
Fast, Flexible and Comprehensive Bug Detection for Persistent Memory Programs
Extended Abstract

Bang Di1, Jiawen Liu2, Hao Chen1, Dong Li2
1Hunan University, 2University of California, Merced

1. Motivation
Programming persistent memory (PM) has been widely stud-
ied in many software systems. Those systems are expected to
recover to a consistent state and be able to resume execution
in the event of a failure (e.g., system crash or power failure).
However, programming to build a crash-consistent application
for PM is challenging, because it must enforce data to reliably
reach persistence for data durability and consider the order
in which writes become persistent to provide certain ordering
guarantee. For example, in a key-value store, when a new key-
value pair is inserted, the value must be created and persisted
before the key is. However, the wide existence of volatile
caching and reordering of writes within the memory hierar-
chy brings difficulty to establish data durability and ordering
guarantee.

Crash-consistent programs, although play a critical role to
use PM, can have PM-specific bugs unseen in the traditional
programs. Those bugs happen under a persistency model that
orders persists in various ways [5,9]. Some bugs are caused by
missing data durability or violating ordering guarantee in the
persistency model, making the program unrecoverable after a
crash; Some bugs are caused by unnecessary cache writeback,
causing performance loss. Identifying those bugs is critical to
the success of PM-aware applications.

2. Limitations of the State of the Art
Debugging PM programs often comes with large performance
overhead, which makes PM debugging too time-consuming
to comprehensively detect bugs (especially for those compli-
cated applications). For example, Pmemcheck [1] (an industry-
quality bug detector) and XFDetector [7] (a state-of-the-art
bug detector) introduce 218x slowdown (two hours) and 1000x
slowdown (nine hours) respectively to application execution,
when debugging a PM-aware real workload, memcached with
1M persist operations (i.e., the acts of making cache lines
persistent). Such large performance overhead not only comes
from instrumentation of memory store, cache writeback and
memory fence, in order to reason about the durability and
ordering of persist operations; The overhead also comes from
bookkeeping and updating persistency status of PM locations,
which often dominates total overhead (e.g., 82% on average
in Pmemcheck using benchmarks listed in Table 4 in the pa-
per). In particular, whenever there is a store instruction, the
debugger tool records which PM location has been modified;
Whenever there is a cache writeback or fence, the debugger
searches the records of PM locations to update the persistency

status. Given a program with a large number of store, cache
writeback and fence, frequent bookkeeping and expensive
searching is the main reason accounting for time-consuming
PM debugging.

To reduce performance overhead, some debuggers such
as PMTest [8] avoid comprehensive examination of persist
operations. They heavily rely on the programmer to intensively
add assertion-like checkers into the program to selectively test
durability and ordering guarantee. Furthermore, to support
debugging for a persistency model, this method requires the
programmer to introduce new checkers into each program
and re-annotate it. Adding checkers requires the programmer
have deep understanding on application semantics, persistency
model, and hardware primitives employed in the model, which
imposes heavy burden on the programmer. As a result, this
method has limited bug coverage (or comprehensiveness),
which means some bugs cannot be detected because of the
lack of programmer-added checkers.

In conclusion, debugging PM programs faces a fundamental
tradeoff between performance overhead and comprehensive-
ness. Large performance overhead or limited bug coverage
makes debugging ineffective or even infeasible for PM pro-
grams.

3. Key Insights

The existing PM debuggers largely ignore PM program char-
acterizations, and hence have a mismatch between the design
of data structures and algorithms for debugging, and PM pro-
gram patterns, which leads to inefficient debugging mecha-
nisms. We abstract three fundamental components from the
PM program: memory store, cache writeback (e.g., cache line
flushing or CLF) to enforce durability, and memory fence to
provide ordering guarantee. We partition the stream of the
three components collected from the PM program, and define
that stores between two neighbouring CLFs form a CLF inter-
val. We characterize how the three components are interleaved
and distributed in typical PM programs, which motivates our
debugger. We refer to the interleaving and distribution of
the three components in a PM program, as the PM program
pattern. We find three patterns.
• Pattern 1: For most stores, the data durability is guaranteed

by the nearest fence;
• Pattern 2: Memory locations updated in a CLF interval are

highly likely to be persisted together by the same single
CLF;

• Pattern 3: Store happens more frequently than CLF and



fence.
Pattern 1 gives us critical information on how to store and

organize information for memory locations. The traditional
debugger such as Pmemcheck, PMTest and XFDetector or-
ganizes memory locations based on their addresses into a
tree-like structure, for the convenience of searching records
(for handling CLF) and deleting records (for handling fence).
This method, however, comes with the overhead of tree re-
organization (e.g., merging and balancing). This overhead
must be overweighed by the performance benefits brought
by tree reorganization. The performance benefit comes from
faster search and deletion. However, the pattern 1 tells us
that the bookkeeping mechanism such as tree re-organization
cannot be paid off very well for many memory locations, be-
cause once the nearest fence happens, the information for the
memory locations is deleted, giving few opportunity to gain
performance benefit in the long term. On the other hand, we
see some memory locations survive multiple fences, showing
the potential of using the tree-like structure.

Pattern 2 gives us critical information on whether it is
promising to collectively maintain and update persistency sta-
tus of memory locations. Collective processing enables fast
query on status of memory locations, but can bring large per-
formance benefit only when the persistency status of many
memory locations can be collectively maintained. Pattern 2
shows us such potential.

Pattern 3 highlights the importance of efficiently processing
memory store, because of its frequent occurrences.

4. Main Artifacts
We introduce PMDebugger, a tool to detect crash-consistency
bugs for PM programs. By considering PM program charac-
terization, PMDebugger enables high-performance debugging
without losing bug coverage.

PMDebugger is fast. It enables high-speed debugging by
introducing a highly efficient bookkeeping and updating mech-
anism. This mechanism is driven by the characterization study
results (i.e., the three patterns). This mechanism includes
two optimization techniques: (1) collectively managing status
of memory locations, and (2) using a hybrid data structure
for bookkeeping. Using (1), PMDebugger is able to greatly
accelerate deletion of records when processing fence, and up-
dating the records when processing cache writeback. For (2),
PMDebugger combines an AVL tree and an array. Leveraging
the strength of each data structure, PMDebugger splits and
distributes the records into the two, based on the record life-
time, frequency of operations, and overhead of data structure
maintenance. With the consideration of the program charac-
terization, PMDebugger is able to break the tradeoff between
performance overhead and bug coverage.

PMDebugger is flexible. Built upon the data structures and
optimization techniques customized to the PM debugging,
PMDebugger introduces highly efficient operations for PM
debugging, such as updating persistency status of memory lo-

cations and deleting their records. These debugging operations
bring foundation to efficiently process the three fundamental
components, based on which PMDebugger allows the user
to introduce any rule for bug detection and implement high
performance debugging. In essence, PMDebugger uses a hi-
erarchical design composed of PM debugging-specific data
structures, operations, and bug-detection algorithms (rules).

Given the flexibility provided by PMDebugger, we gener-
alize nine rules to detect bugs for various persistency models.
Among the nine, four of them are unique to the emerging
relaxed persistency models [5, 9].

PMDebugger is comprehensive for bug detection. Its com-
prehensiveness comes from its much shorter execution time
than the existing PM debugger tools, which allows PMDebug-
ger to thoroughly examine instructions; Its comprehensiveness
also comes from its capability to detect various bugs for vari-
ous persistency models. Using PMDebugger, we are able to
identify bugs not identifiable by the existing tools [1, 2, 6, 7, 8].

5. Key Results and Contributions

• We characterize PM programs in terms of how store, cache
writeback and fence typically happen, shedding lights on
the efficient design of a PM debugger;

• We introduce a fast, flexible and comprehensive debugger
for PM programs; We generalize nine detection rules for
various persistency models.

• Compared with a state-of-the-art detector (XFDetector) and
an industry-quality detector (Pmemcheck), PMDebugger
leads to 49.3x and 3.4x speedup on average. Compared
with another state-of-the-art detector (PMTest) optimized
for high performance, PMDebugger achieves comparable
performance (less than 100% difference), without heavily re-
lying on the programmer’s annotation to assist bug detection
but detect 38 more bugs than PMTest on ten applications.

• PMDebugger identifies 78 synthetic or reproduced bugs
(ten bug types), while XFDetector, Pmemcheck and PMTest
identify 65 (six bug types), 55 (four bug types) and 61 bugs
(five bug types) respectively. More importantly, PMDebug-
ger detects 19 new bugs in a real application (memcached)
and two new bugs from Intel PMDK (the two bugs are con-
firmed by Intel [3, 4]).

6. Citation for Most Influential Paper Award

PMDebugger is the first to provide fast, flexible and compre-
hensive bug detection for PM programs. We reveal common
program patterns in PM programs, based on which PMDebug-
ger builds data structures and algorithms customized for PM
debugging, and generalizes rules to detect crash-consistency
bugs for various persistency models. PMDebugger lays foun-
dation to enable efficient bug detection for PM programs.

2



References
[1] Intel Corporation. An introduction to pmemcheck. https://pmem.io/
2015/07/17/pmemcheck-basic.html, 2015.

[2] Intel Corporation. Detect persistent memory programming errors
using persistence inspector. https://software.intel.com/content/
www/us/en/develop/articles/detect-persistent-memory-
programming-errors-with-intel-inspector-persistence-
inspector.html, 2020.

[3] Intel Corporation. Inconsistency bugs in array example for libpmemobj.
https://github.com/pmem/pmdk/issues/4927, 2020.

[4] Intel Corporation. Obj: fix data_store example transaction logic to re-
move redudant fences. https://github.com/pmem/pmdk/pull/4939/
commits/e394307ef2baea1de31fa054a1e2c3dff3581a59, 2020.

[5] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. Relaxed persist ordering
using strand persistency. In ISCA, 2020.

[6] Philip Lantz, Dulloor Subramanya Rao, Sanjay Kumar, Rajesh Sankaran,
and Jeff Jackson. Yat: A validation framework for persistent memory
software. In USENIX ATC, 2014.

[7] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas F. Wenisch,
Aasheesh Kolli, and Samira Khan. Cross-failure bug detection in persis-
tent memory programs. In ASPLOS, 2020.

[8] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Man-
abi Khan. Pmtest: A fast and flexible testing framework for persistent
memory programs. In ASPLOS, 2019.

[9] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persis-
tency. In ISCA, 2014.

3

https://pmem.io/2015/07/17/pmemcheck-basic.html
https://pmem.io/2015/07/17/pmemcheck-basic.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://github.com/pmem/pmdk/issues/4927
https://github.com/pmem/pmdk/pull/4939/commits/e394307ef2baea1de31fa054a1e2c3dff3581a59
https://github.com/pmem/pmdk/pull/4939/commits/e394307ef2baea1de31fa054a1e2c3dff3581a59

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Citation for Most Influential Paper Award

