
Journal of Parallel and Distributed Computing 152 (2021) 111–124

a

b

c

s
f
h
r
t
a
o

r
a
w
a
e
r

s
c
t
s
i

S

(

h
0

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

PARIS: Predicting application resilience usingmachine learning
Luanzheng Guo a,b,∗, Dong Li b, Ignacio Laguna c

Pacific Northwest National Laboratory, United States of America
EECS, University of California Merced, United States of America
CASC, Lawrence Livermore National Laboratory, United States of America

a r t i c l e i n f o

Article history:
Received 11 March 2020
Received in revised form 3 February 2021
Accepted 8 February 2021
Available online 6 March 2021

Keywords:
HPC fault tolerance
Application resilience prediction
Transient faults
Fault injection
Silent data corruption

a b s t r a c t

The traditional method to study application resilience to errors in HPC applications uses fault
injection (FI), a time-consuming approach. While analytical models have been built to overcome the
inefficiencies of FI, they lack accuracy. In this paper, we present PARIS, a machine-learning method
to predict application resilience that avoids the time-consuming process of random FI and provides
higher prediction accuracy than analytical models. PARIS captures the implicit relationship between
application characteristics and application resilience, which is difficult to capture using most analytical
models. We overcome many technical challenges for feature construction, extraction, and selection to
use machine learning in our prediction approach. Our evaluation on 16 HPC benchmarks shows that
PARIS achieves high prediction accuracy. PARIS is up to 450x faster than random FI (49x on average).
Compared to the state-of-the-art analytical model, PARIS is at least 63% better in terms of accuracy
and has comparable execution time on average.

Published by Elsevier Inc.
1. Introduction

As high performance computing (HPC) systems increase in
cale, they become more susceptible to transient faults [6] due to
eature size shrinking, lower voltages, and increasing densities in
ardware infrastructures [59]. As a result, scientific applications
unning at extreme scales apply different resilience methods to
olerate frequent soft errors. Applying these methods to a given
pplication often requires a deep understanding of the resilience
f the application.
The common practice to study application resilience to er-

ors in HPC systems is Fault Injection (FI) [11,17,62–64]. This
pproach uses a large amount of random injections, each of
hich randomly selects an instruction, and then triggers bit flips
t the instruction input or output operands during application
xecution. Statistical results are then used to quantify application
esilience.

While FI works in practice and is widely used in resilience
tudies, a key problem of this approach is that it is highly time
onsuming. To illustrate the problem, consider an application
hat runs for 6 hours—a common execution time for a large-
cale scientific simulation [26]. Using statistical analysis (e.g., us-
ng [45]), the number of random FIs to obtain a low margin

∗ Corresponding author at: Pacific Northwest National Laboratory, United
tates of America.

E-mail addresses: lenny.guo@pnnl.gov (L. Guo), dli35@ucmerced.edu
D. Li), ilaguna@llnl.gov (I. Laguna).
ttps://doi.org/10.1016/j.jpdc.2021.02.015
743-7315/Published by Elsevier Inc.
of error (e.g., 1%–3%) is in the order of thousands of injections.
Thus, the total FI campaign could last several days. For multi-
threaded or multi-process applications, this time is significantly
higher since random faults must be injected into different threads
or processes.

To address the limitations of FI, researchers have built error-
propagation analytical models [46], which are faster than FI in
estimating application resilience. However, they lack of accu-
racy as they estimate application resilience to errors based on
analysis of possible errors in individual instructions. The anal-
ysis inaccuracy at individual instructions is accumulated, caus-
ing low accuracy to estimate the whole application resilience.
Furthermore, these models do not consider effects of resilience
computation patterns (e.g., dead corrupted locations and repeated
addition [32]). Studying those patterns demands analyzing mul-
tiple instructions together, while most existing analytical models
analyze instructions in isolation.

In summary, the community lacks a fundamental approach
that enables fast and accurate evaluation of application resilience.
In this paper, we present a novel framework called PARIS,1 which
avoids the time-consuming process of randomly selecting and ex-
ecuting many injections (as in FI), and provides higher prediction
accuracy than analytical models, making it a unique solution to
the problem. In essence, PARIS uses a machine learning model to
predict application resilience, which provides several advantages.
First, machine learning models, once trained, can be repeatedly

1 PARIS: Predicting Application ReSilence.

https://doi.org/10.1016/j.jpdc.2021.02.015
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.02.015&domain=pdf
mailto:lenny.guo@pnnl.gov
mailto:dli35@ucmerced.edu
mailto:ilaguna@llnl.gov
https://doi.org/10.1016/j.jpdc.2021.02.015

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124

u
i
a
f
t
r
o
w

p
o

e
n
s
r
c
n
r
u

G
H
r
o
t
(
i
i
d
i

i
f
p
a
l
f
a
p

t
h
t
e
d
t
r

n
s
r
d

•

•

•

sed for any fault manifestations – silent data corruption (SDC),
nterruptions, and success cases – for new, previously unseen
pplications. Therefore, PARIS avoids a large amount of repeated
ault injection tests, which leads to high efficiency in comparison
o FI. Second, machine learning models can capture the implicit
elationship between application characteristics (e.g., intensity
f resilience computation patterns) and application resilience,
hich is difficult to capture by analytical models.
The most challenging part of using the machine learning ap-

roach is to build effective features. We use the following meth-
ds to construct a feature vector of 30 features.
First, we count the number of instruction instances within

ach instruction type as a feature; instruction instances are dy-
amic execution of instructions. We characterize instructions in
uch a way because different instruction types show different
esilience to errors [12,37]. To reduce the number of features, we
lassify instruction types into four representative and discrimi-
ative groups in terms of the functionality of instructions. This
eduction of features reduces the training complexity and avoids
ndertraining.
Second, we count resilience computation patterns as features.

uo et al. [32] discover six resilience computation patterns from
PC applications. Those patterns are considered the fundamental
eason for application resilience. Four of those patterns are based
n individual instructions, and can be included as features using
he above instruction type-based approach. The remaining two
‘‘dead locations’’ and ‘‘repeated addition’’) contain more than one
nstruction and cannot be captured by examining instructions
ndividually. To efficiently count the two patterns, we intro-
uce optimization techniques to avoid repeatedly scanning the
nstruction trace and find correlation between instructions.

Third, we introduce instruction execution order information
nto features to improve modeling accuracy. Execution order in-
ormation is important to application resilience, because error
ropagation is highly correlated to the order and type of oper-
tions. Inspired by ‘‘N-gram’’ technique [16,56] in computational
inguistics, we embedded the sequence of instruction chunks into
eatures to introduce execution order of instructions. Our evalu-
tion shows that having execution order information decreases
rediction error by up to 30%.
Fourth, we introduce resilience weight when counting instruc-

ion instances. Different instruction instances, even though they
ave the same instruction type, can have different capabilities to
olerate faults. Resilience weight quantifies the resilience differ-
nce of those instruction instances. Introducing resilience weight
ecreases prediction error by 13% on average when predicting
he rate of some fault manifestation (particularly, the interruption
ate).

Based upon the above features, we use feature selection tech-
iques to sort and further reduce features. We perform ablation
tudy to understand the sensitivity of features to prediction accu-
acy. We reveal significance of memory-related instructions and
ata overwriting to application resilience.
In summary, our contributions are as follows.

We present PARIS, a machine learning-based approach to pre-
dict application resilience. Our method breaks the fundamental
tradeoff between evaluation speed and accuracy in the existing
common practice to estimate application resilience.
We develop a framework and overcome a series of technical
challenges for feature construction, extraction and selection.
We reveal how to use machine learning to effectively and
efficiently model application resilience.
We test our model on 16 benchmarks. We find that our ap-
proach is up to 450x faster than random FI (49x on average).

The model has high prediction accuracy: a prediction error

112
of 8.5% and 22% on average for predicting success rate and
interruption rate (excluding two obvious outliers) respectively.
We compare PARIS with Trident [46] (the state-of-the-art an-
alytical model): PARIS can predict any fault manifestation rate
(SDC, interruptions, and success), while Trident only predicts
SDC rate; PARIS is at least 63% better than Trident in terms of
accuracy for predicting SDC rate, and has comparable execution
time (but faster for 12 out of the 16 benchmarks with 15x
speedup on average).

2. Background

2.1. Fault model

We consider transient faults in computation units of proces-
sors. For example, transient faults in the Arithmetic Logic Unit
(ALU) and the address computation for loads and stores. We do
not consider transient faults in memory components, such as
caches, because these components are usually protected by Error
Correcting Code (ECC) or parity at the architecture level. Similar
assumptions are made in existing work [46,63].

Furthermore, we consider single bit-flip model, not multiple
bit-flip model. Because single bit-flip model is the de-facto fault
model commonly adopted by existing work to emulate errors
propagated to applications [44,46,63]. Despite transient faults can
manifest as single and multiple bit-flips in applications, existing
studies have demonstrated that multi-bit errors can have a simi-
lar impact on the application as single-bit errors [46]. Therefore,
we use single bit-flip model in this paper.

2.2. Fault injection

We use PINFI [63] to perform fault injections into programs.
PINFI triggers a single bit-flip into the destination register or
memory location of a randomly chosen instruction to emulate
the effect of transient faults. The registers or memory locations
are chosen as the injection targets by PINFI, because any error
in the computation/data paths of the processor shows up in the
results of the executed instruction. PINFI’s fault model is the same
as ours. Comparing with other common FI tools (e.g., LLFI [61]
and REFINE [29]), PINFI is very accurate and user-friendly. In
our study, the number of FIs is determined by using a statistical
approach [45] with the confidence level of 99% and the margin of
error 1%.

2.3. Application resilience

We run FI campaigns to measure the application resilience.
An FI campaign contains many FIs. In each FI, a single-bit error
is injected into an input/output operand of an instruction. We
classify the outcome, or manifestation, of programs corrupted by
bit flips into three classes: success, SDC, and interruption:

• Success: the execution outcome is the same as outcome of
fault-free runs. The execution outcome can also be different
from outcome of fault-free runs, but the execution passes the
result verification phase of the application.

• SDC: the program outcome is different from the outcome of the
fault-free execution, and the execution does not pass the result
verification phase of the application.

• Interruption: the execution does not reach the end of exe-
cution, i.e., it is interrupted in the middle of the execution,
because of an exception, crash, or hang.

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124

w
I

#

Fig. 1. Overview of PARIS and the workflow of the training process in our ML method.
Rates. To quantify the application resilience in an FI campaign,
e measure the rate of each of the three classes of manifestations.

n particular, we use the formula:

Manifestations/N (1)

where #Manifestations is the number of times a given class
of manifestation occurs, and N is the number of FIs in an FI
campaign. We consider the rates of success, SDC and interruption
as metrics to quantify application resilience. The rates are real
numbers between 0.0 and 1.0. Since they are mutually exclusive,
their addition for a given application is 1.0.

2.4. Machine learning model

Training and Testing Phases. The modeling process of ML
includes training and testing. We use a set of representative ap-
plications to train the model—once it is trained, the model is used
to predict, or test, the manifestation rates on new applications.
We call the applications used for training and testing the training
dataset and the testing dataset, respectively.

Prediction Accuracy. To evaluate the trained model, we com-
pare the Mean Absolute Percentage Error (MAPE) [21] of the
predicted application resilience against the ground-truth appli-
cation resilience measured by performing FI. Eq. (2) gives the
definition of MAPE. MAPE is often used for regression model
evaluations because it can interpret modeling accuracy in terms
of relative errors [21]. A low MAPE means a better accuracy. The
lowest MAPE is zero.

MAPE = |
Measured − Predicted

Measured
|. (2)

3. Overview

We give a high-level overview of PARIS. Fig. 1 depicts the
workflow of the training process of PARIS. The most challenging
part of the training process is to construct features relevant to
application resilience that can produce high modeling accuracy.

Features Construction. We use instruction type and number
of instruction instances for each type as a feature. A static instruc-
tion in a program has an instruction type (opcode), and can be
executed many times, each of which is an instruction instance.
Using the number of instruction instances for each instruction
type as a feature will result in too many features, which demands
a large training dataset. To reduce the number of features, we
group all instruction types (65 in total) into four groups: control
flow instructions, floating point instructions, integer instructions,
and memory-related instructions. For each instruction group, we
count the number of instruction instances as a feature.

Furthermore, we use six resilience computation patterns pro-
posed in [32] as features. Among the six patterns, four of them
(conditional statement, shifting, data truncation, and data over-
writing) are individual instructions that are not grouped into the
four instruction groups, because of the significance of these in-
structions to application resilience. Two of them (dead corrupted

locations and repeated additions) include multiple instructions,

113
where these instructions all together contribute to application
resilience.

Counting dead corrupted locations and repeated additions
from the dynamic instruction trace as features is challenging,
because we must repeatedly search within the trace to find
correlation between instructions. To detect dead corrupted lo-
cations, we use a technique that caches intermediate results
of trace analysis to avoid repeated trace scanning. To detect
repeated additions, we build a data dependency graph for addi-
tion instructions. Such graph enables easy detection of repeated
additions.

Because different instruction instances can have different ca-
pabilities to tolerate errors, even though those instruction in-
stances have the same instruction type (or the same resilience
computation pattern), we introduce resilience weight when count-
ing instruction instances. The resilience weight gives each in-
struction instance a weight quantifying the possible number of
single-bit errors tolerable by the instance.

Furthermore, we introduce Instruction Execution Order (IEO)
information as a feature. We demonstrate that a small change in
IEO can affect the application resilience using an example illus-
trated in Fig. 3 and described in Section 4.2. However, represent-
ing the execution order information of all instruction instances
as a feature is a challenge. We use N-gram [16,56], a technique
commonly used for processing speech data, to capture the order
information.

Putting all together, we manage to build a feature vector of 30
features.

4. Design

4.1. Feature construction

For feature construction, we have the following requirements:
(1) features should be relevant to application resilience; (2)
the number of features should be small enough (smaller than
the number of applications used for training) to avoid under-
determination of the model; (3) we should avoid redundant
and irrelevant features since these features can increase pre-
diction error. Following the above requirements, we introduce
instructions, resilience computation patterns, resilience weight,
and instruction execution order as features. We describe why and
how we collect these features in following subsections.

4.1.1. Instruction groups
The primary features are instruction types and number of

instruction instances in each type. These features are highly
relevant to application resilience. For example, recent studies
[46,51] reveal that floating point instructions are highly related
to resilience because the faults in mantissa bits of floating-
point numbers can be negligible by the application (especially
HPC applications). Load/store instructions also have a significant
impact on application resilience, because computations following
load/store instructions can take those loaded/stored values.

We use the following method to construct instruction-based
features. We use LLVM-Tracer [58], an LLVM pass to compile the

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124

T
F
f

t
t
w
m
m

i
i
f
s
s
i

c
b
t
t
n
p
r

i
t
d
F
(
b
c
s
T
i

able 1
our groups of instruction types and four resilience computation patterns as
eatures to build our ML model.
Group name Instruction types

Control Flow
Instructions (CFI)

Br, Indirectbr, Select, PHI, Fence, DMAFence,
Call

Floating Point
Instructions (FPI)

Fadd, Fsub, Fmul, Fdiv, Frem, Cosine, Sine

Integer
Instructions (II)

add, sub, mul, Udiv, Sdiv, Urem, Srem

Memory-related
Instructions (MI)

Load, Store, DMAStore, DMALoad,
Getelementptr, ExtractElement,
InsertElement, ExtractValue, InsertValue,
FPToUI, FPToSI, UIToFP, SIToFP, PtrToInt,
IntToPtr, AddrSpaceCast

Pattern name Instruction types

Conditional
Statements

ICmp, FCmp, Switch, And, Or, Xor

Shifting Shl, LShl, AShl

Data Truncation Trunc, ZExt, Sext, FPTrunc, BitCast, FPExt

Data Overwriting
(DO)

All instructions having at least one output
operand

application and generate a dynamic LLVM instruction trace. The
LLVM instructions are architecture independent, allowing us to
build a more general and reusable model. We enumerate all LLVM
IR instructions and get 65 instruction types.

We could add all 65 instruction types as features. However,
his significantly increases the number of features. With the in-
roduction of IEO as features (see Section 4.2 for why and how
e introduce IEO into features), the number of features will be
ore than 195, larger than the number of training samples, which
akes the training under-determined.
To address the above problem, we group 65 instruction types

nto four groups following heuristics and findings in recent stud-
es [12,31]. In particular, our grouping is based on instructions
unctionality, which relies on instruction types; different in-
truction types can have different impacts on application re-
ilience [12,31]. For example, we group control flow related
nstructions (e.g., Br and Select) into a group. Table 1 lists the
four groups, including control flow instructions, floating point in-
structions, integer instructions, and memory-related instructions.
For each instruction group, we count the number of instruction
instances from the dynamic instruction trace, and then normalize
the number by the total number of instruction instances. We use
the normalized number as a feature to make the feature value
independent of the size of the dynamic instruction trace. This
enables us to fairly compare application resilience of applications
with different trace sizes.

4.1.2. Using resilience computation patterns as features
Recent work [32] finds six resilience computation patterns

(dead corrupted locations, repeated additions, conditional state-
ments, shifting, data truncation, and data overwriting) the
fundamental reason for application resilience. A resilience com-
putation pattern is defined as a combination of computations
that affect application resilience. The reason we introduce dead
corrupted locations and repeated additions as features is that
the two patterns are composed of multiple instructions that
together contribute to application resilience [32]. The other four
patterns (conditional statements, shifting, data truncation, and
data overwriting) are individual instructions shown in Table 1.
We use them separately as features because of their especial
significance to application resilience [32].

To count the six patterns as features, we cannot use the
method in [32], because it tracks error propagation after fault
 d

114
injection and leverages error masking to discover unknown pat-
terns, whereas they do not provide a method to count patterns
from the application. We must propose our own method to count
resilience patterns from applications to construct features. To
efficiently count patterns, we must address below challenges.

First, counting the number of pattern instances2 for dead
orrupted locations and repeated additions is time-consuming,
ecause we must find correlations between instructions to de-
ermine if the location is dead or if addition repeatedly happens
o the same variable. Doing so requires repeatedly scanning dy-
amic instruction trace. We discuss how to efficiently count
attern instances for the two patterns in Sections 4.1.3 and 4.1.4,
espectively.

Second, for the patterns that are represented as individual
nstructions (see the last four rows in Table 1 for these instruc-
ions), simply counting the number of pattern instances cannot
iscriminate resilience capabilities of different pattern instances.
or example, the resilience capability of the ‘‘shifting’’ pattern
a pattern involving a shift instruction) depends on how many
its are shifted. A shift instruction instance shifting three bits
an tolerate three single-bit errors, while a shift instruction in-
tance shifting one bit can only tolerate one single-bit error.
o distinguish fault tolerance capabilities of different instruction
nstances, we introduce weights (named resilience weight) when
counting instances of the patterns.

Besides introducing weights for the four patterns, we also
introduce weights to instructions of instruction groups whose
instances can also have different fault tolerance capabilities. We
describe the relevant details in Section 4.1.5.

4.1.3. Extracting the feature of dead corrupted locations
A combination of operations (e.g., additions and multiplica-

tions) aggregates the values of corrupted input locations into
fewer output locations. Meanwhile, many of these corrupted in-
put locations are not used anymore (they become dead corrupted
locations), which leads the total number of corrupted locations to
decrease. A code region with a higher percentage of locations that
are dead corrupted locations has higher resilience.

To efficiently detect dead corrupted locations and calculate
the percentage of dead corrupted locations, we split the dynamic
instruction trace into chunks and pre-process the chunks before
detecting dead corrupted locations. A chunk of instructions is the
dynamic instruction trace of a first-level inner loop or the code
region between two neighbor first-level inner loops. During the
trace pre-processing, we analyze instructions in each chunk and
save locations of each chunk into an array. To determine if a
location in a chunk is dead, we check whether the location is
further used in any future chunks by examining the sequence
of arrays. If the location is not used in any future chunks, then
the location is a dead corrupted location. In essence, the arrays
for chunks save instruction analysis results to avoid repeatedly
scanning the trace. For each chunk, we compute the percentage
of locations that are dead corrupted locations for the chunk. We
use the average percentage of dead corrupted locations across
all chunks (named ‘‘dead corrupted location rate’’ or DLR) as a
feature.

4.1.4. Extracting the feature of repeated additions
Repeated additions (RA) refers to the addition operations re-

peatedly happening to the same variable, such that the corruption
in the variable can be amortized. To decide if an addition in-
struction is part of repeated additions, we must first decide if the
addition instruction is involved in a self addition. The self addition

2 A pattern is repeatedly executed in application execution. We name the
ynamic execution of a specific pattern the pattern instance.

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124

i
p

g
b
t
l
a

h
(
t

Fig. 2. An example to detect repeated additions.
t

4

p
I
t

I
i
0
v
a
e
c
t

t
t
a
N
e
F
c
i

s defined as that a location adds other locations to itself. The
seudo code in Fig. 2 is an example of self addition.
To detect a self addition, we first build a data dependency

raph for addition operations, where nodes are locations; edges
etween nodes represent data dependency. When given an addi-
ion instruction, we examine its output operand and decide if the
ocation (the output operand) is an input operand of a previous
ddition operation by backward traversing the graph.
Fig. 2 illustrates what a data dependency graph looks like and

ow a self addition is found. We have four addition statements
operations) in a for loop. The location a appears as the output of
he last addition statement (a = b + c in Line 9). To determine
if the addition statement is involved in a self addition, we find
the node 0 corresponding to a in the data dependency graph. We
traverse the graph backward, and find a appears in a previous
node, the node 7. The node 7 corresponds to a source operand
of a previous addition statement (e = a + 4). Doing so, a self
addition is detected. A pattern of repeated additions is composed
of multiple self additions.

To use repeated additions as a feature, we normalize the
number of repeated additions by total number of instruction
instances. This makes the feature value independent of the size
of the dynamic instruction trace.

4.1.5. Resilience weight
Given an instruction, all bit locations of its input and output

operands are subject to error corruption. The resilience weight
(Res) of an instruction is defined below.

Res =
#bit locations that tolerate errors

#of all bit locations
(3)

Using the right-shift instruction as an example. The instruction
has three 8-bit operands and in total 24 locations. Assume that
an instance of the instruction shifts four least significant bits
of an operand. The shifted four bits can tolerate four single-bit
errors. Also, the eight bits in the output operand of the instruc-
tion can tolerate errors because of the result overwriting in the
output operand. Hence, in this example, the resilience weight
for this instruction instance is (4+8)/24 = 0.5. Consequently, the
bit locations that can constantly tolerate errors are bit locations
of the output operands, because we expect errors in the output
operands to be overwritten. Notably, we use the weight in case
counting the number of instruction instances or the number of
pattern instances.

As a result of feature construction, we construct a feature
vector of ten features, formulated in Eq. (4), where ‘‘DLR’’ and
‘‘RA’’ are the dead corrupted locations and repeated additions,
115
Fig. 3. An example to show that the instruction execution order matters to error
propagation.

respectively. Notations for the equation can be found in Table 1.

Fave
10 = [CFI, FPI, II,MI, Condition, Shift, Truncation,DO,DLR, RA]

(4)

We call Fave
10 the foundation feature vector and consistently call

he ten features foundation features in the rest of the paper.

.2. Introducing instruction execution order (IEO)

The foundation features are not good enough to achieve high
rediction accuracy. In particular, the foundation features lack
EO information. Capturing the IEO is important because it mat-
ers in error propagation.

We use an example shown in Fig. 3 to depict why IEO matters.
n this example, we have a load instruction and an addition
nstruction. Assume that an error happens in a memory address
x3ffffffd. If the load instruction happens first, then the erroneous
alue in the memory address propagates to the locations reg1
nd reg0. But if the addition instruction happens first, then the
rroneous value in the memory address only propagates to the lo-
ation reg1. This example is a demonstration of how IEO matters
o error propagation.

To introduce IEO into the feature vector, we use the ‘‘N-gram’’
echnique [16]. The N-gram is a technique used in computa-
ional linguistics. It can work on a sequence of streaming words,
nd predict the next word using sequences of previous words.
-gram can capture the word order information. Particularly,
very n continuous words compose an n-gram (n = 1, 2, 3, . . .).
ig. 4 depicts how we build the feature vector with IEO in-
luded. Particularly, we partition the dynamic instruction trace
nto chunks (each chunk is a gram). Each chunk is regarded as a

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124

t

b
f
2
F

3
f

Fig. 4. Applying the N-gram technique to introduce instruction execution order
information.

‘‘word’’, and the sequence of chunks is processed as the sequence
of ‘‘words’’. For each chunk, we collect the ten foundation features
and build a foundation feature vector of size ten. Then, we build
an average foundation feature vector (denoted as Fave

10) which is
he average of foundation feature vectors of all chunks.

Furthermore, we combine every two neighboring chunks to
uild a bigram (n=2 for n-gram). Particularly, we concatenate two
oundation feature vectors to build a bigram feature vector of size
0. We then build an average bigram feature vector (denoted as
ave
20) which is the average of all bigram vectors.
Putting All Together. We manage to build a feature vector of

0 features. We have Fave
10 of size 10 and Fave

20 of size 20. The final
eature vector Fave

30 is the combination of Fave
10 and Fave

20 . The final
feature vector has 30 features.

We do not consider trigram (i.e., 3-gram) or higher gram,
because existing research [16] demonstrate that there is no need
to use higher grams than bigram. In [16], bigram achieves better
accuracy than trigram while using trigram or higher grams does
not provide better prediction accuracy but dramatically increases
feature vector size and complexity of model training.

4.3. Feature selection

Following the requirement of feature construction, we aim to
eliminate irrelevant and redundant features and further reduce
the feature vector size. We use three filtering-based methods to
select features. Compared to other feature selection methods such
as wrappers and embedded methods, the filtering-based meth-
ods are faster because of their simplicity and low complexity.
In addition, the filtering-based methods are independent of the
prediction model [33]. In such a way, the selected features can
be used with different prediction models.

We use the following filtering-based methods to select fea-
tures: the p-value-based method [9], the mutual information-
based method [5], and the method of calculating variance [33].
Simply speaking, the p-value is a metric that measures the signif-
icance level between a feature and the modeling result (i.e., the
success, SDC, or interruption rate). The mutual information mea-
sures the mutual dependency between a feature and the model-
ing result. The variance measures the variance of feature values
across different input applications. Using each of the three meth-
ods, we can rank features into a sorted list according to the
importance of features with respect to application resilience. In
total, we have three lists.

Using a voting strategy, we combine the three sorted lists of
features into one list for feature selection. This voting strategy and
116
feature selection algorithm are common in ML [67]. In particular,
each feature has an index in each of the three lists. For each
feature, we add its three indexes to get a global index. We sort
the features based on global indexes into a single list.

We then decide how many features we want to use to con-
struct the feature vector for modeling. Based on the sorted fea-
tures in the single list, we choose the best k (where k = 2, 3, . . . ,
30) features to build a sublist of features. In total, we have 29
sublists. We choose the features in the best sublist (in terms of
the prediction accuracy) as the final features.

4.4. Model construction

Model Selection.
Prediction of application resilience is naturally a regression

problem. More formally, we aim to find a model f (), such that
given an feature vector v corresponding to an application A, f (v)
outputs the rates of SDC, interruption, and success for A.

There are tens of regression models. Each of them has pros
and cons, and should fit into different scenarios. We use scikit-
learn [55] and test all regressions models in scikit-learn (18 in
total), such as Gradient Boosting Regression [66], Random For-
est Regression [48], and Multi-Layer Perceptron Regression [18].
Cross-validation (CV) [42] is the standard practice used for model
selection. We use cross-validation (CV) to test the 18 regression
models on the training dataset to select a regression model with
the best prediction accuracy. CV partitions the dataset into p folds.
q of p folds are used for training, while the remaining p− q folds
are used for testing. There are p/(p−q) rounds of training/testing.
In each round, different p − q folds are used for testing. We
choose the regression model that has the lowest prediction error
on average. We use 10-fold cross validation in our study. Based
on the CV results, we choose the Gradient Boosting Regression to
predict application resilience.

Unlike other regression models, Gradient Boosting Regres-
sion ensembles many weak learners into a strong learner in an
iterative way. It is not surprising that Gradient Boosting Regres-
sion achieves the lowest prediction error among all regression
models. Gradient Boosting models have demonstrated excellent
performance on problems with a relatively small training dataset
theoretically and practically [10,18,25,27,50]. There are about
100 computation kernels in our dataset, which is tiny compared
to large datasets like ImageNet [23]. Note that neural network
models, such as Multi-Layer Perceptron Regression, are not work-
able for our case. These models can have tens of thousands of
parameters to resolve. Small training datasets cannot address that
many parameters.

Model Tuning. We use the following techniques to tune the
model for better prediction accuracy. (1) Whitening [19]. Whiten-
ing is used to normalize features to avoid domination effects of
any features for better generalization and to improve the model-
ing accuracy. (2) Bagging (model averaging) [24], which is often
used for reducing variation in training data. We use this tech-
nique to eliminate the effect of bad outliers. (3) Hyperparameters
tuning. Each regression model has multiple hyperparameters. We
use ‘‘grid-search’’ [7] to decide the values of hyperparameters for
training.

5. Implementation

Dataset Construction. We have multiple requirements for
creating training and testing dataset. (1) The training dataset
must be large to avoid model underdetermination; (2) Applica-
tions used to generate training and testing dataset must have
diverse computation and diverse resilience characteristics;
(3) Applications used to generate training and testing dataset

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124

m
c

s
N
C
C
e
d
1
t
a

t
s
p
e
[
s
a
0
T
k
t
t

a
m

e
T
e
i

p
a

p
g
P
F
t
e
t

ust have explicit result verification phases. Having the verifi-
ation phase allows us to determine the fault manifestations.
Testing Dataset. We use representative benchmark suites and

cientific applications to create the testing dataset, including
AS parallel benchmark suite [4], PARSEC benchmark suite [8],
ORAL benchmark suite [1], Rodinia benchmark suite [15], SPEC
PU2000 [36], and two scientific applications (Hercules for
arthquake simulation [2] and PuReMD for reactive molecular
ynamics simulation [60]). From these resources, we choose
6 applications for testing because of their diverse characteris-
ics. The 16 applications are shown in Table 2. We call the 16
pplications big benchmarks in the rest of the paper.
Training Dataset. To train PARIS, we use 100 common compu-

ation kernels obtained from HackerRank [34]. These kernels are
maller than the big benchmarks, but these kernels all have ex-
licit verification phases. With these kernels, the ranges of mod-
ling output during training are [0.126; 0.982], [0.000; 0.656], and
0.018; 0.874], for the rates of success, SDC, and interruption, re-
pectively; The average values of modeling output during training
re 0.502, 0.155, and 0.348 with a variance of 0.033, 0.019, and
.021 for the rates of success, SDC, and interruption, respectively.
he above numbers show that our training is sufficient with these
ernels. Also, using the 100 computation kernels is adequate for
raining because the training is determined when the size of
raining dataset (100) is larger than the number of features (30).

We require the training and testing datasets to be exclusive to
ddress the representation and generalization of our prediction
odel on new, unseen applications.
Trace Generation. We use LLVM-Tracer [58], a tool to gen-

rate dynamic LLVM IR traces based on LLVM instrumentation.
he trace includes LLVM IR instructions and their operands. We
xtend LLVM-tracer to generate a subtrace for each chunk of
nstructions and generate traces for MPI programs.

Whitening.We use the whitening technique [19] to normalize
features to avoid domination effects of any features for better
generalization and to improve the modeling accuracy.

6. Evaluation

We evaluate our model and modeling methods from two
erspectives: (1) modeling accuracy; (2) contributions of features
nd optimization techniques to modeling accuracy.
To evaluate modeling accuracy, we calculate MAPE for the

redicted success, SDC, and interruption rates compared with the
round-truth rates measured by performing FI campaigns. We use
INFI [63] for FI. For each program in our dataset, we perform an
I campaign of 3000 random fault injections, following the statis-
ical principles in [45] with the confidence of 99% and margin of
rror 1%. Furthermore, we compare our modeling accuracy with
he modeling accuracy of Trident, the state-of-the-art analytical
model predicting the SDC rate.

To study contributions of features and optimization tech-
niques to modeling accuracy, we perform a feature selection
study to understand the importance of features, and an ablation
study to understand impact of each optimization technique on
accuracy.

Notably, we do not directly predict the SDC rate, because the
value of SDC rates can be zero for small computation kernels,
in which any variation when predicting the SDC rate can cause
unreasonable MAPE of infinite values when the denominator in
the MAPE Equation is zero. Instead, we use the trained model to
predict the rate of success and interruption (two classes of fault
manifestation). We then calculate the SDC rate by subtracting the
rates of success and interruption from one (‘‘1’’). Hence, Table 3,
Figs. 6 and 7 do not have results for SDC.
117
Fig. 5. Histogram of the three fault manifestation rates.

We notice that using the above approach to predict the SDC
rate can cause a negative SDC rate. This is because we predict suc-
cess and interruption rates independently, and there is a chance
that the sum of predicted success and interruption rates is larger
than one (‘‘1’’). For such cases, we force the value of the SDC rate
to be zero. Also, we normalize the three rates by their sum in case
the sum of the three rates is larger than one.

Artifact Description. We conduct experiments on compute
nodes each equipped with Intel(R) Xeon(R) CPU E5-2630 v3 and
Ubuntu-14.04.5. Each compute node has Clang-v3.4, OpenMP-
v4.0, and scikit-learn installed.

6.1. Prediction accuracy

Table 2 shows the prediction results. Using the results of tra-
ditional fault injection as ground truth, MAPE for success rate and
SDC rate are 8% and 45%, respectively. Our prediction accuracy for
success rate is overall good, but our prediction accuracy for SDC
rate is relatively low, but better than the state-of-the-art (see the
following discussion in ‘‘Comparison with the state-of-the-art for
predicting SDC rate’’). Predicting SDC rate is challenging because
SDC rate can be very small or even zero. A small deviation from
the ground truth can cause a large prediction error to MAPE.

To support the statement that the SDC rate tends to be small,
we study 116 programs from training and testing datasets. We
perform random fault injection and count the histogram (shown
in Fig. 5) of the three fault manifestation rates of these programs.
Fig. 5 shows that there are more than 65% of programs whose
SDC rates are distributed in the range of 0.0–0.2, while values
of success rate and interruption rate are distributed in a greater
range. We further find that 40% of the programs have the SDC
rate less than 0.1.

Comparison with the State-of-the-Art for Predicting the
SDC Rate. We compare PARIS with Trident [46], a recent work
that uses analytical models to estimate the SDC rate. We use
Trident downloaded from their GitHub website (commit
#90b38ab) to estimate the SDC rate for the 16 big benchmarks.
The 16 benchmarks include all the benchmarks used in Trident;
the number of benchmarks used in Trident is 11. For the 11
benchmarks, we use the same input as in [46]. Table 2 shows
the prediction error of Trident in the fourth last column.

Table 2 shows that the MAPE of PARIS for SDC rate is 45%,
while the MAPE of Trident for SDC rate is 680%. We notice that
there are two outliers (MG and PuReMD) that make the average
prediction error of Trident very large. To make the comparison
fair, we remove the two outliers. After that, the new MAPE of
Trident is 108%, which is still worse than the prediction of PARIS.
We conclude that PARIS is better than Trident in terms of the
prediction accuracy on SDC.

Notably, Li et al. [46] report Mean Absolute Error (MAE), which
is different from MAPE we report. When evaluating the SDC rate,
MAE may not be as appropriate as MAPE. A small MAE (e.g., 0.01)
can cause a large MAPE. MAPE measures the relative error. When

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124
Table 2
The detailed prediction results for 16 big benchmarks. Notation: SR = Success Rate; SDCR = SDC Rate; IR = Interruption Rate;
Pred.=Prediction; Meas. = Measured.
(a) Prediction results for success rate

Big benchmarks Suite Program input Meas. SR Pred. SR Relative
error for SR

IS NAS Class S 0.653 0.625 4.23%
Nn Rodinia filelist_4 5 30 90 0.980 0.910 7.16%
Myocyte Rodinia 100 1 0 4 0.741 0.764 3.11%
MG NAS Class S 0.781 0.721 7.75%
Kmeans Rodinia 100 0.843 0.749 11.12%
Libquantum SPEC 33 5 0.863 0.879 1.85%
Blackscholes PARSEC in_4.txt 0.663 0.591 10.81%
Sad Parboil reference.bin frame.bin 0.475 0.506 6.53%
Bfs-parboil Parboil graph_input.dat 0.960 0.906 5.61%
Hercules CMU scan simple_case.e 0.580 0.646 11.36%
PuReMD Purdue Univ. geo ffield control 0.420 0.438 4.26%
Lulesh CORAL -s 1 -p 0.634 0.441 30.44%
Hotspot Rodinia 64 64 1 1 temp_64 power_64 0.714 0.752 5.30%
Bfs-rodinia Rodinia graph4096.txt 0.655 0.674 2.92%
Nw Rodinia 2048 10 1 0.664 0.647 2.49%
Pathfinder Rodinia 1000 10 0.623 0.759 21.89%
MAPE N/A N/A N/A N/A 8.55%

(b) Prediction results for SDC rate

Big benchmarks Meas. SDCR Pred. SDCR Relative error
for SDCR

Relative error for
SDCR by Trident

IS 0.083 0.092 11.14% 192.31%
Nn 0.000 0.000 0.00% 93.39%
Myocyte 0.022 0.025 14.67% 826.67%
MG 0.008 0.010 31.14% 5633.33%
Kmeans 0.045 0.098 117.93% 42.64%
Libquantum 0.034 0.000 100.00% 7.60%
Blackscholes 0.122 0.210 72.05% 12.22%
Sad 0.216 0.318 47.36% 34.95%
Bfs-parboil 0.000 0.000 0.00% 3.32%
Hercules 0.182 0.1822 0.11% 128.19%
PuReMD 0.090 0.018 80.00% 3740.00%
Lulesh 0.120 0.255 112.85% 39.01%
Hotspot 0.121 0.124 2.86% 58.97%
Bfs-rodinia 0.124 0.047 62.10% 31.31%
Nw 0.140 0.193 38.34% 20.96%
Pathfinder 0.080 0.052 35.02% 20.81%
MAPE N/A N/A 45% 108% (with

outliers removed)

(c) Prediction results for interruption rate

Big benchmarks Meas. IR Pred. IR Relative error
for IR

IS 0.264 0.283 6.97%
Nn 0.02 0.090 350.95%
Myocyte 0.237 0.211 11.07%
MG 0.211 0.269 27.49%
Kmeans 0.112 0.153 36.32%
Libquantum 0.103 0.121 17.51%
Blackscholes 0.215 0.199 7.55%
Sad 0.309 0.176 42.91%
Bfs-parboil 0.040 0.094 134.54%
Hercules 0.238 0.172 27.76%
PuReMD 0.490 0.544 10.93%
Lulesh 0.246 0.304 23.69%
Hotspot 0.165 0.124 25.03%
Bfs-rodinia 0.221 0.279 26.43%
Nw 0.196 0.159 18.94%
Pathfinder 0.279 0.189 32.38%
MAPE N/A N/A 22% (with

outliers removed)
relative variation matters and needs to be considered, MAPE is
better than MAE [21].

Even though PARIS is better than Trident in predicting the
SDC rate, PARIS shows a high relative error on some bench-
marks. For example, the relative prediction error for SDC rate
for Kmeans, Libquantum, and Lulesh are 117%, 100%, and 112%,
respectively. After examining the prediction results closely, we
find that the absolute prediction error for the three benchmarks is
118
0.053, 0.034, and 0.135, respectively, which is small; the ground
truth of the SDC rate for the three benchmarks is 0.045, 0.034,
and 0.120, respectively, which is also small and close to zero.
Accordingly, although the absolute prediction error for SDC is
smaller with PARIS comparing to Trident (on average 0.041 with
PARIS vs. 0.063 with Trident), the relative prediction error with
PARIS for SDC can be large but still smaller comparing to Trident.

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124

T
F

t
h
t
M
t
w

h
4
t
r
l
f
l
o
i
t
a

f
t
s
b

able 3
eature voting scores for each dimension of the feature vector Fave

30 .

(a) Feature voting scores for predicting the success rate.

Dimension number 4 24 8 28 17 12 14 22 18 27

Sorted voting score (Smaller
is better)

20 22 23 24 25 27 29 29 31 32

Dimension number 2 3 23 7 20 16 6 21 13 26
Sorted voting score (Smaller
is better)

33 39 39 40 43 45 46 48 50 50

Dimension number 11 1 30 15 5 10 25 29 9 19
Sorted voting score (Smaller
is better)

53 54 62 69 70 71 74 74 86 87

(b) Feature voting scores for predicting the interruption rate.

Dimension number 14 18 4 8 27 24 28 7 30 16

Sorted voting score (Smaller
is better)

20 23 24 27 27 32 32 34 37 38

Dimension number 6 17 10 26 12 13 1 3 11 2
Sorted voting score (Smaller
is better)

39 40 42 43 46 46 47 47 52 53

Dimension number 21 19 20 23 5 15 22 25 9 29
Sorted voting score (Smaller
is better)

53 55 55 56 62 63 69 69 77 87

(c) The application characteristics that each dimension of the feature vector represents. Dimensions larger than 9 have
the information of instruction execution order using the N-gram technique.

Dimension# 1, 11, 21 2, 12, 22 3, 13, 23 4, 14, 24 5, 15, 25
Meaning of dimension# CFI FPI II MI Condition
Dimension# 6, 16, 26 7, 17, 27 8, 18, 28 9, 19, 29 10, 20, 30
Meaning of dimension# Shift Trunc DO DLR RA
(
(

Prediction of the Interruption Rate. The MAPE for predicting
he interruption rate is 50%. This prediction error seems relatively
igh. However, we find two outlier benchmarks, which contribute
o the bad prediction accuracy. They are Nn and Bfs_parboil. The
APE for them are 350% and 134%, respectively. Excluding the

wo outliers, the newMAPE for predicting interruption rate is 22%
hich is much acceptable.
After we profile Nn and Bfs_parboil, we find that these codes

ave a relatively large number of load instructions (19% and
4% of total instructions), which is larger than that in most of
he benchmarks we study. Predicting the interruption rate accu-
ately depends on accurately counting load instructions because
oading data from an incorrect address often cause segmentation
aults (or interruptions). However, we do not accurately count
oad instructions during feature construction, because load and
ther memory-related instructions are counted together as an
nstruction group (see Table 1). Thus using a group (as opposed
o a single instruction class) for counting causes low prediction
ccuracy in this case.
In summary, while the method of using instruction groups as

eatures may cause high prediction error, we use groups to limit
he number of features to reduce training time and the neces-
ity of using many training samples. Hence, there is a tradeoff
etween training efficiency and prediction accuracy.
Discussion. We achieve a high prediction accuracy for pre-

dicting success rate in contrast to the prediction on SDC and
interruption rates. Our quick (see Section 6.4 for the efficiency
study) and accurate prediction on success rate is valuable in
practical. For example, when deciding the application-level fault
tolerance mechanism for a code, the resilience (or success rate) of
the code in the presence of errors is the key concern [13]. When
the success rate is high (close to 1), which means the code has a
high resilience to errors. In this case, one would use cheap fault
tolerance mechanisms rather than expensive ones. Therefore,
having an efficient and accurate way to estimate resilience (or
success rate) of the code is beneficial for directing fault tolerance
mechanisms.
119
Fig. 6. The ablation study result: the average prediction error for predicting the
rates of success and interruption when the best k features are selected (k ranges
from 2 to 30).

6.2. Feature selection and analysis

Recalling that we use a voting strategy for feature selection.
With the voting strategy, we have a global index for each feature.
The global index aggregates voting results of the three feature
selection methods (p-value, mutual information, and variance).
Table 3 shows the global indexes for all 30 dimensions of the
feature vector. The application characteristics that each dimen-
sion of the feature vector represents are summarized in Table 3.c.
Table 3.a reveals that the 4th dimension (the memory-related
instructions), 24th dimension (the memory-related instructions
in bigram), and 8th dimension (the pattern of overwriting) in
Fave

30 rank the highest; Table 3.b reveals that the 14th dimension
the memory-related instructions in bigram), 18th dimension
the pattern of overwriting in bigram), and 4th dimension (the

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124

m
m
m

p
l
l
d
t

t
p
c
t
e

t
f
r
t
a
W
r
a
i
p

d
m
p
4
t
b
d
t

n
2
t
0
t
e
c
r
d
r
w

s
M
a
f
t
i

a
b
s
m

t
r
r
c
9
w
f
t
t
a
F
o

e
e
o
a

emory-related instructions) in Fave
30 rank the highest. Those di-

ensions are memory-related instructions, which seem to matter
ost to the application resilience.
In addition, both tables reveal that the 9th dimension (i.e., the

attern of dead location), 19th dimension (i.e., the pattern of dead
ocation in bigram), and 29th dimension (i.e., the pattern of dead
ocation in bigram) rank relatively low. This result indicates that
ead location seems to have less impact to application resilience
han the other features.

Ablation study. In this study, we show the effect of using
he best k features to make a prediction (k = 2, 3,, 30) to
rediction accuracy. This study can also help us understand the
ontributions of each feature to prediction accuracy. Fig. 6 shows
he result of the ablation study. The figure shows the prediction
rror for the rates of success and interruption.
In Fig. 6, the prediction error decreases by 17% (from 0.3

o 0.25) for predicting the success rate when adding MI-related
eatures (4th and 24th dimensions in Fave

30) and data overwriting
elated features (8th and 28th dimensions in Fave

30). Moreover,
he prediction error decreases another 24% (from 0.25 to 0.19)
fter adding truncation in bigram (17th dimension) into features.
e then conclude that MI-related instructions, data overwriting-

elated instructions and truncation have a significant impact on
pplication resilience in terms of the success rate. This find-
ng is consistent with our findings for feature voting scores for
redicting the success rate in Table 3.a.
When predicting the interruption rate, the prediction error

ecreases by 20% (from 0.5 to 0.4), when adding the 2nd di-
ension in Fave

30 to features. The 2nd dimension is the floating
oint instructions. When k is 28, the prediction error decreases
5% (from 0.55 to 0.3) when adding the 25th dimension in Fave

30
o features. The 25th dimension is the conditional statement in
igram. This suggests that floating point instructions and con-
itional statement significantly affect application resilience in
erms of interruption.

On the other hand, we see an increase of MAPE after adding a
ew feature to the feature vector. For example, after adding the
3rd dimension in Fave

30 to features when k is 24 for predicting
he interruption rate, the MAPE of interruption rate goes up to
.57 from 0.51. However, this does not necessarily mean that
his feature plays a less important role to predict application
rror resilience. This feature together with the successive features
an make a significant contribution to application resilience with
espect to interruption. For example, we can see a significant
ecrease in MAPE when k is 28 for predicting the interruption
ate (the MAPE decreases to 0.31 from 0.55). Lacking this feature,
e may not achieve such a big decrease in MAPE when k is 28.
In Fig. 6, we notice that the MAPE value is the lowest for both

uccess rate and interruption rate when k is 30. At this point,
APE for predicting the success and interruption rates are 0.19
nd 0.28, respectively. In consequence, we choose k equal to 30
or both the success and interruption rates. We also notice that
he MAPE values when k is 30 in Fig. 6 are different from those
n Table 2. The reason is as follows. The MAPE when k is 30 in
Fig. 6 is the result of feature selection before applying the two
model tuning techniques: hyperparameter tuning and bagging.
However, the MAPE in Table 2 is the final result after applying all
model tuning techniques and feature construction optimizations.
Therefore, the MAPE values in Table 2 are smaller than those
when k is 30 in Fig. 6. Also note that the two results in Table 2
(0.08 for success rate and 0.22 for interruption rate) are consistent

with the results in Fig. 7.

120
Table 4
The margin of error (%) for different numbers of fault injections.
#FIs Success SDC Interruption

300 5.6% 3.3% 5.1%
1000 3.2% 2.0% 2.9%
2000 2.2% 1.6% 2.2%
3000 1.3% 1.1% 1.2%

6.3. Evaluation of model tuning and feature construction optimiza-
tion

We study the impact of our model tuning (whitening, bag-
ging and tuning hyperparameters) and feature construction tech-
niques (bigram and resilience weight) to prediction accuracy. We
use 100 small computation kernels (for training) for our study.
We start with the model without using any of the five techniques,
and then apply them one by one in each step.

Fig. 7 shows the results. We can see that the prediction error
continues decreasing after we apply all these techniques. Overall,
the MAPE of predicting success rate decreases by 71%; the MAPE
of predicting interruption rate decreases by 33%. This demon-
strates the effectiveness of all the five techniques in predicting
application resilience. Among the five techniques, the most ef-
fective ones are bigram and bagging for predicting success rate,
and resilience weight for predicting interruption rate.

We notice that after introducing bigram, the MAPE decreases
by 30% when predicting success rate. Despite the MAPE reduces
slightly when predicting interruption rate after introducing bi-
gram, we find that 58% of kernels have lower prediction error,
with up to 20% decrease in MAPE. After introducing resilience
weight, the MAPE decreases by 12% when predicting success rate
and by 13% when predicting interruption rate. We also observe
that the MAPE decreases by 33% when predicting success rate
after introducing bagging. After considering resilience weight,
the MAPE reduces 12.5% when predicting success rate and 13.3%
when predicting interruption rate. The above results demonstrate
the effectiveness of bigram, resilience weight, and bagging in
predicting application resilience.

6.4. Efficiency study—comparing PARIS to random fault injection and
Trident

We compare the execution time of using FI, using Trident,
nd using PARIS to predict the rate of manifestations on the 16
ig benchmarks. The number of FIs is determined by using a
tatistical approach [45] with the confidence level of 99% and the
argin of error 1%. The number of FIs is about 3000.
To justify the number of random FIs (3000) that is necessary

o guarantee the high-fidelity of the statistical measurement, we
e-run the fault injection campaigns, with reduced numbers of
andom FIs (300, 1000, 2000) in each fault injection campaign, to
alculate the margin of error while fixing the confidence level of
9%, following the same statistical approach in [45]. In particular,
e calculate the average margin of error by different fault mani-

estations for each reduced number of random FIs. We summarize
he results in Table 4. We observe that the numerical values of
he margin of error for the reduced number of fault injections
re significantly larger than the margin of error of 3000 random
Is. We conclude that the number of random FIs has to be 3000
r higher to guarantee statistical significance.
We measure the execution time of 3000 random FIs as the

xecution time of FI for each benchmark. When measuring the ex-
cution time of using PARIS, we measure the execution time spent
n the whole workflow of predicting application resilience for
new, unseen application, including dynamic instruction trace

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124

P
a

w
p
t

o
T
e
t
c
o
t
a
t
t
m
d
a

Fig. 7. Evaluating the impact of model tuning and feature construction optimization on the prediction error for the two fault manifestation rates. FCO = ‘‘feature
construction optimization’’. In terms of MAPE, Lower is better.
Table 5
The efficiency comparison between FI, Trident, and PARIS. The table includes breakdown of execution time for the PARIS workflow and
speedup (using FI as the baseline).
Benchmarks FI (s) Trident (s) PARIS (s) Trace

generation(s)
Feature
construction(s)

Prediction(s) Speedup
over FI

IS 15740 5158 4765 712.3 4052.5 0.3 3x
Nn 8860 4820 395 16.5 378.5 0.3 20x
Myocyte 16380 1215 582 87.2 494.8 0.3 28x
MG 9270 10980 4915 1359.3 3555.9 0.3 2x
Kmeans 4680 1083 234 51.8 182.2 0.3 20x
Libquantum 4714.3 1179 558 0.4 557.6 0.3 8x
Blackscholes 4793 918 23.3 1.1 21.9 0.3 205x
Sad 58890.8 9723 13408 4187.6 9220.4 0.3 4x
Bfs-parboil 11340.4 2835 10450 553.2 9896.8 0.3 1x
Hercules 4703.2 1170 194 7.6 186.4 0.3 24x
PuReMD 1099350 4410 360947 48640.3 312307.2 0.3 3x
Lulesh 9089.3 1896 20.3 1.8 18.2 0.3 450x
Hotspot 43650 15740 10480 3749.7 6730.3 0.3 4x
Bfs-rodinia 36630 10913 15952 6051.7 9900.3 0.3 2x
Nw 16470 4618 4232 859 3373 0.3 4x
Pathfinder 102960 16509 8240 2507 5733 0.3 13x
t
W

r
t
d
s
n
I
f
I

a
n

generation, feature extraction, and making prediction with the
trained model. It is important to note that the model training time
is not counted into the execution time of the whole workload
of predicting application resilience, because once the model is
trained, it can be reused repeatedly for an unlimited number of
applications, which amortizes the cost of training.

Table 5 shows the results. In general, the speedup of using
ARIS over using FI is up to 450x (see LULESH) and 49x on aver-
ge. PARIS is faster than FI for all 16 benchmarks. Furthermore,

PARIS is faster than Trident for 12 out of the 16 benchmarks
ith 15x speedup on average. For the four benchmarks (Sad, Bfs-
arboil, PuReMD, and Bfs-rodinia), PARIS is slower, due to the
ime-consuming trace generation.

We further break down the execution time for the workflow
f PARIS and compute the speedup of using PARIS over FI in
able 5. The execution time of FI is in the second column. The
xecution time of FI can be affected by instruction profiling and
he complexity of the FI tool. Furthermore, the time can be signifi-
antly affected if the program hangs after FI. The time breakdown
f PARIS is shown in the third, fourth, and fifth columns. The
ime spent on making the prediction is constant, which is always
round 0.3 s. The time spent on dynamic instruction trace genera-
ion changes significantly across benchmarks, which is correlated
o input problem size and computation complexity of the bench-
ark. The time spent on feature extraction varies significantly for
ifferent benchmarks, which is affected by instruction trace size
nd complexity of computations in the application.
121
7. Discussions

Use of PARIS. To use PARIS, the user only needs to train
the prediction model once, and then the trained model can be
repeatedly used for predicting error resilience of any application.
Predicting application resilience is useful for improving appli-
cation resilience [14,32] and optimizing fault tolerance mecha-
nisms [20,39,46,65]. To train the prediction model, the user must
follow the training workflow in Fig. 1. Given a new application,
the user needs to generate a dynamic instruction trace and feeds
it to PARIS, and PARIS will output three numerical values: the
predicted success, SDC, and interruption rates.

Furthermore, PARIS can work on different hardware architec-
ures and for parallel applications with different input problems.
e discuss these scenarios as follows.
Support for Different Hardware Architectures. PARIS cur-

ently supports x86 architectures. Because the LLVM IR instruc-
ions that we use as features are related to the x86 ISA. Other
ifferent ISAs (such as RISC) are expected to have different in-
tructions, where our instruction grouping strategy probably does
ot fit. We plan to support new architectures that take different
SAs in future work. For that, we need to come up with new
eature designs for unseen instructions coming with different
SAs.

Support for Different Input Problems. PARIS can work on
pplications with different input problems. PARIS treats it as a
ew application for the same application taking different input.

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124

i
r
e

T
L
p
g
M
p
t
p

m
R
g
p
t
m
p
N
d
t
f
T
q
b

t
s
r
t
g

8

R
l
I
l
u
l
r
p
P
c

p
l
s
e

Table 6
Comparison between previous work and PARIS.

Track error
propagation?

Discover or count
error masking?

Distinguish resilience
difference of instructions?

Consider instruction
execution order?

Random FI No No No No
FlipTracker [32] Yes Discover No No
Trident [46] Yes Count Yes No
MOARD [31] Yes Count Yes No
PRISM [39] No Count Yes No
IPAS [44] Yes No Yes No
Desh [20] and Nie et al. [52] No No No No
PARIS No Count Yes Yes
e
s
t
a
a
g
i
s
i
i
o
w
t
t
t

a
t
M
m
t
t
f
d
a
f

a

9

c
p
r
a
s
f
k
r
w
a
m
t
e

D

r
i

In this case, users need to generate a dynamic instruction trace
for each different input, and PARIS will process the dynamic
nstruction trace and generate the predicted fault manifestation
ates. Unlike the traditional FI, where users have to perform an
xpensive FI campaign, PARIS is much faster.
Support for Parallel Code. PARIS can work for MPI programs.

his is supported by our extension to LLVM-tracer that enables
LVM-tracer to generate a trace for each MPI process. Also, the
rediction model in PARIS has to be trained using parallel pro-
rams, in order to capture the effects of error propagation across
PI processes. If the user cannot train the prediction model using
arallel programs, the user can still use the prediction model
o make the prediction for serial programs, and then make the
rediction for parallel programs based on recent work [41].
Pros and Cons. PARIS provides an alternative solution to esti-

ate application resilience in addition to random FI and Trident.
andom FI is the common practice and often referred to as the
round truth for accuracy. However, random FI performs FI cam-
aigns, which are very time-consuming. Trident is much faster
han random FI but introduces errors to application resilience
easurement. PARIS is faster than random FI and achieves com-
arable efficiency and higher prediction accuracy than Trident.
ote that we consider training a part of the prediction tool
evelopment. We, therefore, do not count the training cost in
he efficiency comparison. Furthermore, PARIS can predict any
ault manifestation rate (SDC, interruption, and success), while
rident only predicts the SDC rate. For applications that need
uick application resilience estimation, PARIS is an alternative,
etter solution to Trident.
However, PARIS is trained on a small dataset of 116 applica-

ions and computation kernels. This affects prediction accuracy
ignificantly. We plan to develop a larger dataset to enrich the
epresentation of the training dataset to further advance predic-
ion accuracy. We also plan to improve the performance of trace
eneration and feature extraction using parallel programming.

. Related work

Using Machine Learning to Address Resilience Problems.
ecent research starts to use ML to address resilience prob-
ems [3,20,28,30,39,44,52]. Laguna et al. [44] train an ML classifier
PAS. IPAS learns which instructions can have a high likelihood of
eading to a silent output corruption. Desh [20] predicts node fail-
res by training a recurrent neural network model using system
ogs. Nie et al. [52] use system logs to predict the future occur-
ence of GPU errors. PRISM [39] predicts resilience for GPU ap-
lications using application properties. However, different from
ARIS, PRISM focuses on GPU applications, and PRISM does not
onsider instructions execution order for feature design.
Random FI. This is the most common method to study ap-

lication resilience [17,22,40,43,47,49,54]. Typically application-
evel FI has to be performed many times to ensure statistical
ignificance. Some research prunes unnecessary FIs to reduce FI
fforts. Hari et al. [35] and Kaliorakis et al. [38] explore fault
122
quivalence for selective FI by grouping instructions that have the
imilar effects on program execution at the same static instruc-
ion. They further reduce FI positions by leveraging the equiv-
lence of intermediate states in execution and instruction-level
pproximate computing [57,62]. Although they use instruction
rouping, their method is different from ours. They group static
nstructions at the program level, while we group dynamic in-
tructions based on their functionality and our instruction group-
ng is independent of the program. Nie et al. [53] prune fault
njection sites by only analyzing a subset of threads and a subset
f registers that are representative for GPGPU applications. Our
ork tries to address the inefficiency of using FI to study applica-
ion resilience by circumventing performing fault injections. But
he above existing work is complementary to our work for model
raining.

Application Resilience Analysis. Application-level error prop-
gation has been widely studied. Li et al. propose Trident [46], a
hree-level error propagation model, to predict SDC probabilities.
OARD [31] develops an analytical model and a tool to count error
asking events on individual data objects. Our work does not

race error propagation but includes an N-gram based technique
o embed the instruction execution order information into the
eature vector to involve error propagation. FlipTracker [32]
iscovers six common resilience patterns by tracing error prop-
gation and identifying error masking. Distinctively, our work
ocuses on detecting and counting these patterns.

We summarize the key differences between previous work
nd ours in Table 6.

. Conclusions

Understanding application resilience to errors becomes in-
reasingly important to ensure result correctness for HPC ap-
lications. The traditional method (FI) to understand application
esilience is too expensive. Analytical models are faster but they
re not as accurate as FI. This paper introduces PARIS, a new
olution based on ML to solve the above problems. We discuss
eature constructions, extraction and selection, which are the
eys to enable high-performance ML for predicting application
esilience. Using a broad spectrum of benchmarks for evaluation,
e show that PARIS is much faster than FI, and provides better
ccuracy (at least 63% better) than the state-of-the-art analytical
odel. PARIS provides comparable execution time (on average)

han the analytical model, but is faster for 12 out of the 16
valuated benchmarks.

eclaration of competing interest

The authors declare the following financial interests/personal
elationships which may be considered as potential competing
nterests: Karthik Pattabiraman, University of British Columbia

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124

A

p
u
r
d

R

cknowledgments

This work was performed under the auspices of the U.S. De-
artment of Energy by Lawrence Livermore National Laboratory
nder Contract DE-AC52-07NA27344 (LLNL-CONF-766363). This
esearch was partially supported by U.S. National Science Foun-
ation (CNS-1617967, CCF-1553645 and CCF-1718194).

eferences

[1] Coral Benchmark Codes [online], 2006.
[2] H.M. Aktulga, J.C. Fogarty, S.A. Pandit, A.Y. Grama, Parallel reactive molec-

ular dynamics: Numerical methods and algorithmic techniques, Parallel
Comput. (2012).

[3] R. Ashraf, R. Gioiosa, G. Kestor, R.F. DeMara, C. Cher, P. Bose, Understanding
the propagation of transient errors in HPC applications, in: SC, 2015.

[4] D.H. Bailey, L. Dagum, E. Barszcz, H.D. Simon, NAS Parallel benchmark
results, in: SC, 1992.

[5] R. Battiti, Using mutual information for selecting features in supervised
neural net learning, IEEE Trans. Neural Netw. 5 (4) (1994) 537–550.

[6] R.C. Baumann, Radiation-induced soft errors in advanced semiconductor
technologies, IEEE Trans. Device Mater. Reliab. 5 (3) (2005) 305–316.

[7] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization,
JMLR (2012).

[8] C. Bienia, S. Kumar, J.P. Singh, K. Li, The parsec benchmark suite:
Characterization and architectural implications, in: PACT, 2008.

[9] P.S. Bradley, O.L. Mangasarian, Feature selection via concave minimization
and support vector machines, in: ICML, 98, 1998.

[10] L. Cai, J. Gu, J. Ma, Z. Jin, Probabilistic wind power forecasting approach
via instance-based transfer learning embedded gradient boosting decision
trees, Energies (2019).

[11] J. Calhoun, L. Olson, M. Snir, Flipit: An LLVM based fault injector for HPC,
in: Workshops in Euro-Par, 2014.

[12] J. Calhoun, M. Snir, L.N. Olson, W.D. Gropp, Towards a more complete
understanding of sdc propagation, in: HPDC, 2017.

[13] F. Cappello, Fault tolerance in petascale/exascale systems: Current knowl-
edge, challenges and research opportunities, Int. J. High Perform. Comput.
Appl. 23 (3) (2009) 212–226.

[14] M. Casas, B.R. de Supinski, G. Bronevetsky, M. Schulz, Fault resilience of
the multi-grid solver, in: ICS, 2012.

[15] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S.-H. Lee, K. Skadron,
Rodinia: A benchmark suite for heterogeneous computing, in: IISWC, 2009.

[16] X. Chen, X. Qiu, C. Zhu, X. Huang, Gated recursive neural network for
chinese word segmentation, in: ACL, 2015.

[17] C.-Y. Cher, M.S. Gupta, P. Bose, K.P. Muller, Understanding soft error re-
siliency of BlueGene/Q compute chip through hardware proton irradiation
and software fault injection, in: SC, 2014.

[18] B. Choubin, S. Khalighi-Sigaroodi, A. Malekian, Ö. Kişi, Multiple linear
regression, multi-layer perceptron network and adaptive neuro-fuzzy in-
ference system for forecasting precipitation based on large-scale climate
signals, Hydrol. Sci. J. (2016).

[19] A. Coates, A. Ng, H. Lee, An analysis of single-layer networks in
unsupervised feature learning, in: AISTATS, 2011.

[20] A. Das, F. Mueller, C. Siegel, A. Vishnu, Desh: deep learning for system
health prediction of lead times to failure in hpc, in: HPDC, 2018.

[21] A. De Myttenaere, B. Golden, B. Le Grand, F. Rossi, Mean absolute
percentage error for regression models, Neurocomputing 192 (2016)
38–48.

[22] D.A.G. De Oliveira, L.L. Pilla, M. Hanzich, V. Fratin, F. Fernandes, C.
Lunardi, J.M. Cela, P.O.A. Navaux, L. Carro, P. Rech, Radiation-induced error
criticality in modern hpc parallel accelerators, in: HPCA, 2017.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision
and Pattern Recognition, Ieee, 2009.

[24] P. Domingos, Bayesian Averaging of classifiers and the overfitting problem,
in: ICML, 2000.

[25] H. Drucker, C. Cortes, L.D. Jackel, Y. LeCun, V. Vapnik, Boosting and other
ensemble methods, Neural Comput. (1994).

[26] I.P. Egwutuoha, D. Levy, B. Selic, S. Chen, A survey of fault tolerance
mechanisms and checkpoint/restart implementations for high performance

computing systems, J. Supercomput. 65 (3) (2013) 1302–1326.

123
[27] J.H. Friedman, Stochastic gradient boosting, Comput. Stat. Data Anal.
(2002).

[28] G. Georgakoudis, L. Guo, I. Laguna, Reinit++: Evaluating the performance
of global-restart recovery methods for mpi fault tolerance, in: ISC, 2020.

[29] G. Georgakoudis, I. Laguna, D.S. Nikolopoulos, M. Schulz, REFINE : Realistic
fault injection via compiler-based instrumentation for accuracy, portability
and speed, in: SC, 2017.

[30] L. Guo, G. Georgakoudis, K. Parasyris, I. Laguna, D. Li, Match: An mpi
fault tolerance benchmark suite, in: 2020 IEEE International Symposium
on Workload Characterization (IISWC), IEEE, 2020.

[31] L. Guo, D. Li, MOARD: Modeling application resilience to transient faults
on data objects, in: International Parallel and Distributed Processing
Symposium, 2019.

[32] L. Guo, D. Li, I. Laguna, M. Schulz, Fliptracker: Understanding natural error
resilience in hpc applications, in: SC, 2018.

[33] I. Guyon, A. Elisseeff, An introduction to variable and feature selection,
JMLR 3 (Mar) (2003) 1157–1182.

[34] HackerRank, Hackerrank home page, 2009, https://www.hackerrank.com/.
[35] S.K.S. Hari, S.V. Adve, H. Naeimi, P. Ramachandran, Relyzer: Exploiting

application-level fault equivalence to analyze app. Resiliency to transient
faults, in: ASPLOS, 2012.

[36] J.L. Henning, Spec cpu2000: measuring cpu performance in the new
millennium, Computer (2000).

[37] K. Hoste, L. Eeckhout, Comparing benchmarks using key microarchitecture-
independent characteristics, in: 2006 IEEE International Symposium on
Workload Characterization, 2006.

[38] M. Kaliorakis, D. Gizopoulos, R. Canal, A. Gonzalez, Merlin: Exploiting
dynamic instruction behavior for fast and accurate microarchitecture level
reliability assessment, in: ISCA, 2017.

[39] C. Kalra, F. Previlon, X. Li, N. Rubin, D. Kaeli, Prism: predicting resilience
of gpu applications using statistical methods, in: SC, 2018.

[40] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, U. Gunneflo, Using
heavy-ion radiation to validate fault-handling mechanisms, IEEE micro.

[41] G. Kestor, I.B. Peng, R. Gioiosa, S. Krishnamoorthy, Understanding Scale-
Dependent soft-Error Behavior of Scientific Applications, in: International
Symposium on Cluster, Cloud and Grid Computing, 2018.

[42] R. Kohavi, A study of cross-validation and bootstrap for accuracy
estimation and model selection, in: IJCAI, 1995.

[43] S. Kumar Sastry Hari, T. Tsai, M. Stephenson, S.W. Keckler, J. Emer, Sassifi:
An architecture-level fault injection tool for gpu application resilience
evaluation, in: ISPASS, 2017.

[44] I. Laguna, M. Schulz, D.F. Richards, J. Calhoun, L. Olson, IPAS: Intelligent
protection against silent output corruption in scientific applications, in:
CGO, 2016.

[45] R. Leveugle, A. Calvez, P. Maistri, P. Vanhauwaert, Statistical fault injection:
Quantified error and confidence, in: Proceedings of the Conference on
Design, Automation and Test in Europe, European Design and Automation
Association, 2009, pp. 502–506.

[46] G. Li, K. Pattabiraman, S.K.S. Hari, M. Sullivan, T. Tsai, Modeling soft-error
propagation in programs, in: DSN, 2018.

[47] D. Li, J.S. Vetter, W. Yu, Classifying soft error vulnerabilities in extreme-
scale scientific applications using a binary instrumentation tool, in: SC,
2012.

[48] A. Liaw, M. Wiener, et al., Classification and regression by randomforest,
R News 2 (3) (2002) 18–22.

[49] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu,
B. Khessib, K. Vaid, O. Mutlu, Characterizing application memory error
vulnerability to optimize datacenter cost via heterogeneous-reliability
memory, in: DSN, 2014.

[50] L. Lusa, et al., Boosting for high-dimensional two-class prediction, BMC
Bioinform. (2015).

[51] H. Menon, K. Mohror, Discvar: discovering critical variables using
algorithmic differentiation for transient faults, in: PPOPP, 2018.

[52] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, D. Tiwari, Machine
learning models for gpu error prediction in a large scale hpc system, in:
DSN, 2018.

[53] B. Nie, L. Yang, A. Jog, E. Smirni, Fault site pruning for practical relia-
bility analysis of gpgpu applications, in: Proceedings of the International
Symposium on Microarchitecture MICRO, 2018.

[54] K. Parasyris, G. Tziantzoulis, C.D. Antonopoulos, N. Bellas, Gemfi: A fault
injection tool for studying the behavior of applications on unreliable

substrates, in: DSN, 2014.

http://refhub.elsevier.com/S0743-7315(21)00036-8/sb2
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb2
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb2
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb2
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb2
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb3
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb3
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb3
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb4
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb4
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb4
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb5
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb5
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb5
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb6
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb6
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb6
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb7
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb7
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb7
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb8
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb8
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb8
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb9
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb9
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb9
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb10
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb10
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb10
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb10
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb10
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb12
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb12
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb12
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb13
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb13
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb13
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb13
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb13
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb14
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb14
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb14
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb15
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb15
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb15
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb16
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb16
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb16
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb17
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb17
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb17
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb17
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb17
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb18
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb18
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb18
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb18
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb18
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb18
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb18
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb19
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb19
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb19
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb20
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb20
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb20
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb21
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb21
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb21
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb21
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb21
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb22
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb22
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb22
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb22
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb22
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb23
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb23
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb23
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb23
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb23
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb24
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb24
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb24
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb25
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb25
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb25
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb26
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb26
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb26
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb26
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb26
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb27
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb27
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb27
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb28
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb28
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb28
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb29
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb29
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb29
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb29
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb29
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb30
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb30
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb30
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb30
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb30
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb32
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb32
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb32
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb33
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb33
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb33
https://www.hackerrank.com/
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb35
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb35
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb35
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb35
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb35
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb36
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb36
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb36
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb38
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb38
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb38
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb38
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb38
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb39
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb39
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb39
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb42
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb42
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb42
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb43
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb43
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb43
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb43
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb43
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb44
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb44
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb44
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb44
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb44
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb45
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb45
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb45
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb45
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb45
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb45
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb45
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb46
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb46
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb46
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb47
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb47
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb47
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb47
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb47
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb48
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb48
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb48
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb49
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb49
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb49
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb49
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb49
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb49
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb49
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb50
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb50
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb50
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb51
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb51
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb51
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb52
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb52
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb52
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb52
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb52
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb54
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb54
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb54
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb54
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb54

L. Guo, D. Li and I. Laguna Journal of Parallel and Distributed Computing 152 (2021) 111–124
[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[56] W. Pei, T. Ge, B. Chang, Max-margin tensor neural network for chinese
word segmentation, in: ACL, 2014.

[57] S.K. Sastry Hari, R. Venkatagiri, S.V. Adve, H. Naeimi, GangES: Gang
Error Simulation for Hardware Resiliency Evaluation, in: International
Symposium on Computer Arch. 2014.

[58] Y.S. Shao, D. Brooks, ISA-Independent workload characterization and its
implications for specialized architectures, in: ISPASS, 2013.

[59] V. Sridharan, N. DeBardeleben, S. Blanchard, K.B. Ferreira, S. Gurumurthi,
Memory errors in modern systems: The good, the bad, and the ugly, in:
ASPLOS, 2015.

[60] R. Taborda, J. Bielak, Large-scale earthquake simulation: computational
seismology and complex engineering systems, Comput. Sci. Eng. (2011).

[61] A. Thomas, K. Pattabiraman, Llfi: An intermediate code level fault injector
for soft computing applications, in: SELSE, 2013.

[62] R. Venkatagiri, A. Mahmoud, S.K.S. Hari, S.V. Adve, Approxilyzer: Towards
a systematic framework for instruction-level approximate computing and
its application to hardware resiliency, in: MICRO, 2016.

[63] J. Wei, A. Thomas, G. Li, K. Pattabiraman, Quantifying the accuracy of
high-level fault injection techniques for hardware faults, in: DSN, 2014.

[64] X. Xu, M.-L. Li, Understanding soft error propagation using vulnerability-
driven fault injection, in: DSN, 2012.

[65] L. Yu, D. Li, S. Mittal, J.S. Vetter, Quantitatively modeling app resiliency
with data vulnerability factor, in: SC, 2014.

[66] R.S. Zemel, T. Pitassi, A gradient-based boosting algorithm for regression
problems, in: Advances in neural information processing systems, 2001.

[67] X. Zhang, X. Lu, Q. Shi, X.-q. Xu, E.L. Hon-chiu, L.N. Harris, J.D. Iglehart,
A. Miron, J.S. Liu, W.H. Wong, Recursive svm feature selection and
sample classification for mass-spectrometry and microarray data, BMC
bioinformatics 7 (1) (2006) 197.
124
Dr. Luanzheng Guo is a postdoctoral researcher at the
Pacific Northwest National Laboratory, working with
the HPC Group in the research area between HPC
and Machine Learning. He obtained his Ph.D. degree
in Electrical Engineering and Computer Science from
the University of California-Merced in 2020. His Ph.D.
research focused on system resilience and reliability in
large-scale parallel HPC systems.

Dr. Dong Li is an associate professor in the Depart-
ment of Electrical Engineering and Computer Science,
University of California, Merced. He is the director of
the Parallel Architecture, System, and Algorithm Lab
(PASA).

Dr. Ignacio Laguna is a Computer Scientist at the
Center for Applied Scientific Computing (CASC) at the
Lawrence Livermore National Laboratory (LLNL), Cali-
fornia. His main area of research is high-performance
computing (HPC); his main sub-area of research in HPC
is programming models and systems. He is in particular
interested in fault tolerance, fault resilience, debugging,
software correctness and general software reliability.

http://refhub.elsevier.com/S0743-7315(21)00036-8/sb55
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb55
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb55
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb55
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb55
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb55
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb55
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb56
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb56
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb56
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb58
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb58
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb58
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb59
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb59
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb59
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb59
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb59
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb60
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb60
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb60
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb61
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb61
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb61
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb62
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb62
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb62
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb62
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb62
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb63
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb63
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb63
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb64
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb64
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb64
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb65
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb65
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb65
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb67
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb67
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb67
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb67
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb67
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb67
http://refhub.elsevier.com/S0743-7315(21)00036-8/sb67

	PARIS: Predicting application resilience using machine learning
	Introduction
	Background
	Fault model
	Fault injection
	Application resilience
	Machine learning model

	Overview
	Design
	Feature construction
	Instruction groups
	Using resilience computation patterns as features
	Extracting the feature of dead corrupted locations
	Extracting the feature of repeated additions
	Resilience weight

	Introducing instruction execution order (IEO)
	Feature selection
	Model construction

	Implementation
	Evaluation
	Prediction accuracy
	Feature selection and analysis
	Evaluation of model tuning and feature construction optimization
	Efficiency study—comparing PARIS to random fault injection and Trident

	Discussions
	Related work
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

