrids.
Nevertheless, a large number of particles in a subgrid would lead
to numerous combinations of particle coordinates (i.e., patterns),
which could cause explosive memory consumption. For example, a
liquid simulation with 2e +7 patterns would require 1.2 TB memory
and thus is infeasible on conventional DRAM-only systems.

Non-volatile memory-based big memory system. High-density,

byte-addressable non-volatile memory (NVM) [5, 7] is promising

ICS ’21, June 14-17, 2021, Virtual Event, USA

Memtable
Immutable
Memtable

Block cache
block 0 block 1 |--+[block M

L2 Memory
St 00 . DataBlock0 | Tk]| Storage
L0 \ compaction / — 17 [Tww
Data Block m KIV.
L1 /, BE Block | ™| KNV
: Index Block
Ln | sst_n_0 | | sst_n_1 | | sst_n_N l Footer sst : sorted string table file

Figure 2: LSM-tree-based key-value store.

for implementing large-capacity main memory. For instance, the re-
cent Intel Optane DC Persistent Memory (DCPMM) could support
up to 9 TB memory capacity on a single machine [33, 60] Large
lookup tables that were unprecedented before have now become
feasible. However, current NVMs typically have lower performance
than DRAM, and its asymmetric performance in read and write
makes write access a performance bottleneck. Therefore, heteroge-
neous memory systems that combine the performance of DRAM
and the capacity of NVM are emerging.

In this work, we use an Intel DCPMM-based big memory system.
The DCPMM can be configured in either Memory, App Direct, or
Hybrid mode [33]. In Memory mode, DRAM becomes a hardware-
managed cache to DCPMM, while in App Direct mode, accesses
to DCPMM and DRAM can be controlled at the application level
explicitly. DCPMM has a 174 ns and 304 ns latency for sequential
and random read. Its peak bandwidth on a socket with six memory
channels is 39 GB/s and 13 GB/s for read and write, respectively [60].

Log-structured merge tree. Lookup tables in MD simulations
are essentially a key-value store system. Various data structures
have been proposed to implement such storage systems [58]. In this
work, we consider the performance characteristics of NVMs and
access patterns in MD simulations and propose a new data structure
based on the traditional Log-Structured Merge (LSM) tree [59]. We
note that access to the lookup table during a simulation could be
write-intensive when lots of new key-value pairs need to be inserted
at runtime, and LSM-trees are write-optimized on NVM.

The traditional LSM-tree consists of a memory component and a
storage component (Figure 2). The memory component, including
active and immutable MemTables, is implemented in in-place sorted
data structures, e.g., skip-list [64]. The storage component has a
multi-level structure. Each level contains multiple sorted string table
(SST) files. When the active MemTable is full, it is converted into
the immutable MemTable, which is then compressed and flushed to
the storage. Similarly, when a level of the storage component is full,
its SST files are moved to the next level in a compaction process.
Therefore, writes to storage only occur in flush and compaction
operations, resulting in sequential writes that are friendly to storage
media. Random read from an LSM-tree, however, may have a long
latency because of the possibility of traversing multiple SST files
on multiple levels.

3 OVERVIEW OF MD-HM

We propose a memoization-based MD simulation framework on
Heterogeneous Memory (HM), called MD-HM. Figure 3 outlines

ICS ’21, June 14-17, 2021, Virtual Event, USA

Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li

(3

{ MD Simulation Computation Replacement Strategy Data Storage

i (_ Memoization-based Simulation)« »(Best Subgrid Size Je—>»{ Offline Tests)

I entcation of SUbarTd - : Hill-climbing ! [} Query Range

I g entification of Subgri)« (__Adaptive Query Range }————

I z Non-existen Existence b Two-phase LSM-tred
} £l (Numeiical Sim.) ((Check Lookup table) Read Pat{ern RSES?_ZI(:II(?P ?/I\Igr?:t;lr':?sm < » [Yyrite
! 5 : ? . '_;I‘ Structural

I\\Z Coordinates Update) I—MLP(Insert Record to Lookup Table)— Transformation

Figure 3: An overview of the MD-HM framework. MD simulations drive the execution flow and are accelerated by computation
replacement strategy, shape matching-based pattern recognition, and HM-optimized data storage.

Memtable Block Cache
Koz [Ko | [t Ko
Immutable [block 0] [block 1]+=+[block M| [[ieckcsramer sk ointer] [poci nraini]
Memtable
compaction DRAM
Persistent
LO | DataBlock0 | [DataBlock1 | | | [DataBlock N Memory

KV KIVIKIV KV

Figure 4: Main data structures in the two-phase LSM-tree
in the read-dominant phase. The modification of data struc-
ture is highlighted in yellow.

its main components. The MD simulation drives the execution
flow and queries the lookup table for computation replacement.
MD-HM employs a pattern-matching algorithm to rapidly extract
features of a subgrid and recognize it as a pattern to search for the
matched subgrid in the lookup table. The lookup table is imple-
mented in a two-phase LSM-tree designed to optimize both lookup
and insertion operations on DRAM-NVM heterogeneous memory.
Throughout a simulation, the computation replacement strategy
adapts parameters for simulation stability and lookup efficiency.

The workflow of a MD-HM simulation starts from initializing the
two-phase LSM-tree (Section 4) as the data storage for constructing
the subgrid lookup table. Based on the input problem, MD-HM
then builds a memoization-based simulation using suitable subgrid
size (Section 5.1) and query range (Section 5.2). At each time step,
to compute subgrid potentials, MD-HM tries to identify a subgrid
based on proposed lookup moments (Section 6.2) from the lookup
table. If a match is found (i.e., a hit), the stored potentials will be
used. Otherwise (i.e., a miss), direct numerical computation needs
to be performed, and a new subgrid-potentials pair will be inserted
into the lookup table. After the potential computation, all particles
will be updated to new positions, and their velocities will be updated
for the next time step.

4 TWO-PHASE LSM-TREE

Lookup table-based MD simulations exhibit two phases distinct
in read and write intensity. At the beginning of a simulation, the
lookup table is mostly empty. Thus, most lookups will “miss” and
result in inserting new entries of potentials from numerical compu-
tation into the lookup table, i.e., a simulation starts with a write-
dominant phase. As the simulation progresses, the lookup table
contains more entries so that lookups are more likely to “hit” in

Algorithm 1 Structural Transformation for Read Phase

: Define: number of levels of LSM-tree < N

: Set the 0-th level to directly compress to the N-th level

: fori—1toN-1do

Compress the i-th level to the N-th level

Delete the i-th level

: Flush out all the MemTables to the 0-th level

: Suspend flush operation

: for j « 1 to number of data blocks in the 0-th level do

Compress the j-th data block to the N-th level

10: Delete the 0-th level and change N-th level to sorted 0-th level

11: Deserialize all the SST files to data blocks in the 0-th level

12: Build an index tree for each data block in the 0-th level

13: Modify the flush operation that moves data block from DRAM
to NVM to compaction operation

14: Relaunch compaction operation between DRAM and NVM

N B LI S VR R

the table. This phase is characterized as read-dominant. The orig-
inal LSM-tree is designed for high-throughput write but results in
long-latency read due to its multi-level structure.

In this work, we propose a two-phase LSM-tree as the data stor-
age for the subgrid lookup table. Our two-phase LSM-tree sup-
ports high-throughput write and low-latency read operations in
the write- and read- dominant phases, respectively. Two operations
are supported — read operation that searches for a subgrid, and
write operation that inserts a subgrid-potential pair. The main data
structures include a block index in DRAM, one-level data blocks
in NVM, and those in the original LSM-tree (e.g., MemTables and
block cache). The block index and data blocks are only activated in
the read-dominant phases, as illustrated in Figure 4.

In the write-dominant phase, the two-phase LSM-tree reuses
data layout and implementations in the original LSM-tree design
(see Section 2). When the hit rate on the lookup table exceeds
a threshold value, the simulation is considered to have entered
the read-dominant phase. The two-phase LSM-tree then triggers
phase transition to transform to new data structures in the read-
dominant phase.

4.1 Phase Transition

Phase transition compacts the multi-level SST files in NVM into a
one-level structure of data blocks in NVM (i.e., L0 in Figure 4) and
activates the block index in DRAM. It also performs a compaction

MD-HM: Memoization-based Molecular Dynamics Simulations on Big Memory System

operation to write MemTable into LO to ensure data blocks are
ordered. We summarize this process in Alg 1. MD-HM performs
the transition in the background and the simulation progresses in
the numerical simulation mode during the process.

First, all levels above the N-th level are compacted into the
N-th level (Line 2-6). This step reduces the hierarchical levels in
NVM. Next, all MemTables are flushed to the 0 — th level, which
is then directly compacted to the N-th level (Line 7-11). Then, all
levels above the N-th level are deleted, and the N-th level is set
to be 0-th level (i.e., L0). SST files in L0 are deserialized into non-
overlapping and ordered data blocks (Line 12-13). Any records in
the data blocks can be reached directly by a pointer because of the
byte-addressability in NVM. Finally, an in-memory block index is
built in DRAM using the Block Range Index [74] for data blocks in
Lo.

The block index in DRAM accelerates locating a data block in
NVM on a given input key. Other data structures in the traditional
LSM-tree, such as the active MemTable, immutable MemTable, and
block cache, remain unchanged. The one-level structure of data
blocks avoids multi-level search in NVM as required in the origi-
nal LSM-tree and requires small footprint in DRAM (quantified in
Figure 9(b)) to build the block index.

4.2 Read-Dominant Phase

MD-HM activates a new data structure — the block index in DRAM
when a simulation enters the read-dominant phase (i.e, the hit rate is
larger than 90%). MD-HM uses the block index to cache the location
information of data blocks and act as a bookkeeper of available
data blocks. This data block index organizes the in-memory index
(location information) of data blocks in NVM for high performance.

A read operation first searches active MemTable and immutable
MemTables to ensure the latest modified/new entry is fetched if any.
If no record is found in MemTables, MD-HM will query the block
index to find the required data block in NVM. If a pointer to the
data block is returned, it will be used to retrieve the data block in
NVM directly. Otherwise, it indicates no such data block has been
saved in the lookup table and MD-HM would bypass all searches in
NVM, unlike the original LSM-tree design. Consequently, at most
one data block on NVM is accessed, in contrast to the traversal of
multiple data blocks in the original LSM-tree. The block index in
DRAM and one-level structure in NVM significantly reduce read
amplification and the latency of read operations.

A write operation stores data to the MemTable in DRAM sim-
ilarly to that in the write-dominant phase. Once the compaction
finishes and new block are persisted into NVM, a new block pointer
will be added to the block index. In the read-dominant phases, the
frequency of compaction operations is so low that its impact on
read operations is negligible.

5 COMPUTATION REPLACEMENT
STRATEGY

The subgrid lookup table method divides the whole force field into
multiple subgrids of a fixed subgrid size (denoted as Sy, pgriq)- The
computation of potentials in a subgrid is replaced by a query of
the subgrid in the two-phase LSM-tree data storage. Performance
improvement comes from the amount of computation replaced in

ICS ’21, June 14-17, 2021, Virtual Event, USA

100% — —_—
— -_..—._._._\- D,%r . Reuse Rate
< 80% iy, [Speedup
%i ol \\\\
8 40% ~—— .
20%

03 0.6 0.9 12 15 18 21 24 27 30
Subgrid Size (unit: cutoff distance)

Figure 5: The impact of subgrid size on reuse rate and per-
formance for a silicon simulation with the Tersoff potential
function.

one lookup that hits in the lookup table. We identify subgrid size as
the key parameter that impacts both the hit rate in the lookup table
and the amount of replaced computation per hit. We propose an
empirical enumeration-based approach to determine the optimal
subgrid size in Section 5.1.

Simulation stability is another key factor that determines the
success of a computation replacement strategy. As a lookup table
based method, the subgrid lookup based method leverages inter-
polation to improve simulation accuracy, i.e., the returned results
are interpolated from multiple 'neighboring’ entries. We identify
the query range as the key parameter, and introduce a dynamic
adaptation algorithm to optimize the query range at runtime (see
Section 5.2).

5.1 Subgrid Size Selection

We select the subgrid size under the constraint of memory capacity
on a target platform and ensure high reuse rate of subgrids. Each
subgrid lookup will replace the computation of all potentials in
it. Therefore, larger subgrids increase computation replacement.
However, as the information (such as coordinates and forces) for
all particles in a subgrid needs to be stored in the lookup table, a
larger subgrid will also increase memory consumption. With large-
capacity NVM integrated into the memory subsystems, the memory
capacity of a single machine is dramatically increased. Thus, the
NVM-based systems can enable large subgrid sizes infeasible on
conventional DRAM-based machines.

The reuse rate of subgrids is commensurate with the hit rate of
the lookup table, i.e., queries that mostly hit mean that subgrids in
the lookup table are reused. However, a larger subgrid size would
reduce the chance of a subgrid being reused because of the increased
number of possible subgrid patterns. We study the reuse rate and its
impact on performance in nine MD simulations at various subgrid
sizes and identify two critical observations for selecting the optimal
subgrid size.

Observation 1: The optimal subgrid size for performance im-
provement can be achieved by enumeration.

Figure 5 reports the reuse rates and corresponding performance
improvements over the numerical simulation LAMMPS at different
subgrid sizes for a silicon simulation with the Tersoff potential func-
tion. The lookup table is built from the first 10% simulation steps.
Under the memory limit of the testbed, the maximum subgrid size
is three times the cutoff distance. When the subgrid size increases,
the reuse rate decreases. Once the subgrid size exceeds 1.8 times
the cutoff distance, the reuse rate starts to decline rapidly. Low

ICS ’21, June 14-17, 2021, Virtual Event, USA

g B 20k ¢
) 4 Optimal Subgrid Size [l Memory Consumption (GB) 2
L & 2 15k &
=B A A K E
283]
3% N A 1.0k S
E3 05k 3
£ £
o2 00 =

sSw L-J

EAM MEAM Tersoff ADP
MD simulations

G-B AIREBO DPD

Figure 6: Optimal subgrid size and corresponding memory
consumption for different MD problems.

reuse rates indicate that most queries ‘miss’ in the lookup table, i.e.,
requiring numerical simulation and insertion of new entries to the
table. Thus, we observe a sharp decrease in performance. The peak
performance improvement is achieved at the optimal subgrid size.

Observation 2: Simulations of the same materials are likely to
share a common optimal subgrid size.

Figure 6 reports simulations of nine materials using different
potential functions, their memory consumption, and optimal sub-
grid sizes. The results show that simulations of the same material
have the same optimal subgrid size. For example, both the S-W
and Tersoff potential functions are simulations for bulk silicon and
perform the best at the subgrid size of 1.8 times the cutoff distance.

We design an empirical enumeration-based strategy to determine
the optimal subgrid size for a simulation. For an MD simulation
of new material, we explore feasible subgrid sizes under the con-
straints of memory capacity. The subgrid size that corresponds to
the highest reuse rate is selected. This selection process is a one-
time effort for each new material and the decision will be reused
for different potential functions of the same material.

5.2 Query Range Adaptation

Lookup tables [6, 54] usually include multiple entries adjacent to
the target for interpolation to improve simulation accuracy. The
parameter that determines the furthermost adjacent entries to be
included is denoted as query range.

We use a range operation to achieve high-precision interpolation.
The range operation first retrieves the entry closest to the target,
and then siblings within the query range. The final result is the
average of all included entries. A smaller query range would have
fewer but closer siblings. When the query range is too small and no
sibling or exact entry is found, MD-HM goes back to the traditional
numerical simulation. Hence, using a small query range is helpful
to improve accuracy but at a risk of losing performance. In contrast,
a large query range prolonging the range operation increases the
chance of finding siblings but may compromise the accuracy if sib-
lings with drastically different values are included. As adjusting the
query range can impact accuracy, we propose an online algorithm
(Alg 2) to adapt the query range to ensure simulation stability.

In particular, at the end of each time step, MD-HM examines
whether the simulation is stable (Line 19) by calculating the differ-
ence (AE) between the energy computed in the time step and an
energy invariant. If AE > E,p,, where E;p, is a threshold typically
defined by the user in the traditional numerical simulation to in-
dicate the maximum change in the energy allowed for simulation

(GB)

Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li

Algorithm 2 Algorithm for Query Range Adaptation

1: Objective: minimize query range, subjected to AE less than E,,

2: Define: query range < subgrid size, counter < 0

3: Define: maximum number of energy-invariant-violating time
step N

4: while true do

5. if counter < N then

6: if AE < E;p, then

7 Drawn € from a Gaussian distribution

8: if € > m then

9: Drop to a new value: query range « query range+¢
10: Move on to the next time step using lookup table

11: counter < 0

12: else

13: Scale down: query range «— query rangexscale_f actor
14: Move on to the next time step using lookup table

15: counter < counter + 1

16: else

17: Go back to the last checkpoint

18: Move on to the next time step using numerical simulation

19: Calculate the energy difference (AE) in the current time step

stability, Alg 2 starts and adjusts the query range. Otherwise, simu-
lation is stable and the query range is opportunistically increased
to increase the chance of finding siblings and hit rate (Lines 6-9).

Once the simulation is detected to be unstable, Alg 2 scales down
the query range (Line 13) by a predefined scale_factor (0.9 in this
study) and then the MD simulation continues to the next time
step using the new query range. Alg 2 continues scaling down the
query range, until the simulation becomes stable or N time steps
have been tried to change the query range (Lines 13-15). If N time
steps have been tried, Alg 2 reverts to the last checkpoint (Line 17)
where the MD simulation is stable. From the last checkpoint, the
MD uses traditional numerical simulation until reaching the last
energy-invariant-violating time step. From that time step, the MD
resumes the lookup table approach.

In general, MD-HM uses a combination of checkpointing, a tradi-
tional mechanism of detecting simulation stableness, and adapting
query range to ensure simulation stability. The number of time
steps, N, is determined by considering computation loss due to
revert to the last checkpoint. In particular, the computation loss
should be smaller than the performance benefit from MD-HM. Alg 2
cannot use too many time steps to scale down the query range, be-
cause the computation loss will then outweigh the performance
benefit.

6 PATTERN RECOGNITION ALGORITHM

In this section, we propose a moment-based subgrid-pattern match-
ing algorithm for computing the key of the lookup table. A naive
implementation of the lookup table would use the positions of parti-
cles in a subgrid as the key. If we visualize the positions of particles
in a subgrid, they form a shape. One shape could be a result of a
translational movement from another shape, and they have the
same potentials because the distances between particles remain
unchanged. Hence, we propose to use subgrid pattern, computed by

MD-HM: Memoization-based Molecular Dynamics Simulations on Big Memory System

lookup moments as the key of the lookup table. We define lookup
moments to be translation invariant but rotation and scaling sen-
sitive. Using subgrid pattern as the key avoids storing redundant
keys and reduces memory consumption.

6.1 Moments and Hu Moment Invariants

Moments have been extensively in shape matching in various ap-
plications [24, 30, 31]. The two-dimensional (p + q)-th order raw
moments my q, central moments jip g, and normalized central mo-
ments 1p, q of a region D are defined as follows:

= Y . dxd
Mp.q //Dx y1f(x,y) dxdy (1)
ipg = //D (x = %) (4 — 4o)f (x.y) ddy @
_ Hp.q
T0.9 = g j2n1 ®3)
0,0

where p, g are non-negative integers, xc = mi,0/moo and y. =
mo,1/mo,0. The point (xc, y¢) is the centroid of the region D. f(x,y)
is a continuous bounded function. For MD simulation problem, the
coordinate precision for x and y is discrete and usually determined
by lookup table density empirically [35]. The continuous function
represents the atom type at the position (x, y), and the type is 0 if
no particle exists. All moments of all orders exist unique values for
different subgrid patterns.

For MD simulations, a subgrid pattern can be represented by a
set of moments that extract features for distinguishing patterns. In
particular, the moments should be translation invariant because a
translation does not change the potentials. Rotations change the
order of replacement between particles and scaling movements
change the distance. Consequently, the moments should distin-
guish rotation and scale as different patterns. The required moment
algorithm needs to be translation invariant but rotation and scaling
sensitive.

Here we define three transformations to a pattern, and these
transformations can be expressed as: Translation, X = x + ty, § =
Yy + ty; Rotation, X = x cos § — ysin 0, § = x sin § + y cos 0; Scaling,
X =x#8x, 0 =y* Sy, where (ty, ty) is the translation vector or
shift vector, 0 is a particular angle of rotation from its origin, and
(sx,Sy) is the scaling factor in X and Y direction, respectively.

The central moments are invariants to translational movement
but sensitive to rotational and scaling movements [8, 48]. Naturally,
the central moments seem an appropriate choice. However, the
central moments alone cannot extract enough features to represent
patterns, e.g., different subgrid patterns may have the same central
moments. The Hu moments [30] introduced seven moments poly-
nomials formed from the three aforementioned moments to extract
enough features for pattern recognition. However, the Hu moments
are invariants to translational, rotational, and scaling movements.
Therefore, a new set of moments is needed for the subgrid pattern
recognition in MD simulations.

6.2 Lookup Moments

We propose lookup moments as a set of seven moments that combine
the central moments and Hu moment polynomials to satisfy the

ICS ’21, June 14-17, 2021, Virtual Event, USA

Moment1l —e— Moment2 —*— Moment3 —v— Moment4 —¢— Moment5 —+— Moment6 —— Moment7

c 10 10
5 Ve 5

= S

go‘s- go.s-

S 061 £ 064 e
5] el

£ 5 e

g 041 E041 47

B B

5 024 B021

E 5

I B ' '

20 40 60 80
(a) Distance of trandation

8

0 40 60 _ 80
(b) Angle of rotation

10 5
2 i e
T 08 / /{/ T 4
5 5
=}
£ g
04 24
2 B
T 024 g 1
: 20 y ! 80 5 : 20

0 60 5 10 15

(c) Factor of scaling (d) Different patterns
Figure 7: Normalized moments of translation(a), rotation(b),
scaling(c), and the distribution of the lookup moments in-
variants(d).

unique requirements of subgrid pattern recognition. The seven
moments are defined as follows:

My = po2 + po3
M = p20 + pi30
Mz =+ ph3
My = o1+ 31

Ms = (n3,0 — 3n1,2)% + (3172,1 — 310,3)°

Ms = (3,0 +11.2)% + (2,1 + 10,3)°

Mz = 2111 [(13,0 + 11,2)% — (2,1 +103)%]
= 2(n2,0 = 10,2) (M1,2 + 10,3) (2,1 + 710,3)

where M;-My are composed of the central moments for invariance
to translation and sensitivity to rotation and scaling. Ms5-M7 enrich
feature extraction to distinguish subgrid patterns that may have the
same central moments. Among them, Ms and M are adopted from
the Hu moments while M7 is a complement of Ms-Ms by invariant
theorems [66].

Previous analysis shows that the central moments eliminate the
influence from translational movements and retain sensitivity to
rotation and scaling. Combining moment polynomials in the Hu
moments extracts adequate features to distinguish subgrid patterns
indistinguishable by the central moments. Our lookup moments
satisfy the requirements of subgrid pattern in MD simulation at a
low computation cost.

6.3 Effectiveness Evaluation

We evaluate the effectiveness of the proposed lookup moments
by collecting 400k subgrids from nine MD simulations. We build
variants of these subgrids and report their average lookup moments
in Figure 7(a-c).

ICS ’21, June 14-17, 2021, Virtual Event, USA

Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li

EZP Numerical Simulation LAMMPS BB MD-HM with RocksDB-PMEM [HEE MD-HM with two-phase LSM-tree

Total energy error using pairwise lookup table

* Total energy error using MD-HM

¥

o 10 0.0010% &
s &83 =l 9
5 2 2 F 10 o |E
£ §E & 2 0.0005% 2 (3
g = £ e010' z (=

S =l)

= S S 0.0000% &

S-w L-J EAM MEAM

Tersoff ADP G-B

AIREBO DPD

Figure 8: Performance comparison of nine MD simulations using LAMMPS, MD-HM with RocksDB-PMEM, and MD-HM with
two-phase LSM-tree. And a relative error comparison using pairwise and subgrid lookup tables.

We apply a series of horizontal or vertical shifts to these subgrids.
Figure 7(a) presents the seven moments after these translational
movements. All moments remain stable when these translational
movements are applied, indicating that lookup moments are trans-
lation invariant. To verify the sensitivity to rotation and scaling,
0-180 degrees rotation and 1-5 times scaling are applied. Figure 7(b-
c) shows that the first four moments increase as the angle of ro-
tation and the factor of scaling increases. Therefore, the lookup
moments are sensitive to rotational and scaling movements. Finally,
we visualize the moments on 25 randomly selected subgrids. Fig-
ure 7(d) shows that each subgrid reaches a specific value of the
seven moments. The average coefficient of variation (COV) [1] of
lookup moments is 68.37%, indicating high variability. For the low
probability of different patterns resulted in the same moments, the
checkpointing mechanism (Section 5.2) would suffice to ensure
simulation stability.

6.4 Key Computation

We use the hash value of lookup moments as the key and the coordi-
nates and potentials of particles inside a subgrid as the value to build
the subgrid lookup table. In particular, We choose locality-sensitive
hashing (LSH) [17] for hashing lookup moments so that similar
subgrids will have similar keys. As the similarity between subgrids
is embedded in keys, search for sibling subgrids within a query
range in the range operation (see Section 5.2) is straightforward.

7 EVALUATION

Platform. We evaluate MD-HM on a server equipped with two
Intel Xeon Gold 6252N 24-core processors running Linux 5.4.0. Each
socket has 12 DIMM slots, six for 16-GB DDR4 DRAM modules,
and six for 128-GB Optane DC modules. In total, the system has 192
GB DRAM and 1.5 TB NVM. We configure the Optane DC to App
Direct Mode for maximum control. We also use a 32-node cluster
based on EDR InfiniBand network, and each node has two Intel
Xeon Platinum 8268 24-core processors and 128 GB of DRAM.

Input problems. We use nine molecular dynamics problems that
cover a wide range of applications and come from LAMMPS bench-
marks [63], summarized in Table 1 where FLOPs represents the
number of floating-point operands per atom-step, Patterns stands
for the number of patterns collected using MD-HM-based MD sim-
ulation, and Size is the capacity for storing all the subgrid patterns
without using the lookup moments to detect repeated translational
movements. The average number of neighbors ranges from 30 to

Table 1: Input problems and parameters.

Problem System Neighs FLOPs Patterns Size(TB)
S-w bulk Si 30.0 151 3.25e+7 0.393
L-J liquid 76.9 37 1.95e+7 1.155
EAM bulk Cu 75.5 86 1.93e+7 1.113
MEAM bulk Ni 48.8 610 3.31e+7 0.782
Tersoff bulk Si 30.0 173 3.25e+7 0.393
ADP bulk Ni 48.8 258 3.31e+7 0.782
G-B ellipsoid 140 1017 6.51e+6 1.279
AIREBO polyethylene 681 1502 3.39e+6 1.544
DPD pure solvent 41.3 57 2.62e+7 0.526

681, and each potential calculation requires 37 to 1502 floating-
point operands. 100K particles are used, and the simulations run 1
million time steps for a typical setting [26, 42, 73].
Implementation and baselines. MD-HM is implemented based
on LAMMPS [14]. We implement the computation replacement
strategy and pattern recognition algorithm as a patch to LAMMPS.
The two-phase LSM-tree is implemented as an extension of key-
value store RocksDB-PMEM (v6.2.2) [21]. The statistics of modifi-
cations given by git diff is 13 files changed, 1582 insertions(+), and
47 deletions(-). The code is compiled with GCC-9.3 with the “-03”
option. Experiments run with 48 OpenMP threads, and the data
block size in RocksDB-PMEM is 64 MB.

7.1 Overall Performance and Stability

We evaluate the performance and stability of MD-HM in nine MD
simulations, including solid-state materials, soft matter, coarse-
grained, and mesoscopic systems. For comparison, we use the nu-
merical simulation LAMMPS as the baseline. To understand the
benefit of the two-phase LSM-tree data storage, we also use a ver-
sion of MD-HM built atop RocksDB-PMEM, the state-of-the-art
key-value store. Figure 8 presents the end-to-end performance of
these simulations, including computation phases (about 5-13% of
the total execution time) that perform tasks other than potential
computation, such as coordinates update and neighbor construc-
tion.

Overall, MD-HM outperforms the baseline numerical frame-
work on all input problems by up to 9.71X and 7.62X on average.
Without the two-phase LSM-tree data storage (i.e., MD-HM with
RocksDB-PMEM), the subgrid lookup based framework outper-
forms the baseline on six problems (i.e., S-W, MEAM, Tersoff, ADP,

MD-HM: Memoization-based Molecular Dynamics Simulations on Big Memory System

[Momentscalculation [l Retrieval in MemTable [l Retrieval in the block index
Il Retrieval in data blocks [l Datatransfer

S2AA% 24%

H
g
;

L-J

6% 47%

EAM [NV

MEAM [7ARN %]

50% - Tersoff FRLRY
\oleR4% . 37%

c-B I

MD simulation problems

AIREBO 73

2N W
$EE8

Per centage of execution time

[olool 11% 28%

0% =4 S t T T T T
@ oW e hensShor opreedo (b) Q% 2% 4% 60% B0% 100%
MD simulation problems Per centage of total memory used

Figure 9: Overhead and memory consumption.

G-B, and AIREBO), achieving an average 4.41x speedup. However,
due to the high read latency of RocksDB-PMEM, MD-HM with
RocksDB-PMEM underperforms the baseline in three problems (L-],
EAM, and DPD). Our analysis shows that these problems have low
FLOPs (typically lower than 90) for the computation of potential,
which increases the impact of read latency due to frequent queries
to lookup table. This challenge is addressed by the shallow search
hierarchy in our proposed two-phase LSM-tree data storage. Thus,
MD-HM with the two-phase LSM-tree outperforms the RocksDB-
PMEM based implementation by an average speedup of 2.76X. We
highlight that for the computation part of MD, MD-HM with two-
phase LSM-tree can achieve higher performance, and the average
speedup is 27.93X (up to 48.07x for AIREBO problem).

We identify three characteristics for an MD simulation to benefit
substantially from MD-HM. First, The potential function requires
high FLOPs (more than 90 on our platform), which indicates that one
query on the lookup table can replace a lot of computation. Second,
a subgrid contains a large number of particles, which reduces the
frequency of querying the lookup table. Finally, simulation phases
other than the computation of potentials, e.g., updating particle
position and constructing neighbor, only take a small portion of
the total time. These characteristics help the user to decide the
appropriate simulation approach for a given problem.

Figure 8 also reports simulation stability. We use the relative en-
ergy error [35] as the metric to evaluate simulation correctness. This
metric is defined as AE = |E;4p1e — Enumericl/|Enumeric|, where
E;abie and Epymeric are the final energy values calculated with and
without using lookup tables, respectively. We use the energy values
calculated using the numerical simulation as ground truth. When
using the lookup-based approach, we compare pairwise lookup
table and subgrid lookup table (i.e., MD-HM using adaptive query
range). Figure 8 shows that using MD-HM, the relative energy error
is consistently below the error-tolerable threshold (0.001%) [35].
This indicates that MD-HM has high quality. Moreover, compared
with the traditional pairwise lookup table, MD-HM has similar rel-
ative errors in seven problems, and smaller errors in two problems
(G-B and AIREBO).

7.2 Performance Analysis

Overhead breakdown. Five components contribute most over-
head of MD-HM framework — moments calculation, retrieval in

ICS ’21, June 14-17, 2021, Virtual Event, USA

100%

o]
2
o

g

2

N
2
o

Probability of lookup table hit

3

LI R R LA L L R RN BN BN B
0 10k 20k 30k 40k 50k 60k 70k 80k 90k 2100k
Number of timesteps

Figure 10: Hit rates on the lookup table as the simulation
progresses.

MemTable, retrieval in index tree, retrieval in data block, and poten-
tials transfer. Among them, moments calculation comes from the
subgrid pattern recognition algorithm, potentials transfer comes
from the computation replacement strategy, and the others come
from the two-phase LSM-tree data storage. We report the break-
down of these overheads in the nine simulations in Figure 9(a).

We categorize the simulations into either moments-dominant or
DRAM/NVM retrieval-dominant. The moments-dominant simula-
tion is characterized by high moments calculation and high data
transfer. Such problems have a large number of neighbors in a sub-
grid, resulting in more overhead in calculating the lookup moments
and transferring retrieved potentials into the MD simulation. For
instance, moments calculation and potential transfer attribute 40%,
63%, and 74% overhead in ADP, G-B, and AIREBO problems.

The remaining problems are dominated by overhead from ac-

cessing the two-phase LSM-tree, and they can be classified as either
DRAM or NVM retrieval dominant. S-W, L-J, EAM, MEAM problems
have a high cost in retrieval in MemTable and index tree that are
stored on DRAM, accounting for 54%, 50%, 56%, and 48% overhead.
Retrieval block index only takes an average of 10% overhead while
MemTable takes 43-49% overhead because these problems have
smaller subgrids and need to retrieve more entries in MemTable.
Finally, Tersoff and DPD are dominated by NVM access. They have
61% and 49% overhead from retrieval in data block. The overhead of
traversing the data block is proportional to the number of entries in
the data block. As Tersoff and DPD problems have a smaller number
of neighbors, a data block would contain more entries, costing more
time in traversing data blocks.
Memory consumption. Figure 9(b) reports the DRAM and NVM
usage compared to the total memory capacity (including DRAM and
NVM). We find that using the lookup moments reduces the memory
consumption by 27.4% on average, compared to the naive imple-
mentation without using the lookup moments to detect repeated
translational movement.

Note that the native implementation would stores all coordi-
nates and potentials in Table 1 in the lookup table. Our lookup
moments approach recognizes subgrid patterns to avoid storing
duplicate keys with translational movements. Also, most entries in

ICS ’21, June 14-17, 2021, Virtual Event, USA

|
7
g
g
y
2
:

—— MD-PM with an NVM node
900

-
'
<

SW

8

Millions of

/ 1100

LI —

o

0
1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

n
8
8o
w
8

MEAM

8

Millions of

Tersoff ADP
250 / 160

o

0 0
1 2 4 8 16 32 1 2 4 8 16 32

12481632240 1500

8

3

atom-step/sec atom-step/sec atom-step/sec

G-B AIREBO DPD
[1000
120
-——/ KX)

Millions of

0 [
1 2 4 8 16 2 1 2 4 8 16 32

Number of nodes

0
1 2 4 8 16 32

Figure 11: Comparing the numerical simulation on a cluster
with MD-HM on an NVM-based node.

the lookup table are stored in NVM. The DRAM usage is less than
15%, indicating that our approach is applicable on machines with
relatively small DRAM and can release DRAM space for large-scale
MD simulation.

Effectiveness of Lookup Table. The subgrid lookup table is ex-
pected to capture most subgrid patterns in a simulation as the simu-
lation advances, i.e., the hit rates on the table increases throughout
a simulation. To evaluate the effectiveness of the lookup table in
MD-HM, we report the hit rates at different timesteps in nine prob-
lems in Figure 10. Only the first 10% of the total timesteps are shown
because the hit rates converge afterward.

The lookup table reaches over 95% hit rate in 90k timesteps
for all problems. Different problems have a diverse profile of the
hit rates. For instance, Tensoff has most patterns collected within
the first 1k timesteps, and its hit rate converges at about 98.8%.
Tensoff has a short construction time of the lookup table because
the number of neighbors of each particle is relatively small, resulting
in a small number of patterns that need to be collected. ADP and
G-B achieve a hit rate of about 97% in 90k timesteps, i.e., about 9% of
the total timesteps. Once most patterns are collected in the lookup
table, subsequent timesteps are mostly read-intensive with a high
lookup table hit rate, indicating the completion of the transition
from intensive potential computation into read-intensive query
lookups. The transition from write- to read-dominant phase is
measured to complete in fewer than 5% of the total timesteps.

7.3 Scalability

We compare MD-HM running on a single NVM-based node with
the traditional numerical simulation running on a cluster of 32
nodes without NVM. On the cluster, we evaluate the weak and
strong scalability of nine MD simulations and report in Figure 11.
The weak scalability indicates the ability to handle larger-scale
simulations with more resources. The strong scalability indicates
the speedup on a fixed problem with increased resources.

Figure 11 shows that MD simulations demonstrate good weak
and strong scalability. This is because MD simulations often have

Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li

high compute intensity and low communication overhead. The
performance of the MD-HM on an NVM node is indicated by the
red line on Figure 11. We show that MD-HM on one NVM node can
outperform the numerical simulation on eight nodes commonly.
In some cases, such as Tersoff and G-B, MD-HM can even reach
the numerical simulation on 16 nodes. As MD-HM has similar
scalability as the numerical simulation, the performance of MD-HM
is expected to scale as the number of NVM-based nodes increases.

8 RELATED WORK

Memoization. The memoization approach works by storing the
output of functions for later reuse with identical input. By con-
verting the floating-point calculations to the memory access, the
success of memoization critically depends on efficiently indexing
structures and fast access to the data. The memoization technique
has been studied in many fields. Franyell et al. [71] propose a fuzzy
memoization scheme that avoids more than 24.2% of computation
for RNN training. Liu et al. [44] replace a long sequence of instruc-
tions with a two-level lookup table. Keramidas et al. [38] memoized
the outcomes of a fragment shaders that compute the final color
value of pixel using arithmetic operations and texture fetches, thus
the precision of arithmetic operations can be reduced more aggres-
sively for high performance. Rahimi et al. [65] reused the result
of instructions across different lanes of SIMD to reduce error re-
covery overhead. Arjun et al. [75] use large memoization tables
to capture long intervals of repetition to benefit computationally
intensive pure functions. Keramidas et al. [38] memoized the out-
comes of a fragment shaders that compute the final color value of
pixel using arithmetic operations and texture fetches, thus the pre-
cision of arithmetic operations can be reduced more aggressively
for high performance. Lin et al. [55, 56] used LSH to reuse earlier
computations in the field of DNN.

MD simulation using pairwise lookup table. Since MD simula-
tion is based on potential functions, there are many works to explore
the use of memoization for function-level reuse. Nilsson [38] pro-
posed an efficient way to use lookup table without the need to
calculate inverse square roots spline interpolation, and achieved
1.5x-2x speedup compared with standard calculations. Jaewoon et
al. [35] proposed a short-range approach by defining energy and
gradient as a linear function of inverse distance squared to enhance
the accuracy of lookup table. However, these approaches are based
on pairwise computation of replacing one potential computation
with bounded speedup. In this work, we focus on subgrid-based
simulation for higher performance improvement.

Non-volatile memory for HPC. HPC applications [15, 16, 28, 43,
67, 68, 70, 82-84] generally have significant memory consumption.
A lot of work have explored the use of non-volatile memory in some
HPC applications [23, 53, 61, 80, 81]. Nguyen et. al [53] introduce
a multi-version octree on PM to enable adaptive mesh simulation
on PM. Unimem [80] uses performance modeling to decide data
placement for MPI-based HPC applications. Siena [61] explores
rich organizations and configurations of HM architecture for HPC
applications to determine optimal system designs. Tahoe [81] com-
bines a machine learning model and an analytical model to predict
application performance across multiple memory components for
task-parallel programs. Some works leverage the non-volatility of

MD-HM: Memoization-based Molecular Dynamics Simulations on Big Memory System

NVM for checkpoint [19, 69]. Our work is different from them by
using the big memory capacity of NVM to accelerate MD simula-
tions.

9 CONCLUSION

Memoization techniques play an important role in many scientific
and engineering applications. However, how to use them efficiently
for MD simulation is challenging because of the enormous stor-
age for patterns and the requirement of simulation stability. This
paper designs a runtime framework called MD-HM, which builds
a new data structure and eliminates redundant patterns. Results
show that MD-HM yields better performance than the numerical
simulation and the state-of-the-art key-value store. We expect more
computation-intensive tasks can be inspired by our method to use
big memory systems to accelerate performance.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive com-
ments. We also thank Profs. Liang Shi (UC Merced) and Zhen Li
(Clemson) for their kind answers to our questions on LAMMPS. This
work was partially supported by U.S. National Science Foundation
(CNS-1617967, CCF-1553645 and CCF-1718194), the Chameleon
Cloud, and Intel hardware donation. LLNL-CONF-821251. This
work was partially performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Laboratory
under contract No. DE-AC52-07NA27344.

REFERENCES

[1] Hervé Abdi. 2010. Coefficient of variation. Encyclopedia of research design 1
(2010), 169-171.

Stewart A Adcock and J Andrew McCammon. 2006. Molecular dynamics: survey
of methods for simulating the activity of proteins. Chemical reviews 106, 5 (2006),
1589-1615.

[3] Hasan Metin Aktulga, Joseph C Fogarty, Sagar A Pandit, and Ananth Y Grama.
2012. Parallel reactive molecular dynamics: Numerical methods and algorithmic
techniques. Parallel Comput. 38, 4-5 (2012), 245-259.

Michael P Allen and Dominic J Tildesley. 2017. Computer simulation of liquids.
Oxford university press.

[5] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao. 2017. Emerging
NVM: A survey on architectural integration and research challenges. ACM
Transactions on Design Automation of Electronic Systems (TODAES) 23, 2 (2017),
1-32.

[6] Bhargab Chattopadhyay and Ken Kelley. 2016. Estimation of the coefficient of
variation with minimum risk: A sequential method for minimizing sampling
error and study cost. Multivariate Behavioral Research 51, 5 (2016), 627-648.

[7] An Chen. 2016. A review of emerging non-volatile memory (NVM) technologies
and applications. Solid-State Electronics 125 (2016), 25-38.

[8] Chaur-Chin Chen. 1993. Improved moment invariants for shape discrimination.
Pattern recognition 26, 5 (1993), 683-686.

[9] Fabrizio Chiti, Niccolo Taddei, Paul M White, Monica Bucciantini, Francesca
Magherini, Massimo Stefani, and Christopher M Dobson. 1999. Mutational
analysis of acylphosphatase suggests the importance of topology and contact
order in protein folding. Nature structural biology 6, 11 (1999), 1005-1009.

[10] Douglas Comer. 1979. Ubiquitous B-tree. ACM Computing Surveys (CSUR) 11, 2
(1979), 121-137.

Valerie Daggett. 2006. Protein folding- simulation. Chemical reviews 106, 5 (2006),
1898-1916.

[12] Thibault Dairay, Eric Lamballais, Sylvain Laizet, and John Christos Vassilicos.
2017. Numerical dissipation vs. subgrid-scale modelling for large eddy simulation.
9. Comput. Phys. 337 (2017), 252-274.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. 253-262.

LAMMPS Developers. 2021. lammps. https://https://github.com/lammps/
lammps.

Wengian Dong, Jie Liu, Zhen Xie, and Dong Li. 2019. Adaptive neural network-
based approximation to accelerate eulerian fluid simulation. In Proceedings of the

[2

[4

(11

(13

[14

(15

[24

[25

[26]

[27

™
&,

[29

(30]

(31]

[32

[34

[35

[36

[37

[38

@
29,

[40]

ICS ’21, June 14-17, 2021, Virtual Event, USA

International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-22.

Wengian Dong, Zhen Xie, Gokcen Kestor, and Dong Li. 2020. Smart-PGSim: using
neural network to accelerate AC-OPF power grid simulation. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-15.

Donald Eastlake and Paul Jones. 2001. US secure hash algorithm 1 (SHA1).
Peter Eastman, Jason Swails, John D Chodera, Robert T McGibbon, Yutong Zhao,
Kyle A Beauchamp, Lee-Ping Wang, Andrew C Simmonett, Matthew P Harrigan,
Chaya D Stern, et al. 2017. OpenMM 7: Rapid development of high performance
algorithms for molecular dynamics. PLoS computational biology 13, 7 (2017),
€1005659.

Hussein Elnawawy, Mohammad Alshboul, James Tuck, and Yan Solihin. 2017.
Efficient checkpointing of loop-based codes for non-volatile main memory. In 2017
26th International Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE, 318-329.

Furio Ercolessi and James B Adams. 1994. Interatomic potentials from first-
principles calculations: the force-matching method. EPL (Europhysics Letters) 26,
8 (1994), 583.

Facebook. 2020. pmem-rocksdb. https://github.com/pmem/pmem-rocksdb.

Hai Bo Fan, Edward KL Chan, Cell KY Wong, and Matthew MF Yuen. 2006.
Investigation of moisture diffusion in electronic packages by molecular dynamics
simulation. Journal of Adhesion Science and Technology 20, 16 (2006), 1937-1947.
Pradeep Fernando, Ada Gavrilovska, Sudarsun Kannan, and Greg Eisenhauer.
2018. NVStream: Accelerating HPC Workflows with NVRAM-based Transport
for Streaming Objects. In Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing (Tempe, Arizona) (HPDC ’18).
ACM, New York, NY, USA, 231-242. https://doi.org/10.1145/3208040.3208061
Jan Flusser and Tomas Suk. 1993. Pattern recognition by affine moment invariants.
Pattern recognition 26, 1 (1993), 167-174.

Richard Fujimoto. 2015. Parallel and distributed simulation. In 2015 Winter
Simulation Conference (WSC). IEEE, 45-59.

Jens Glaser, Trung Dac Nguyen, Joshua A Anderson, Pak Lui, Filippo Spiga,
Jaime A Millan, David C Morse, and Sharon C Glotzer. 2015. Strong scaling of
general-purpose molecular dynamics simulations on GPUs. Computer Physics
Communications 192 (2015), 97-107.

Yongfeng Gu, Tom VanCourt, and Martin C Herbordt. 2006. Improved interpo-
lation and system integration for FPGA-based molecular dynamics simulations.
In 2006 International Conference on Field Programmable Logic and Applications.
IEEE, 1-8.

Xin He, Yapeng Yao, Zhiwen Chen, Jianhua Sun, and Hao Chen. 2021. Efficient
parallel A* search on multi-GPU system. Future Generation Computer Systems
(2021).

Fredrik Hedman. 2006. Algorithms for Molecular Dynamics Simulations. Ph.D.
Dissertation. Institutionen for fysikalisk kemi, oorganisk kemi och strukturkemi.
Ming-Kuei Hu. 1962. Visual pattern recognition by moment invariants. IRE
transactions on information theory 8, 2 (1962), 179-187.

Zhihu Huang and Jinsong Leng. 2010. Analysis of Hu’s moment invariants on
image scaling and rotation. In 2010 2nd International Conference on Computer
Engineering and Technology, Vol. 7. IEEE, V7-476.

Afshan Ilyas, M Rizwan Khan, and Mohammad Ayyub. 2015. Lookup table based
modeling and simulation of solar photovoltaic system. In 2015 Annual IEEE India
Conference (INDICON). IEEE, 1-6.

Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
2019. Basic performance measurements of the intel optane DC persistent memory
module. arXiv preprint arXiv:1903.05714 (2019).

Frank Jensen. 2013. Atomic orbital basis sets. Wiley Interdisciplinary Reviews:
Computational Molecular Science 3, 3 (2013), 273-295.

Jaewoon Jung, Takaharu Mori, and Yuji Sugita. 2013. Efficient lookup table using
a linear function of inverse distance squared. Journal of Computational Chemistry
34, 28 (2013), 2412-2420.

Martin Karplus and] Andrew McCammon. 2002. Molecular dynamics simulations
of biomolecules. Nature structural biology 9, 9 (2002), 646—652.

Martin Karplus and Gregory A Petsko. 1990. Molecular dynamics simulations in
biology. Nature 347, 6294 (1990), 631-639.

Georgios Keramidas, Chrysa Kokkala, and Iakovos Stamoulis. 2015. Clumsy
value cache: An approximate memoization technique for mobile GPU fragment
shaders. In Workshop on Approximate Computing (WAPCO’15).

Tuomas Koskela, Zakhar Matveev, Charlene Yang, Adetokunbo Adedoyin, Roman
Belenov, Philippe Thierry, Zhengji Zhao, Rahulkumar Gayatri, Hongzhang Shan,
Leonid Oliker, Jack Deslippe, Ron Green, and Samuel Williams. 2018. A Novel
Multi-level Integrated Roofline Model Approach for Performance Characteriza-
tion. In International Conference on High Performance Computing.

David Kozono, Masato Yasui, Landon S King, Peter Agre, et al. 2002. Aquaporin
water channels: atomic structure molecular dynamics meet clinical medicine.
The Journal of Clinical Investigation 109, 11 (2002), 1395-1399.

https://https://github.com/lammps/lammps
https://https://github.com/lammps/lammps
https://github.com/pmem/pmem-rocksdb
https://doi.org/10.1145/3208040.3208061

ICS

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49

[50]

[51]

[52]

[53]

[54]

[55

[56]

[57]

[58]

[59

[60]

[61]

[63

[64

’21, June 14-17, 2021, Virtual Event, USA

Brian Kulis and Kristen Grauman. 2011. Kernelized locality-sensitive hashing.
IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 6 (2011), 1092—
1104.

Scott Le Grand, Andreas W Gotz, and Ross C Walker. 2013. SPFP: Speed without
compromise—A mixed precision model for GPU accelerated molecular dynamics
simulations. Computer Physics Communications 184, 2 (2013), 374-380.

Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li. 2021. Sparta: High-
performance, element-wise sparse tensor contraction on heterogeneous memory.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 318-333.

Zhenhong Liu, Amir Yazdanbakhsh, Dong Kai Wang, Hadi Esmaeilzadeh, and
Nam Sung Kim. 2019. AxMemo: hardware-compiler co-design for approximate
code memoization. In Proceedings of the 46th International Symposium on Com-
puter Architecture. 685-697.

Bona Lu, Wei Wang, and Jinghai Li. 2009. Searching for a mesh-independent
sub-grid model for CFD simulation of gas-solid riser flows. Chemical Engineering
Science 64, 15 (2009), 3437-3447.

Miha Luksic, Christopher J Fennell, and Ken A Dill. 2014. Using interpolation
for fast and accurate calculation of ion—ion interactions. The Journal of Physical
Chemistry B 118, 28 (2014), 8017-8025.

Jinping Luo, Lijun Liu, Peng Su, Pengbo Duan, and Daihui Lu. 2015. A piecewise
lookup table for calculating nonbonded pairwise atomic interactions. Journal of
molecular modeling 21, 11 (2015), 288.

Sidhartha Maitra. 1979. Moment invariants. Proc. IEEE 67, 4 (1979), 697-699.
Jason E Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan
Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. 2010.
Graphite: A distributed parallel simulator for multicores. In HPCA-16 2010 The
Sixteenth International Symposium on High-Performance Computer Architecture.
IEEE, 1-12.

Muhammad Usman Mirza, Shazia Rafique, Amjad Ali, Mobeen Munir, Nazia
Tkram, Abdul Manan, Outi MH Salo-Ahen, and Muhammad Idrees. 2016. To-
wards peptide vaccines against Zika virus: Inmunoinformatics combined with
molecular dynamics simulations to predict antigenic epitopes of Zika viral pro-
teins. Scientific reports 6 (2016), 37313.

Y Mishin, Diana Farkas, MJ Mehl, and DA Papaconstantopoulos. 1999. Inter-
atomic potentials for monoatomic metals from experimental data and ab initio
calculations. Physical Review B 59, 5 (1999), 3393.

Parviz Moin, Kyle Squires, W Cabot, and Sangsan Lee. 1991. A dynamic subgrid-
scale model for compressible turbulence and scalar transport. Physics of Fluids A:
Fluid Dynamics 3, 11 (1991), 2746-2757.

Bao Nguyen, Hua Tan, and Xuechen Zhang. 2017. Large-scale adaptive mesh
simulations through non-volatile byte-addressable memory. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-12.

Lennart Nilsson. 2009. Efficient table lookup without inverse square roots for
calculation of pair wise atomic interactions in classical simulations. Journal of
computational chemistry 30, 9 (2009), 1490-1498.

Lin Ning, Hui Guan, and Xipeng Shen. 2019. Adaptive deep reuse: Accelerat-
ing cnn training on the fly. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE). IEEE, 1538-1549.

Lin Ning and Xipeng Shen. 2019. Deep reuse: streamline CNN inference on the
fly via coarse-grained computation reuse. In Proceedings of the ACM International
Conference on Supercomputing. 438—448.

Noriaki Okimoto, Noriyuki Futatsugi, Hideyoshi Fuji, Atsushi Suenaga, Gen-
taro Morimoto, Ryoko Yanai, Yousuke Ohno, Tetsu Narumi, and Makoto Taiji.
2009. High-performance drug discovery: computational screening by combining
docking and molecular dynamics simulations. PLoS Comput Biol 5, 10 (2009),
€1000528.

Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and Samir Belfkih.
2018. Big Data technologies: A survey. Journal of King Saud University-Computer
and Information Sciences 30, 4 (2018), 431-448.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351-385.
Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. 2019. System Evaluation
of the Intel Optane Byte-addressable NVM. In Proceedings of the International
Symposium on Memory Systems. ACM. https://doi.org/10.1145/3357526.3357568
I B. Peng and J. S. Vetter. 2018. Siena: Exploring the Design Space of Heteroge-
neous Memory Systems. In SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. 427-440. https://doi.org/10.1109/
SC.2018.00036

Levi CT Pierce, Romelia Salomon-Ferrer, Cesar Augusto F. de Oliveira,] Andrew
McCammon, and Ross C Walker. 2012. Routine access to millisecond time scale
events with accelerated molecular dynamics. Journal of chemical theory and
computation 8, 9 (2012), 2997-3002.

Steve Plimpton. 1993. Fast parallel algorithms for short-range molecular dynamics.
Technical Report. Sandia National Labs., Albuquerque, NM (United States).
William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM 33, 6 (1990), 668-676.

(65

[66

[67

(68

=
20,

[70

71

[72

=
&

=
=)

(82

(83

(84

(85]

(86]

Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li

Abbas Rahimi, Luca Benini, and Rajesh K Gupta. 2013. Spatial memoization:
Concurrent instruction reuse to correct timing errors in simd architectures. IEEE
Transactions on Circuits and Systems II: Express Briefs 60, 12 (2013), 847-851.
Thomas H. Reiss. 1991. The revised fundamental theorem of moment invariants.
IEEE Transactions on Pattern Analysis & Machine Intelligence 8 (1991), 830-834.
Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li. 2021.
Sentinel: Efficient Tensor Migration and Allocation on Heterogeneous Mem-
ory Systems for Deep Learning. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 598-611.

Jie Ren, Kai Wu, and Dong Li. 2020. Exploring Non-Volatility of Non-Volatile
Memory for High Performance Computing Under Failures. In 2020 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). IEEE, 237-247.

Jie Ren, Kai Wu, and Dong Li. 2020. Exploring Non-Volatility of Non-Volatile
Memoryfor High Performance Computing Under Failures. In IEEE International
Conference on Cluster Computing.

Jie Ren, Minjia Zhang, and Dong Li. 2020. HM-ANN: Efficient Billion-Point Near-
est Neighbor Search on Heterogeneous Memory. Advances in Neural Information
Processing Systems 33 (2020).

Franyell Silfa, Gem Dot, Jose-Maria Arnau, and Antonio Gonzalez. 2019. Neuron-
level fuzzy memoization in rnns. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. 782-793.

Malcolm Slaney and Michael Casey. 2008. Locality-sensitive hashing for finding
nearest neighbors [lecture notes]. IEEE Signal processing magazine 25, 2 (2008),
128-131.

John E Stone, David J Hardy, Ivan S Ufimtsev, and Klaus Schulten. 2010. GPU-
accelerated molecular modeling coming of age. Journal of Molecular Graphics
and Modelling 29, 2 (2010), 116-125.

Michael Stonebraker and Lawrence A Rowe. 1986. The design of POSTGRES.
ACM Sigmod Record 15, 2 (1986), 340-355.

Arjun Suresh, Erven Rohou, and André Seznec. 2017. Compile-time function
memoization. In Proceedings of the 26th International Conference on Compiler
Construction. 45-54.

JJPRB Tersoff. 1989. Modeling solid-state chemistry: Interatomic potentials for
multicomponent systems. Physical review B 39, 8 (1989), 5566.

Seren Toxvaerd, Ole] Heilmann, and Jeppe C Dyre. 2012. Energy conservation
in molecular dynamics simulations of classical systems. The Journal of chemical
physics 136, 22 (2012), 224106.

CZ Wang and KM Ho. 1997. Material simulations with tight-binding molecular
dynamics. Journal of phase equilibria 18, 6 (1997), 516.

D Wolff and WG Rudd. 1999. Tabulated potentials in molecular dynamics simu-
lations. Computer physics communications 120, 1 (1999), 20-32.

K. Wu, Y. Huang, and D. Li. 2017. Unimem: Runtime Data Management on Non-
Volatile Memory-based Heterogeneous Main Memory. In International Conference
for High Performance Computing, Networking, Storage and Analysis.

Kai Wu, Jie Ren, and Dong Li. 2018. Runtime Data Management on Non-Volatile
Memory-Based Heterogeneous Memory for Task Parallel Programs. In ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis.

Zhen Xie, Zheng Cao, Zhan Wang, Dawei Zang, En Shao, and Ninghui Sun. 2016.
Modeling traffic of big data platform for large scale datacenter networks. In 2016
IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 224-231.

Zhen Xie, Wenqian Dong, Jiawen Liu, Hang Liu, and Dong Li. 2021. Tahoe: tree
structure-aware high performance inference engine for decision tree ensemble
on GPU. In Proceedings of the Sixteenth European Conference on Computer Systems.
426-440.

Zhen Xie, Guangming Tan, Weifeng Liu, and Ninghui Sun. 2019. IA-SpGEMM:
An input-aware auto-tuning framework for parallel sparse matrix-matrix multi-
plication. In Proceedings of the ACM International Conference on Supercomputing.
94-105.

Yuan Xu, Yi Zhang, Ephraim Suhir, and Xinwei Wang. 2006. Thermal properties
of carbon nanotube array used for integrated circuit cooling. Journal of Applied
Physics 100, 7 (2006), 074302.

Wei Zhang, Riccardo Mazzarello, Matthias Wuttig, and Evan Ma. 2019. De-
signing crystallization in phase-change materials for universal memory and
neuro-inspired computing. Nature Reviews Materials 4, 3 (2019), 150-168.

https://doi.org/10.1145/3357526.3357568
https://doi.org/10.1109/SC.2018.00036
https://doi.org/10.1109/SC.2018.00036

	Abstract
	1 Introduction
	2 Background
	3 Overview of MD-HM
	4 Two-phase LSM-tree
	4.1 Phase Transition
	4.2 Read-Dominant Phase

	5 Computation Replacement Strategy
	5.1 Subgrid Size Selection
	5.2 Query Range Adaptation

	6 Pattern Recognition Algorithm
	6.1 Moments and Hu Moment Invariants
	6.2 Lookup Moments
	6.3 Effectiveness Evaluation
	6.4 Key Computation

	7 Evaluation
	7.1 Overall Performance and Stability
	7.2 Performance Analysis
	7.3 Scalability

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

