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Abstract
Decision trees are widely used and often assembled as a for-
est to boost prediction accuracy. However, using decision
trees for inference on GPU is challenging, because of irregu-
lar memory access patterns and imbalance workloads across
threads. This paper proposes Tahoe, a tree structure-aware
high performance inference engine for decision tree ensem-
ble. Tahoe rearranges tree nodes to enable efficient and coa-
lesced memory accesses; Tahoe also rearranges trees, such
that trees with similar structures are grouped together in
memory and assigned to threads in a balanced way. Besides
memory access efficiency, we introduce a set of inference
strategies, each of which uses shared memory differently and
has different implications on reduction overhead. We intro-
duce performance models to guide the selection of the infer-
ence strategies for arbitrary forests and data set. Tahoe con-
sistently outperforms the state-of-the-art industry-quality
library FIL by 3.82x, 2.59x, and 2.75x on three generations of
NVIDIA GPUs (Kepler, Pascal, and Volta), respectively.

CCSConcepts: •Computingmethodologies→Massively
parallel algorithms; Machine learning.
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1 Introduction
Decision trees are among the most widely used machine
learning models in practice [6, 20, 37, 41]. Decision trees
have been widely used in many fields (e.g., advertising sys-
tems [12, 50] andmedical diagnosis [5, 43]) and in enterprises.
For example, Facebook uses high-throughput tree inference
engines on GPU [33] to decide which notifications to send to
billions of users; NVIDIA uses a high-throughput tree library
(FIL) [10] on GPU to serve massive inference requests.

Decision trees are often assembled as a forest to boost
prediction accuracy. With a decision tree ensemble, the pre-
dictions made by individual trees are combined together to
make the final prediction. The prediction made by an indi-
vidual tree is a path from the tree root to a tree leaf. The path
is typically composed of an arrangement of choices. Each
choice has the form “𝑥 𝑗 < 𝑏𝑖”, asking whether the attribute
𝑥 𝑗 is less than a threshold 𝑏𝑖 . Hence, the path includes a
series of IF-THEN rules, each of which is represented by a
tree node.

The above characteristics of decision tree ensemble create
major obstacles to implement high throughput inference (i.e.,
processing inference requests as many as possible within a
given time). In particular, to enable high throughput infer-
ence for massive inference requests in common use cases,
the user often uses GPU where each GPU thread makes pre-
diction using one or more trees for one or more inference
requests. Leveraging massive thread-level parallelism and
high memory bandwidth, the user expects GPU to provide
high throughput inference. However, different GPU threads
traverse different trees, and can take different tree paths and
access different attributes of input samples during the for-
est traverse, which causes irregular memory access patterns.
Memory accesses from threads tend to be uncoalesced, which
leads to poor performance, low hardware utilization and un-
derutilized memory bandwidth. Using an industry-quality
inference engine (i.e., FIL in NVIDIA RAPIDS suite [10]) to
evaluate decision trees on GPU, we show that the ratio of
requested data to total fetched data from global memory is
only 27.2%, because of uncoalesced memory accesses.
Furthermore, there is a load imbalance problem across

threads, which makes the above performance problem even
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worse. In particular, during the construction of decision tree
ensemble (i.e., tree training), attributes of training samples
can be randomly selected [22] and some post-pruning tech-
niques [19, 42] can be applied to the trees to enhance gener-
ality and prevent overfitting. As a result, trees in ensemble
have different depths, and threads assigned with different
trees to traverse have different workloads. Such workload
imbalance across threads causes thread idling and low hard-
ware utilization. Our preliminary work on FIL shows that
execution time across threads has up to 10x difference.
Using GPU for decision tree inference has not been ex-

plored well, and the existing solution (i.e., RAPID FIL [10])
cannot fully address the above problems. To address the
memory uncoalescing problem, FIL employs a storage for-
mat that stores nodes of different trees in an interleaved way,
such that threads accessing nodes of different trees have
a high chance of coalescing their memory accesses. This
method, however, assumes that trees have similar structures
and traversing different trees takes similar paths. These two
assumptions do not often hold. We also notice that with FIL,
the memory uncoalescing problem becomes more serious as
trees are traversed near the leaves, because the chance that
the trees are traversed via the same path towards the leafs
becomes smaller, as the trees are traversed deeper.
The fundamental reason accounting for the ineffective-

ness of the existing solution is the ignorance of tree structure
in decision tree ensemble. The tree structure not only means
tree topology (e.g., tree depth), but also means what are the
common paths to traverse the tree. If two trees have similar
structures, they have analogous topology and common paths
during tree traversing. Leveraging the tree structure infor-
mation, we can assign trees between threads in a balanced
way and arrange tree nodes and trees in storage in a way
that memory accesses to trees tend to be coalesced.
In particular, we rearrange tree nodes in memory using

the information of the tree structures, such that those nodes
from different trees that tend to be accessed at the same time
from multiple threads will be rearranged in contiguous mem-
ory space. This method in nature enables similarity between
tree structures of different trees, which leads to highly coa-
lesced memory accesses. Furthermore, we rearrange trees in
tree ensemble, such that trees with similarity structure are
grouped together in memory and assigned to threads in a
balanced way. However, determining the similarity between
trees is challenging, because of high computation cost of
pairwise comparison. We employ SimHash [8] and Local-
ity Sensitive Hashing [21] to enable efficient comparison
between different trees to determine their similarity.

Besides being aware of tree structure, making the best use
of shared memory is also critical to improve inference per-
formance. Either input samples or trees can be placed into
shared memory (but not both, because of limited capacity of
shared memory). Depending on tree structures, sample prop-
erties (e.g., sample size), and frequency of thread-blockwise

reduction, different data placement strategies can lead to dif-
ferent inference performance. The traditional inference algo-
rithm uses a strategy that places samples in shared memory,
and cannot generally perform well for various tree ensem-
bles. Thus we introduce three new data placement strategies.
Given a tree ensemble and dataset, in order to decide which
strategy performs best, we introduce performance models to
predict performance and select optimal strategy with negli-
gible cost. This approach, in combination with our adaptive
forest format that consists of node rearrangements, tree re-
arrangements, and variable-length representation, leads to
a tree structure-aware high performance inference engine,
named Tahoe.
In general, Tahoe is input data-aware and architecture-

aware due to the adaptive forest format and three inference
strategies respectively. The performance optimization tech-
niques employed by Tahoe have potential to be applied to
other applications with irregular data structures (e.g., regular
expression matching [35]) to improve performance on GPU.

We summarize the major contributions as follows.

• We introduce an inference engine, Tahoe, for decision
tree ensemble on GPU; Tahoe is adaptive to various
tree structures by re-arranging node and tree layout
in memory to improve memory access efficiency and
avoid load imbalance, and by using the optimal data
placement strategy to make best use of shared memory
and reduce parallel reduction overhead.

• We evaluate Tahoe with 15 common datasets on three
generations of GPU based on Kepler, Pascal and Volta
microarchitectures. Tahoe consistently outperforms
the state-of-the-art industry-quality inference engine
FIL. Comparedwith FIL, Tahoe leads to 5.31x, 3.67x and
4.05x speedup (up to 9.58x, 8.77x, and 10.14x) for high
parallelism tasks and 2.34x, 1.52x and 1.45x speedup
(up to 5.08x, 3.82x, and 3.17x) for low parallelism tasks
on Kepler, Pascal and Volta GPUs, respectively.

2 Background
In this section, we introduce background information.

Decision tree and ensemble. A decision tree is a deci-
sion support system that uses a tree-like graph structure with
various conditional branches. As a non-parametric super-
vised learning method, decision trees are often used to learn
classification or regression function by piecewise constant
function [24]. Tree#1 in Figure 1 is an example of a decision
tree. This tree consists of a root node, a set of interior nodes,
and leaf nodes that predict final outcomes. We study binary
decision trees in this paper, because they are the most com-
mon ones. With a binary decision tree, each node has at most
two children nodes. With a decision tree, each decision node
(either the root or an interior node) contains an attribute
index (e.g., 𝐹1 in the root of Tree#1) corresponding to one of
the input variables in a sample for inference, a value (e.g.,𝑉11
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Figure 1. An example of decision tree ensemble and memory access sequences using the reorg forest format.

in the root of of Tree#1) to determine which path should be
taken given an input, and a default path (𝐷) to be taken when
the attribute in the input does not have a value. After the
training process, the probability that each edge of the tree is
taken is calculated, and is used by Tahoe during inference.
We name the probability that an edge is taken edge probabil-
ity in the rest of the paper. The probability that a node in a
tree is visited is the product of probabilities of edges from
the root to the node. We name the probability that a node
is visited node probability in the rest of the paper. The node
possibility can be calculated based on edge probability.
Decision trees can form an ensemble, such as random

forest [22] or Gradient Boost Decision Trees (GBDT) [15].
Within an ensemble, trees can differ from each other in terms
of tree structure, tree depth and indexes of attributes in nodes.
We use the terms “ensemble” and “forest” interchangeably
in the following discussion.

Storage format. Trees are often stored in memory using
a format called “reorg format” [10]. Given a tree ensemble
to store, this format interleaves nodes of different trees. In
particular, the root nodes of all trees are stored first, followed
by left nodes at the second levels of all trees, and followed
by right nodes at the second levels of all trees, and so on.
The nodes for each tree are stored in breadth-first order.

Figure 1 gives an example of this format. This example is
an ensemble of three trees. This example first stores the first
level (root node) of three trees (particularly 𝑉11, 𝑉21 and 𝑉31),
and then the left nodes at the second level of the three trees
(particularly 𝑉12, 𝑉22, and 𝑉32), and then the right nodes at
the second level of the three trees (particularly 𝑉13, 𝑉23, and
𝑉33), and then the nodes at the third level.

Tree inference algorithmonGPU.Wediscuss the state-
of-the-art tree inference algorithm employed in FIL, an industry-
quality tree inference engine used in NVIDIA RAPIDS [10].
With this inference algorithm (named shared data), each
thread block accesses thewhole tree ensemble; In each thread
block, trees in the tree ensemble are evenly assigned to
threads in a round-robin way; Threads in each thread block
load as many samples as possible (i.e., a batch of samples)
into shared memory for inference. Each batch of samples is
just big enough to fill shared memory. Given a sample for
inference, each thread in a thread block uses its assigned
trees to make prediction, and then all threads in the thread
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Figure 2. A motivating examples to reveal three perfor-
mance problems: (a) uncoalesced memory accesses, (b) high
reduction overhead, and (c) load imbalance across threads.

block perform a thread block-wise reduction to compute
the final prediction based on prediction results of individual
trees. The final prediction is then written into global memory.
Samples for inference are processed batch by batch, in order
to leverage massive parallelism offered by GPU.

3 Motivation
Tree inference can lead to irregular memory accesses and
fail to leverage full potential of high memory bandwidth of
GPU.We study this problem using a random forest trained by
XGBOOST [9] on a common dataset (Higgs [4]). We use 70%
the dataset for training and 30% for inference. The forest has
120 trees and the maximum depth of each tree is 10. We use
FIL as the inference engine that uses the shared data strategy
as the inference algorithm. We identify three performance
problems discussed as follows.

Uncoalesced memory accesses. Figure 2(a) shows the
average distance of two addresses accessed by two threads
with adjacent thread IDs within the same warp running the
same instruction. Figure 2(a) shows the average distance
at each level of trees. The figure shows that the average
distance is small at the very beginning. This is due to the
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effectiveness of the reorg format. This format interleaves
nodes of different trees, such that when nodes are accessed
by different threads taking the same branches (left or right),
their memory accesses are coalesced. However, as the infer-
ence traverses into deeper levels of the trees, the average
distance becomes larger. When the distance of two accesses
is larger than the memory transaction size, memory uncoa-
lescence happens. The distance becomes larger, because of
two reasons: (1) As the trees are traversed deeper, the chance
that different trees are traversed using different branches
becomes higher; (2) trees have different typologies.
In this example, as the distance between two memory

accesses is greater than 128 bytes (the size of a memory
translation), the two memory requests are not coalesced into
the same memory transaction. Using performance counters
to measure efficiency of global memory accesses, we observe
that at the tree levels of 7-10, the ratio of requested data to
total data fetched from global memory is only 13.7%, because
of uncoalesced memory accesses. In the rest of the paper, we
refer memory accesses efficiency in terms of memory access
coalesceness. We use the ratio of requested data to total data
fetched from global memory as a metric to quantify memory
access efficiency in global memory.

Load imbalance across threads. The tree inference in
FIL assigns trees to threads in a thread block in a round-
robin way without the awareness of tree balance. As a result,
some threads are assigned with taller trees and perform
more computation than other adjacent threads, causing load
imbalance across threads. Figure 2(c) shows the execution
time of threads in a thread block. The thread block performs
inferences for 1000 samples. We use coefficient of variation
(CV) to quantify the variance: CV=49.1%, indicating a large
variance in execution time across threads.

High reduction overhead. The inference algorithm of
shared data includes a block-wise reduction to compute the
final prediction based on prediction results of individual
threads. The reduction operation takes up to 53% of total
inference time in our example (120 trees).
To further quantify the reduction overhead, we change

the number of trees in the forest, re-train it, and measure the
reduction overhead during inference. Figure 2(b) shows the
reduction overhead when we change the number of trees
from 10 to 200. The figure shows that the reduction takes
35%-72% of the total inference time; As the number of trees
in a forest becomes larger, the overhead becomes larger.
The above three performance problems on GPU can be

found in other applications as well, such as sparse matrix
multiplication [23, 47–49], breadth-first search [26], scientific
ML [13, 14], and cloud computing [46]. Addressing these
problems is generally helpful to improve performance of
those applications with irregular data structures.

4 Adaptive Forest Format
We introduce three techniques to address the problems of
inefficient memory accesses and load imbalance.

4.1 Probability-based Node Rearrangement
The fundamental reason accounting for memory uncoalesc-
ing in the reorg format used in FIL is because threadsworking
on different trees traverse different branches, while nodes at
different branches of the different trees may not be laid out
consecutively in memory space.
Take Figure 1 as an example again. In this example, we

assume that the size of each tree node (including attribute
index, threshold and default decision) is equal to one third
of a memory transaction size. In other words, a memory
transaction can contain data for up to three nodes. The nodes
at the third level of the three trees in Figure 1 are stored
in the following order using the reorg format, “𝑉14, NULL,
𝑉34, 𝑉15, NULL, 𝑉35, 𝑉16, 𝑉24, NULL, 𝑉17, 𝑉25, NULL”. When
the three threads in the same thread block takes the left,
right, and right branches to reach the third level respectively,
“𝑉14,𝑉24,𝑉35” are accessed, which are not contiguous and does
not fall into the same memory transaction.
To address the above problem, for each node with two

children nodes, we ensure that the left child node always
has higher possibility to be visited than the right child. Us-
ing this method, nodes that are at different trees (but at the
same level of different trees) and have high probability to
be visited are placed contiguously, so that they can be ac-
cessed by threads in a memory-coalesced way. The above
method is implemented by swapping the two children nodes
after tree training. In particular, based on the information
of edge probability, if the left child has lower possibility to
be visited than the right child, we swap the two children
nodes; The descents of each child node go with the child
node, as it is swapped. This method goes from top to bottom
of the tree. We call this method the “probability-based node
rearrangement”.

We use the example in Figure 1 to further depict the above
method. In Tree#2, the edge possibility of two children nodes
of the root node at the second level is 0.3 and 0.7. The right
child node (𝑉23) has higher possibility to be visited than
the left child node (𝑉22). Hence, the two children nodes are
swapped. The descents of 𝑉23 (i.e., 𝑉24 and 𝑉25) go with 𝑉23,
as 𝑉23 is swapped. After swapping, the node 𝑉25 in Tree#2
and node 𝑉14 in Tree#1 are placed into contiguous memory
space. When the two trees are traversed during inference,
the branches that are taken and accessed are most likely the
same, and the nodes accesses are likely coalesced.

In essence, the probability-based node rearrangement lever-
ages data properties learned during the tree training to direct
performance optimization during the tree inference. This
is feasible, because a well-trained model is expected to see
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Figure 3. The workflow of similarity-based tree rearrangement. We use Tree#1 in Figure 1 as an example.

similarity in data properties between training and inference
data sources in order to have high prediction accuracy.

4.2 Similarity-based Tree Rearrangement
We address the load imbalance problem based on the simi-
larity of trees. We claim two trees are similar, if during in-
ference, the two trees tend to be traversed using the similar
paths and accessing similar attributes. We quantify the tree
similarity online before any inference happens on a forest,
which allows the usage of different tree rearrangements for
a forests and enables the flexibility for incremental learning
with the forest. The incremental learning can change the tree
structures, and hence change the tree similarity accordingly.
To quantify similarity between trees and efficiently iden-

tify trees with high similarity in a given forest, we employ
SimHash [8] and Locality Sensitive Hashing (LSH) [8]. The
traditional method to quantify similarity between trees uses
pairwise comparison [45], which leads to high computation
complexity. Our evaluation shows that using pairwise com-
parison can take up to 19 minutes for a tree ensemble with
3000 trees. Such large overhead is too large for an online solu-
tion. Using SimHash and LSH, the complexity becomes much
smaller (discussed later). SimHash and LSH have been very
successful in the filed of information retrieval to find simi-
larity among input information [38]. In our case, SimHash
is used to transform trees to items such that we can com-
pare the similarity of trees, and LSH is used to hash similar
items into the same buckets, such that we can group mul-
tiple trees with high similarity into the same group. We
describe our algorithm using SimHash and LSH as follows
and call it “similarity-based tree rearrangement”. Our algo-
rithm includes three steps: tokenization, applying SimHash,
and applying LSH. Figure 3 gives an example to depict the
process of the rearrangement.

Tokenization. This step transforms the in-memory rep-
resentation of each tree into a set of tokens, such that we
can effectively use SimHash and LSH for data processing. In
particular, given a tree, this step divides each path from the
root to a leaf node into a set of tokens. Each token includes

𝑇𝑛𝑜𝑑𝑒𝑠 nodes (𝑇𝑛𝑜𝑑𝑒𝑠 is a configurable parameter and we use
𝑇𝑛𝑜𝑑𝑒 = 2 in Figure 3 as an example).

Applying SimHash. In this step, we first transform each
token into a 1 × 𝐿ℎ𝑎𝑠ℎ string using a hashing algorithm
(SHA1 [16]), where 𝐿ℎ𝑎𝑠ℎ is the length of each token and
equals to 8 in Figure 3 as an example. All strings of a tree
have the same length, because of hashing. Each string is a
vector of 𝐿ℎ𝑎𝑠ℎ Boolean variables. We multiple each string
with a weight which is the node probability of the last node
in the token transformed to that string. Adding this weight
is necessary to increase the effectiveness of LSH to capture
similarity between trees. After that, all strings of a tree are
added to generate a new string, which is the SimHash result
of that tree. We name the SimHash result checksum in the
rest of the discussion.

Applying LSH. In this step, each checksum is first nor-
malized to a vector. This normalization regularizes each item
of the checksum to either 0 (if the item value is less than
0) or 1 (if the item value is greater than or equal to 0). This
normalization is necessary to efficiently apply LSH for the
purpose of dimension reduction [25]. After normalization,
each normalized checksum is evenly divided into𝑀 chunks
(𝑀 = 4 in Figure 3 as an example). We apply a locality sensi-
tive hashing (particularly the Rabin-Karp hashing) to each
chunk. If two chunks from two normalized checksums has a
hashing collision, then the two normalized checksums have
similarity and their collision is counted. After applying LSH,
trees are separated into buckets and trees in the same bucket
has similarity. We count the number of collisions happened
between each pair of trees in each bucket, and sort the num-
ber of collisions across buckets to decide which trees should
be placed near each other. In particular, a tree 𝐴 is placed
near another tree 𝐵, when the number of collisions between
𝐴 and 𝐵 is the largest among the collisions between 𝐴 and
any other tree. After applying LSH, trees in the bucket are
then assigned to threads in a round-robin way, such that
loads are roughly balanced between threads.

Complexity analysis. The pairwise comparison leads to
high computation complexity (particularly𝑂 (2𝐷𝑡𝑟𝑒𝑒 ∗𝑁 2

𝑡𝑟𝑒𝑒𝑠 ),
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Figure 4. General descriptions for the three inference strategies. The usage of shared memory is highlighted in yellow

where 𝐷𝑡𝑟𝑒𝑒 is the average tree depth and 𝑁𝑡𝑟𝑒𝑒𝑠 is the num-
ber of trees) and high space complexity (particularly𝑂 (𝑁 2

𝑡𝑟𝑒𝑒𝑠 )).
Using SimHash and LSH, the computation complexity be-
comes𝑂 (𝐷𝑡𝑟𝑒𝑒 ∗𝑁𝑡𝑟𝑒𝑒𝑠 ) +𝑂 (𝑁𝑡𝑟𝑒𝑒𝑠 ), which is much smaller;
The space complexity becomes𝑂 (𝑁𝑡𝑜𝑘𝑒𝑛𝑠 ∗𝐿ℎ𝑎𝑠ℎ)+𝑂 (𝑁𝑡𝑟𝑒𝑒𝑠 ∗
𝑀), where𝑁𝑡𝑜𝑘𝑒𝑛𝑠 is the number of tokens, 𝐿ℎ𝑎𝑠ℎ is the length
of each token, and 𝑀 is the number of chunks. This space
complexity is comparable or much smaller than that of the
pairwise comparison, depending on the values of the param-
eters.

An example. In Figure 3, we have three trees from Fig-
ure 1. Each tree is tokenized into six tokens, each of which
contains information for two nodes (𝑇𝑛𝑜𝑑𝑒𝑠 is set to 2). Each
token is transformed into a 1× 8 string (𝐿ℎ𝑎𝑠ℎ is set to 8), and
each string is multiplied by a weight. After that, all weighted
strings are accumulated together to build a 1 × 8 checksum
as the result of applying SimHash. The checksum is then
normalized to a vector of ones and zeros.

Given the three trees in the forest, we have three normal-
ized checksums. Each checksum is divided into four 2 × 1
chunks. We apply LSH hashing to each chunk. If a chunk
in a tree 𝐴 has a collision with a chunk in another tree 𝐵,
then the trees𝐴 and 𝐵 are grouped into the same bucket and
we count the collision in this bucket by one. After applying
LSH, we get the number of collisions for each bucket. In our
example, we have three buckets (T1,T2), (T2, T3), and (T1,
T3), and the number of collisions for the three buckets are
0, 2, and 1 respectively. Based on the collected number of
collisions, the order of trees laid in memory is T2, T3, and T1,
because T2 and T3 have the largest number of collisions (or
similarity), and T3 and T1 have the second largest similarity.

4.3 Adaptive Forest Format
Based on the above discussion, we introduce an adaptive
forest format. The format stores the roots of all trees first (as
the traditional reorg format). Different from the traditional
format that place roots randomly, we decide which roots
should be placed close to each other according to the results
of similarity-based tree rearrangement. After the roots, we
decide whether the order of left and right child nodes of each
root should be switched, based on the probability-based node

rearrangement. Besides the child nodes of roots, all other
descendant nodes use the same method to be stored.
Besides the above node and tree rearrangements, we im-

prove the representation of attribute index in the traditional
storage format. The traditional storage format uses a fixed-
length representation (usually four or eight bytes) to index
an attribute in each node, no matter how many different
attributes are there in the forest. Our storage format decides
the length of the representation based on the number of dif-
ferent attributes in the forest. The length is just enough to
index all attributes. Using this new representation instead
of using a four-byte, fixed-length representation, we save
storage space by up to 23.6% in our evaluated dataset. The
new representation to index attributes in combination with
tree and node rearrangement form an adaptive forest format.

5 Design of Inference Strategies
The adaptive forest format improves efficiency of global
memory accesses and reduces load imbalance. In this section,
we study how to address the problem of high reduction
overhead shown in Figure 2(b). We also explore how to make
best use of shared memory for high performance.

5.1 Inference Strategies
The existing shared data strategy loads data samples into
sharedmemory and assigns a part of the forest to each thread.
To make the final inference decision for a sample, all threads
within a thread block must use a blockwise reduction op-
eration. To avoid this reduction and explore performance
potential of shared memory, we introduce several inference
strategies as follows. These strategies use shared memory
and reduction mechanism differently. Those three strategies
are depicted in Figure 4.

Direct method. This strategy assigns the entire forest to
each thread; Each thread loads the forest and samples from
global memory. Shared memory is not used in this strategy.
This strategy completely removes blockwise reduction,

because each thread has the entire forest to make the infer-
ence decision independently. However, with this strategy,
all data accesses happen in global memory.
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Figure 5. Performance comparison of the four inference strategies using 15 datasets on NVIDIA P100 GPU.

Shared forest. This strategy loads the entire forest into
shared memory; Each thread reads samples from global mem-
ory, traverses the forest in shared memory and makes the
final inference decision independently.
This strategy removes the blockwise reduction and does

not have overhead of copying samples from global memory
to shared memory; This strategy does not access the forest
from the expensive global memory. However, the limitation
of this strategy is that the forest must be small enough to be
entirely loaded into shared memory. This strategy does not
take advantage of shared memory to read samples.

Splitting shared forest. This is a variant of the shared
forest strategy. The forest is split into 𝑃 parts. Each part is a
set of trees just big enough to be placed into shared memory.
Each part is loaded from global memory to shared memory
by a thread block (hence there are 𝑃 thread blocks). Samples
are loaded from global memory without being cached in
shared memory. Each sample is assigned to 𝑃 thread blocks.
Each thread block processes 𝑠𝑝 samples in a batch and makes
decisions for 𝑠𝑝 samples using its assigned trees in shared
memory. There is a global reduction across 𝑃 thread blocks
to gather results from each thread block for 𝑠𝑝 samples to
make final predictions. This splitting shared forest strategy
addresses the limitation of shared memory capacity in the
shared forest strategy, because of forest splitting.

5.2 Performance Comparison and Analysis
We study performance of the four inference strategies, i.e.,
the shared data method and three strategies proposed by
us (the direct method, the shared forest method, and the
splitting shared forest method). The four inference strategies
use the adaptive forest format. For the shared forest method,
if the forest cannot be entirely loaded into shared memory,
the corresponding performance result is not shown. We use
15 datasets listed in Table 2. With each dataset, we use 70% of
it for training and the remaining 30% for inference. We use
XGBoost to generate and train forests. We use 100k as the
sample batch size. We use NVIDIA Tesla P100 for evaluation.
Figure 5 shows the results.
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Figure 6. Performance comparison of the three inference
strategies using five batch sizes (100, 1K, 10K, 100K and 1M)
on two datasets (Higgs and SVHN).

The shared data method performs better than the other
three strategies on four datasets (allstate, covtype, cup98,
and year). The forests trained from these datasets are charac-
terized with a relatively small number of trees: The number
is less than 1K but these trees cannot be completely put
into shared memory, and the number of attributes in each
sample is relatively small. Given such characteristics, split-
ting shared forest performs worse, because it has to use one
global reduction for each sample batch, which is more ex-
pensive than one blockwise reduction used in the shared
data method. The direct method performs worse, because of
frequent global memory accesses.
The direct method performs better than the other strate-

gies on two datasets (SVHN and gisette). The forests trained
from the two datasets consist of a set of tall trees. For such
forests, the load imbalance across threads is serious (even
with our tree rearrangement). As a result, the synchroniza-
tion and reduction overhead take a larger portion of infer-
ence time. Removing them using the direct method is very
beneficial.
The shared forest method can only be applied to five

datasets (HOCK, cifar10, ijcnn1, phishing and letter), because
of the limited shared memory capacity. The shared forest
method performs better than the other strategies in the five
datasets. This is not only because this method eliminates the
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Table 1.Model notations and descriptions

Source Symbol Description Source Symbol Description

Sample 𝑆𝑠𝑎𝑚𝑝𝑙𝑒 the size of a sample

Hardware
parameters

𝐵𝑊 _𝑅𝑆𝑀𝐸𝑀 Read bandwidth of shared memory
𝑁𝑏𝑎𝑡𝑐ℎ the number of samples in a batch 𝐵𝑊 _𝑊𝑆𝑀𝐸𝑀 Write bandwidth of shared memory

Forest

𝐷𝑡𝑟𝑒𝑒 the depth of a tree 𝐵𝑊 _𝑅𝐶𝑂𝐴
𝐺𝑀𝐸𝑀

Read bandwidth of global memory for coalesced data
𝑁𝑡𝑟𝑒𝑒𝑠 the number of trees in a forest 𝐵𝑊 _𝑅𝑁𝐶𝑂𝐴

𝐺𝑀𝐸𝑀
Read bandwidth of global memory for uncoalesced data

𝑆𝑛𝑜𝑑𝑒 the size of a decision node 𝑁𝑢𝑚_𝑜 𝑓 _𝑡ℎ𝑟𝑒𝑎𝑑𝑠 the number of threads in a thread block
𝑆𝑎𝑡𝑡 the size of an attribute 𝑁𝑢𝑚_𝑜 𝑓 _𝑡ℎ𝑟𝑑_𝑏𝑙𝑜𝑐𝑘𝑠 the number of thread blocks
𝑁𝑛𝑜𝑑𝑒𝑠 the number of nodes in a tree 𝐵_𝑟𝑎𝑡𝑒 Proportional parameter for block reduction
𝑆 𝑓 𝑜𝑟𝑒𝑠𝑡 the size of a forest 𝐺_𝑟𝑎𝑡𝑒 Proportional parameter for global reduction

blockwise reduction overhead, but also because the forest is
reusedmore often than samples, and hence caching the forest
instead of samples on shared memory is more beneficial.
The splitting shared forest method performs better than

the other strategies in four datasets (Higgs, SUSY, hepmass,
and aloi), because of the benefit of sharing forest instead of
sharing samples in shared memory. Also, each tree in forests
trained from the four datasets is relatively small and the
amount of data that needs to be reduced by global reduction
is small. This means the overhead of global reduction in the
splitting shared forest is small.

We also change the sample batch size to study the impact
of it on performance of the four inference strategies. We use
five batch sizes, and use dataset Higgs and SVHN. The results
are shown in Figure 6. We find that no inference strategies
can consistently perform best for all batch sizes.
For example, for Higgs dataset, when the batch size is

less than 10K, the shared data method performs best; Other-
wise, the splitting shared forest performs best. The reason
accounting for the above observation is as follows. When the
batch size is small, the shared data method can effectively
utilize shared memory to cache samples, which leads to high
performance. As the batch size increases, the global reduc-
tion overhead for each sample in the splitting shared forest
becomes smaller, because the overhead is amortized. As a
result, the splitting shared forest method performs better
than the shared data method.

Insight.No single strategies can perform best in all datasets
with different batch sizes, datasets, and forests. Usage of
shared memory and reduction overhead impact performance.

6 Tahoe: Tree Structure-Aware High
Performance Inference Engine

Motivated by the insight in Section 5.2, we use performance
modeling to decide which inference strategy should be used
for best performance. Based on the performance modeling,
we build a tree structure-aware high performance inference
engine.

6.1 Performance Modeling for Tree Inference
Our performance modeling captures and quantifies perfor-
mance critical operations, including shared memory and
global memory accesses, blockwise reduction (using cub
::BlockReduce [30]), and global reduction across thread

blocks (using cub::DeviceSegmentedReduce [30]). The per-
formance modeling does not consider cost of making deci-
sion at each tree node, because that cost is the same for all
inference strategies. Table 1 lists model notations.

The execution time (inference time) 𝑇 for processing one
sample is modeled as follows:

𝑇 = 𝑇𝑆𝑀𝐸𝑀 +𝑇𝐺𝑀𝐸𝑀 +𝑇𝐵_𝑅𝐸𝐷𝑈 +𝑇𝐺_𝑅𝐸𝐷𝑈 (1)
where 𝑇𝑆𝑀𝐸𝑀 and 𝑇𝐺𝑀𝐸𝑀 are the execution time for accessing
shared memory and global memory respectively; 𝑇𝐵_𝑅𝐸𝐷𝑈

and 𝑇𝐺_𝑅𝐸𝐷𝑈 are the execution time of blockwise and global
reductions respectively.

We have three assumptions in the followingmodels: (1)We
assume that memory accesses to the forest in global memory
are coalesced well, because of the adaptive forest format.
This assumption is supported by our evaluation. Using micro-
benchmarks to load forests based on memory access traces
collected from inference, we find that the ratio of requested
data to total fetched data from global memory to access the
forests is 45.8%. Hence we assume that the bandwidth of
memory accesses to the forest in global memory is equal to
half of the bandwidth consumed by fully coalesced memory
accesses. (2) We assume that memory accesses to samples
to read attributes are fully random and no coalescence at all,
because of the random nature of tree traverse; (3) We assume
that there is little load imbalance between threads, because
of similarity-based tree rearrangement. This assumption is
supported by our evaluation: After the rearrangement, the
coefficient of variation (CV) for execution time across threads
is only 12.7%, which is four times smaller than that for the
original forests. Besides the above assumptions, we ignore
write accesses to global memory, because they are used to
write prediction results and account for only a small portion
(less than 1%) of total memory accesses.

𝑇𝐵_𝑅𝐸𝐷𝑈 is modeled in Equation 2. 𝑇𝐵_𝑅𝐸𝐷𝑈 is proportional
to the number of threads in a thread block. The ratio between
𝑇𝐵_𝑅𝐸𝐷𝑈 and 𝑛𝑢𝑚_𝑜 𝑓 _𝑡ℎ𝑟𝑒𝑎𝑑𝑠 is a constant 𝐵_𝑟𝑎𝑡𝑒. 𝐵_𝑟𝑎𝑡𝑒 is
measured offline. 𝑇𝐵_𝑅𝐸𝐷𝑈 is divided by 𝑁𝑏𝑎𝑡𝑐ℎ (where 𝑁𝑏𝑎𝑡𝑐ℎ

is the batch size), because we model the performance impact
of the reduction on processing one sample.

𝑇𝐵_𝑅𝐸𝐷𝑈 = 𝐵_𝑟𝑎𝑡𝑒 ∗ 𝑁𝑢𝑚_𝑜 𝑓 _𝑡ℎ𝑟𝑒𝑎𝑑𝑠/𝑁𝑏𝑎𝑡𝑐ℎ (2)

𝑇𝐺_𝑅𝐸𝐷𝑈 is modeled in Equation 3. 𝑇𝐺_𝑅𝐸𝐷𝑈 is proportional
to the number of thread blocks. The ratio between 𝑇𝐺_𝑅𝐸𝐷𝑈

and 𝑁𝑢𝑚_𝑜 𝑓 _𝑡ℎ𝑟𝑑_𝑏𝑙𝑜𝑐𝑘𝑠 is a constant 𝐺_𝑟𝑎𝑡𝑒. 𝐺_𝑟𝑎𝑡𝑒 can be
measured offline. 𝑇𝐺_𝑅𝐸𝐷𝑈 is divided by 𝑁𝑏𝑎𝑡𝑐ℎ , because we
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model the performance impact of reduction on processing
one sample.

𝑇𝐺_𝑅𝐸𝐷𝑈 = 𝐺_𝑟𝑎𝑡𝑒 ∗ 𝑁𝑢𝑚_𝑜 𝑓 _𝑡ℎ𝑟𝑑_𝑏𝑙𝑜𝑐𝑘𝑠/𝑁𝑏𝑎𝑡𝑐ℎ (3)

Based on the above discussion, we analyze performance
of the four inference strategies as follows.

Shared data (using adaptive forest format). This strat-
egy includes a blockwise reduction per sample, but does not
have global reduction. We model the inference time for one
sample as follows.

𝑇𝑆𝑀𝐸𝑀 =
𝑆𝑠𝑎𝑚𝑝𝑙𝑒

𝐵𝑊 _𝑊𝑆𝑀𝐸𝑀
+ 𝐷𝑡𝑟𝑒𝑒 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑎𝑡𝑡

𝐵𝑊 _𝑅𝑆𝑀𝐸𝑀

𝑇𝐺𝑀𝐸𝑀 =
𝑆𝑠𝑎𝑚𝑝𝑙𝑒

𝐵𝑊 _𝑅𝐶𝑂𝐴
𝐺𝑀𝐸𝑀

+ 𝐷𝑡𝑟𝑒𝑒 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑛𝑜𝑑𝑒
(𝐵𝑊 _𝑅𝐶𝑂𝐴

𝐺𝑀𝐸𝑀
)/2

(4)

𝑇𝑆𝑀𝐸𝑀 includes (1) the time of writing sample into shared
memory (i.e., 𝑆𝑠𝑎𝑚𝑝𝑙𝑒/𝐵𝑊 _𝑊𝑆𝑀𝐸𝑀 ) after loading it from global
memory, where 𝑆𝑠𝑎𝑚𝑝𝑙𝑒 and 𝐵𝑊 _𝑊𝑆𝑀𝐸𝑀 are the sample size
and write bandwidth of shared memory), and (2) the time of
reading attributes of the sample from sharedmemory tomeet
the needs of traversing 𝑁𝑡𝑟𝑒𝑒𝑠 trees in the forest and the aver-
age depth of trees is 𝐷𝑡𝑟𝑒𝑒 (i.e., (𝐷𝑡𝑟𝑒𝑒 ∗𝑁𝑡𝑟𝑒𝑒𝑠 ∗𝑆𝑎𝑡𝑡 )/𝐵𝑊 _𝑅𝑆𝑀𝐸𝑀 ,
where 𝐵𝑊 _𝑅𝑆𝑀𝐸𝑀 and 𝑆𝑎𝑡𝑡 are the read bandwidth of shared
memory and the size of an attribute).

𝑇𝐺𝑀𝐸𝑀 includes (1) the time of loading the sample from
global memory (i.e., 𝑆𝑠𝑎𝑚𝑝𝑙𝑒/𝐵𝑊 _𝑅𝐶𝑂𝐴

𝐺𝑀𝐸𝑀
, where 𝐵𝑊 _𝑅𝐶𝑂𝐴

𝐺𝑀𝐸𝑀

is the read bandwidth of global memory under fully coa-
lesced accesses), and (2) the time of traversing trees in global
memory with improved memory coalescence using half of
bandwidth (i.e., (𝐷𝑡𝑟𝑒𝑒 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑛𝑜𝑑𝑒 )/(𝐵𝑊 _𝑅𝐶𝑂𝐴

𝐺𝑀𝐸𝑀
)/2, where

𝑆𝑛𝑜𝑑𝑒 is the size of a decision node in trees).
With the shared data method, 𝑇𝐺_𝑅𝐸𝐷𝑈 = 0 and there is one

blockwise reduction per sample modeled in Equation 2.
Direct method. This strategy does not access shared

memory (𝑇𝑆𝑀𝐸𝑀 = 0) and is reduction free ( 𝑇𝐵_𝑅𝐸𝐷𝑈 = 0 and
𝑇𝐺_𝑅𝐸𝐷𝑈 = 0). The inference time only includes 𝑇𝐺𝑀𝐸𝑀 .

𝑇𝐺𝑀𝐸𝑀 =
𝐷𝑡𝑟𝑒𝑒 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑛𝑜𝑑𝑒

(𝐵𝑊 _𝑅𝐶𝑂𝐴
𝐺𝑀𝐸𝑀

)/2
+ 𝐷𝑡𝑟𝑒𝑒 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑎𝑡𝑡

𝐵𝑊 _𝑅𝑁𝐶𝑂𝐴
𝐺𝑀𝐸𝑀

(5)

𝑇𝐺𝑀𝐸𝑀 includes (1) the time of loading the forest from global
memory with improved memory coalescence (i.e., (𝐷𝑡𝑟𝑒𝑒 ∗
𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑛𝑜𝑑𝑒 )/(𝐵𝑊 _𝑅𝐶𝑂𝐴

𝐺𝑀𝐸𝑀
)/2) and (2) the time of reading at-

tributes of the sample from global memory using uncoalesced
accesses (i.e., (𝐷𝑡𝑟𝑒𝑒 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑎𝑡𝑡 )/𝐵𝑊 _𝑅𝑁𝐶𝑂𝐴

𝐺𝑀𝐸𝑀
).

Shared forest. This algorithm is reduction free (𝑇𝐵_𝑅𝐸𝐷𝑈 =

0 and 𝑇𝐺_𝑅𝐸𝐷𝑈 = 0). We ignore the time of loading the forest
from global memory to shared memory, because the forest
is repeatedly used for inference after loaded and the loading
time is easily amortized and ignorable. 𝑇𝑆𝑀𝐸𝑀 is the time of
reading the forest in shared memory for inference; 𝑇𝐺𝑀𝐸𝑀 is
the time of reading attributes in the sample in global memory
using uncoalesced memory accesses.

𝑇𝑆𝑀𝐸𝑀 =
𝐷𝑡𝑟𝑒𝑒 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑛𝑜𝑑𝑒

𝐵𝑊 _𝑅𝑆𝑀𝐸𝑀

𝑇𝐺𝑀𝐸𝑀 =
𝐷𝑡𝑟𝑒𝑒 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑎𝑡𝑡

𝐵𝑊 _𝑅𝑁𝐶𝑂𝐴
𝐺𝑀𝐸𝑀

(6)

Algorithm 1 Adaptive Inference Engine: Tahoe
1: Define: Input samples ( 𝑆𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠 )
2: Define: Trained forest ( 𝐷𝑡𝑟𝑒𝑒 , 𝑁𝑡𝑟𝑒𝑒𝑠 , 𝑆𝑛𝑜𝑑𝑒 , 𝑆𝑎𝑡𝑡 ,𝐶𝑂𝐴_𝑟𝑎𝑡𝑒 )
3: Define: Hardware parameters ( 𝐵𝑅𝑆𝑀𝐸𝑀 , 𝐵𝑊𝑆𝑀𝐸𝑀 , 𝐵𝑅𝐶𝑂𝐴

𝐺𝑀𝐸𝑀
,

𝐵𝑅𝑁𝐶𝑂𝐴
𝐺𝑀𝐸𝑀

,𝐶𝑜𝑠𝑡𝑠𝑦𝑛𝑐 , 𝐵_𝑟𝑎𝑡𝑒 ,𝐺_𝑟𝑎𝑡𝑒 )

Hardware parameter detection (the offline part on CPU):

4: Measure hardware parameters by a microbenchmark

Optimization of forest format (the online part on CPU):

5: Fetch the tree ensemble and edge probability from GPU
6: Rearrange nodes, detect similarity, and convert the forest format
7: Send the forest format to GPU

Process of a batch for inference (the online part on GPU):

8: Predict performance of the shared data method using updated adaptive
forest format by Equation 4

9: Predict performance of the direct method by Equation 5
10: if 𝑠ℎ𝑎𝑟𝑒𝑑𝑚𝑒𝑚𝑜𝑟𝑦𝑠𝑖𝑧𝑒 > 𝑓 𝑜𝑟𝑒𝑠𝑡𝑠𝑖𝑧𝑒 then
11: Predict performance of the shared forest method by Equation 6
12: else
13: Predict performance of the splitting shared forest method by Eq. 7
14: Set the maximum number of threads to hide latency, and set the number

of blocks to maximize the occupancy of GPU register
15: Execute the method with the shortest predicted time
16: Count edge probabilities during inference

Splitting shared forest. This strategy performs similar
to the shared forest, except including a global reduction. Such
a reduction happens every 𝑁 _𝑏𝑎𝑡𝑐ℎ samples, where 𝑁 _𝑏𝑎𝑡𝑐ℎ
is the number of samples in a batch. We divide 𝑇𝐺_𝑅𝐸𝐷𝑈 by
𝑁 _𝑏𝑎𝑡𝑐ℎ to model the reduction time on a single sample.
This strategy needs to load the forest from global mem-

ory to shared memory every 𝑁 _𝑏𝑎𝑡𝑐ℎ samples, because of
the limited capacity of shared memory. The time of load-
ing the forest is not ignorable, which is different from that
in the shared forest. 𝑇𝐺𝑀𝐸𝑀 includes (1) the time of read-
ing global memory to load the forest using coalesced mem-
ory accesses (i.e., 𝑁𝑛𝑜𝑑𝑒𝑠 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑛𝑜𝑑𝑒/𝐵𝑊 _𝑅𝐶𝑂𝐴

𝐺𝑀𝐸𝑀
) and (2)

the time of reading attributes of the sample from global
memory using uncoalesced memory accesses (i.e., 𝐷𝑡𝑟𝑒𝑒 ∗
𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑎𝑡𝑡 /𝐵𝑊 _𝑅𝑁𝐶𝑂𝐴

𝐺𝑀𝐸𝑀
). 𝑇𝑆𝑀𝐸𝑀 includes (1) the time of writ-

ing the forest to shared memory after reading it from global
memory (i.e., 𝑁𝑛𝑜𝑑𝑒𝑠 ∗𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑛𝑜𝑑𝑒/𝐵𝑊 _𝑊𝑆𝑀𝐸𝑀 ) and the time
of reading the forest in shared memory for inference (i.e.,
𝐷𝑡𝑟𝑒𝑒 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑛𝑜𝑑𝑒/𝐵𝑊 _𝑅𝑆𝑀𝐸𝑀 ). We divide (1) in 𝑇𝐺𝑀𝐸𝑀 and
(1) in 𝑇𝑆𝑀𝐸𝑀 by 𝑁 _𝑏𝑎𝑡𝑐ℎ to model the performance impact of
memory accesses on a single sample.

𝑇𝑆𝑀𝐸𝑀 =
𝑁𝑛𝑜𝑑𝑒𝑠 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑛𝑜𝑑𝑒
𝐵𝑊 _𝑊𝑆𝑀𝐸𝑀 ∗ 𝑁 _𝑏𝑎𝑡𝑐ℎ

+ 𝐷𝑡𝑟𝑒𝑒 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑛𝑜𝑑𝑒
𝐵𝑊 _𝑅𝑆𝑀𝐸𝑀

𝑇𝐺𝑀𝐸𝑀 =
𝑁𝑛𝑜𝑑𝑒𝑠 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑛𝑜𝑑𝑒
𝐵𝑊 _𝑅𝐶𝑂𝐴

𝐺𝑀𝐸𝑀
∗ 𝑁 _𝑏𝑎𝑡𝑐ℎ

+ 𝐷𝑡𝑟𝑒𝑒 ∗ 𝑁𝑡𝑟𝑒𝑒𝑠 ∗ 𝑆𝑎𝑡𝑡
𝐵𝑁𝐶𝑂𝐴
𝐺𝑀𝐸𝑀

(7)

6.2 Adaptive Inference Engine based on
Performance Models

Algorithm 1 depicts the workflow of Tahoe. Tahoe consists of
offline and online parts. In the offline part, Tahoe collects the
values of those hardware parameters listed in Table 1 using
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microbenchmarks. The offline part happens only once on a
given platform. In the online part, Tahoe collects those sam-
ple and forest parameters listed in Table 1, rearranges tree
nodes, detects the similarity of trees, and converts the forest.
The above procedure happens as the system initialization
before any inference happens. In the scenario of incremen-
tal learning, the above procedure is triggered whenever the
forest is updated based on the learned new knowledge. We
use CPU for the above procedure to avoid performance im-
pact on GPU. At the inference time on GPU, Tahoe uses
the performance models for once for each batch of samples
to decide which inference strategy should be used for best
performance. Using the above workflow, Tahoe becomes gen-
erally applicable to various hardware platforms, forests and
samples. We quantify execution time of various components
in Tahoe in Section 7.4.

7 Evaluation
7.1 Experimental Setup
Platform.Weuse three generations of NVIDIAGPUs, namely,
Tesla K80 (Kepler), Tesla P100 (Pascal) and Tesla V100 (Volta)
and an NVIDIA DGX-2 cluster. The machine with GPUs is
equipped with two Xeon 8168 processors (each has 24 cores)
running Linux 4.18.
Dataset.We use 15 datasets from UCI repository [4] and LIB-
SVM [7] for tree inference. The number of samples in those
datasets ranges from thousands to millions; The number of
attributes in those datasets ranges from tens to thousands.
70% of each dataset is used for training and 30% is used
for inference. We build 15 forests, each of which is trained
with one training set. The hyperparameters used for train-
ing those forests are based on [3, 31, 32, 39, 44] and Kaggle
competition. Table 2 gives some details on those datasets
and hyperparameters of the forests, including number of
samples, number of attributes per sample, forest type, and
maximum number of trees in a forest (𝑁𝑡𝑟𝑒𝑒𝑠 ) and maximum
tree depth (𝐷𝑡𝑟𝑒𝑒 ) set by GBDT or random forest (RF).
Parameters in Tahoe. There are three parameters used in
the similarity-based tree rearrangement: number of nodes
per token (𝑇𝑛𝑜𝑑𝑒𝑠 ) in the tokenization phase, length of each
Table 2. Details on datasets and decision tree ensembles.
“RF” stands for random forest.

No.# Dataset #Samples #Attributes Forest type 𝑁𝑡𝑟𝑒𝑒𝑠 𝐷𝑡𝑟𝑒𝑒

1 HOCK 1993 4862 GBDT 8 8
2 Higgs 250000 28 RF 3000 8
3 SUSY 1000000 18 GBDT 2000 8
4 SVHN 1000000 3072 GBDT 218 15
5 allstate 588318 130 RF 800 5
6 cifar10 60000 3072 GBDT 10 8
7 covtype 581012 54 RF 500 3
8 cup98 17535 481 GBDT 150 8
9 gisette 13500 5000 GBDT 20 20
10 year 515345 90 RF 150 6
11 hepmass 10500000 28 GBDT 2000 10
12 ijcnn1 49990 22 RF 10 6
13 phishing 11055 68 RF 15 6
14 aloi 108000 128 RF 2000 6
15 letter 15000 16 RF 150 4

token (𝐿ℎ𝑎𝑠ℎ) in SimHash, and number of chunks (𝑀) in LSH.
We test various values of𝑇𝑛𝑜𝑑𝑒𝑠 , 𝐿ℎ𝑎𝑠ℎ and𝑀 , and found that
𝑇𝑛𝑜𝑑𝑒𝑠 ∈ [4, 6], 𝐿ℎ𝑎𝑠ℎ ≥ 128 and𝑀 ≥ 64 are usually sufficient
to group these trees and give a correct order of trees based
on their similarity. Hence, we choose𝑇𝑛𝑜𝑑𝑒𝑠 = 4, 𝐿ℎ𝑎𝑠ℎ = 128,
and𝑀 = 64 in our evaluation.
We analyze why choosing the three values make sense

as follows. 𝑇𝑛𝑜𝑑𝑒𝑠 has impacts on effectiveness and cost of
SimHash. If 𝑇𝑛𝑜𝑑𝑒𝑠 is too large, SimHash loses ordering ac-
curacy; If 𝑇𝑛𝑜𝑑𝑒𝑠 is too small, SimHash has longer execu-
tion time because too much tokens needs to be calculated.
𝑇𝑛𝑜𝑑𝑒𝑠 = 4 leads to short execution time (about 0.226 ms
on average) without losing accuracy. Using 𝐿ℎ𝑎𝑠ℎ = 128 not
only distinguishes different memory access sequences, but
also makes hash-string aligned with the cache line size to
improve performance. Using𝑀 = 64 is big enough to distin-
guish different buckets of trees.

7.2 Overall Performance
Figure 7 shows throughput on all datasets. We use the perfor-
mance of RAPIDS FIL as baseline for comparison. We show
performance of using two batch sizes: 100K representing
the use case of processing high-throughput tasks with high
parallelism, and 100 representing the use case of processing
low-latency tasks with low parallelism [10].

Figure 7 shows that Tahoe performs much better than FIL.
For the high parallelism task, Tahoe introduces 5.31x, 3.67x
and 4.05x speedup on average on K80, P100 and V100 GPUs
respectively, compared to the FIL baseline; For the low paral-
lelism task, Tahoe introduces 2.34x, 1.52x and 1.45x speedup
on average on the three GPUs respectively. We have the fol-
lowing three observations: (1) Tahoe brings larger benefits
to the high parallelism task than to the low parallelism task,
because a high parallelism task allows more samples to be
processed in parallel, which sufficiently leverages thread-
level parallelism and amortizes the overhead of reduction.
(2) K80 has higher speedup than other GPUs for low paral-
lelism tasks, because K80 has smaller memory bandwidth and
cache size, and K80 suffers more from memory uncoalesced
problem, which provides more performance improvement
opportunities. (3) V100 has higher speedup than P100, be-
cause V100 brings shorter inference time, which leads to
more frequent occurrence of load imbalance (detailed data
are shown in Table 3). The load imbalance brings perfor-
mance improvement opportunities to Tahoe.
To quantify the contribution of three techniques to per-

formance, i.e., (a) probability-based node rearrangement, (b)
similarity-based tree rearrangement and (c) performance
model-guided strategy selection), we apply the three tech-
niques one after another. In particular, we apply (a), and then
on top of (a), we apply (b), and then top of (a) and (b), we
apply (c). Whenever we apply one technique, we measure
the speedup using the performance of FIL as baseline, and
calculate the speedup difference before and after using that
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Figure 7. The performance of Tahoe and FIL on 15 datasets for tasks with high parallelism and low parallelism.
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Figure 8. Quantifying the contributions of the three tech-
niques to performance improvement.

technique; The speedup difference comes from the contribu-
tion of that technique. The results in Figure 8 are normalized
by total speedup after applying all of the three techniques.
We have three observations. (1) The probability-based

nodes rearrangement is very effective for the forests with
shallow trees (e.g., those associated with the datasets 5, 7,
10 and 15), because shallow trees gives more opportunities
to the node rearrangement technique to place nodes from
different trees into the same memory transaction, enabling
higher memory coalescing. (2) The similarity-based tree re-
arrangement is very effective for the forests with a large
number of trees (e.g., those associated with the datasets 2, 3,
11 and 14), because when the number of trees is large, the
load balance problem between threads is more serious. As
a result, enhancing load balancing by the similarity-based
tree rearrangement becomes very effective. (3) For the low
parallelism tasks, the strategy selection tends to contribute

Table 3. Quantifying load imbalance. “A.C.V.” is the average
coefficient of variation of execution time across threads.

GPUs High parallelism tasks Low parallelism tasks
A.C.V. of FIL A.C.V. of Tahoe A.C.V. of FIL A.C.V. of Tahoe

K80 47.2% 13.1% 36.4% 10.8%
P100 51.3% 16.2% 42.9% 13.5%
V100 54.6% 15.9% 44.7% 12.5%

less than the other two techniques, because the performance
difference between the four inference strategies is small,
making the strategy selection less effective.

7.3 Performance Breakdown
Quantifying memory coalescence. We use NVProf [29]
to quantify the load efficiency of shared memory and global
memory when accessing forests. With Tahoe, the ratio of
requested data from shared memory to total requested data is
improved from 28.4% to 45.9% on K80, 28.7% to 48.3% on P100,
and 29.7% to 50.6% on V100. The utilization of sharedmemory
is significantly improved for high performance. Furthermore,
with Tahoe, the global memory read throughput is improved
from 62.4 GB/s to 174.7 GB/s on K80, 98.8 GB/s to 314.0 GB/s
on P100, and 112.4 GB/s to 378.5 GB/s on V100. Such a large
improvement in throughput comes from effectiveness of co-
alescing memory accesses. Based on the improvement of
memory coalescence, there is large performance improve-
ment for high and low parallelism tasks respectively (2.38x
and 1.61x on K80, 1.85x and 1.22x on P100, and 1.98x and
1.21x on V100).

Quantifying load imbalance.We measure the average
coefficient of variation (A.C.V) [1] of execution time across
threads in a thread block in the 15 forests. Table 3 shows
the results. Compared with FIL, the average coefficient of
variation is reduced by 72.25% and 70.33% for K80, 68.42%
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Figure 9. Strong scalability of the Tahoe frawework on 1-128 V100 GPUs using all 15 datasets.

and 68.53% for P100, and 70.88% and 70.04% for V100 for high
and low parallelism tasks respectively. The similarity-based
tree rearrangement leads to performance improvement of
2.03x and 1.51x for K80, 1.64x and 1.20x for P100, and 1.73x
and 1.19x for V100 for high and low parallelism tasks. Forests
trained from the datasets 7, 8 and 11 gain the largest benefit
from load balancing, because there is large variance in tree
depth across trees in each forest.

Quantifying effectiveness of removing blockwise re-
duction. Using performance-model guided strategy selec-
tion, Tahoe can reduce blockwise reduction overhead by
using the three other inference strategies. Among 45 cases
we evaluate with high parallelism tasks on the three GPUs,
Tahoe removes blockwise reduction for 27 cases (Tahoe
chooses the shared data method with blockwise reduction
for other 18 cases for best performance); Among 45 cases we
evaluate with low parallelism tasks, Tahoe removes reduc-
tion for 13 cases (Tahoe chooses the shared data method with
blockwise reduction for other 32 cases for best performance).
In general, the removal of blockwise reduction brings per-
formance improvement of 2.94x and 1.16x for K80, 2.20x and
1.06x for P100, and 2.37x and 1.05x for V100 for high and low
parallelism tasks respectively.

Quantifying the effectiveness of performance mod-
els. Tahoe uses the performance models to order perfor-
mance of the four strategies. We evaluate if the performance
models can correctly order the performance. Among 90 cases
we evaluate using 15 datasets for high and low parallelism
tasks on the three GPUs, 87 of them use the performance
models to correctly order performance. Only three of them
have slightly incorrect orders, but even with the orders,
Tahoe still brings 4.73x, 2.71x and 2.26x performance im-
provement, which is close to the optimal (4.96x, 2.86x and
2.31x) manually selected. Such close performance is because
the performance of those top-ranked strategies is close to
each other in the three cases.

7.4 Overhead Analysis
We study overhead of the CPU part of Tahoe. This part
includes (1) fetching the collected edge probability from
GPU, (2) rearranging nodes of trees, (3) detecting similarity
between trees, (4) converting the forest, and (5) copying the
converted forest to GPU. The whole CPU part takes 28-57x
as much time as one inference. The parts (1), (2), (3), (4) and

(5) take 8-12x, 1-4x, 6-13x, 1-5x, and 11-15x as much time
as one inference respectively. Compared with the pairwise
comparison method, the part (2) reduces execution time by
more than 37 times. The whole CPU part happens in parallel
with inferences on GPU, hence its overhead can be easily
hidden, because of short execution time. In addition, memory
consumption of the adaptive forest is smaller than that of
the original forest by 23.6%.

We study runtime overhead of theGPUpart of Tahoe.
The overhead includes running performance modeling for
each batch of samples. Performance modeling consists of 8
addition, 26 multiplication, and 14 division for a total of 90
floating point operations, which takes only 0.92ns, 0.28ns,
and 0.17ns on K80, P100 and V100 respectively. This overhead
is an order of magnitude lower than the minimum inference
time (25.42ns, 8.29ns and 5.63ns on K80, P100 and V100 re-
spectively). Hence, the runtime overhead is very small.

7.5 Scalability Analysis
Strong scaling. We evenly partition each inference dataset
into 𝑁𝐺 parts where 𝑁𝐺 is the number of GPUs. Each GPU
gets one partition. We change 𝑁𝐺 for strong scaling tests,
shown in Figure 9. Overall, Tahoe scales very well as the sys-
tem scale increases. However, for some datasets (e.g., HOCK,
gisette and phishing), the performance improvement is not
scalable, as the system scale increases. This is because these
datasets are relatively small. As the system scale increases,
dataset per GPU becomes smaller and cannot offer enough
thread-level parallelism to improve performance.

Weak scaling. We extend each inference dataset by 𝑁𝐺

times by randomly duplicating the dataset, and partition
the duplicated dataset evenly between 𝑁𝐺 GPUs. We no-
tice there is little performance variance (less than 5%) as
the system scale increases (The results are not shown in
the paper due to space limitation). Such good weak scaling
results come from the fact there is almost no communication
between GPUs.

8 Related Work
Decision tree ensemble. Decision tree ensemble can be
divided into two main types: the independent and dependent
ensembles. In the independent ensemble, each tree is built
independently from others. In the dependent ensemble, the
output of a tree affects the construction of the next tree. The
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random forests proposed by Ho et al. [17] and Amit et al. [2]
are typical independent ensembles. The Gradient boosting
machine [15] (GBM) is a typical dependent ensemble. It trains
each tree depending on trees that have already been trained.
Each tree is built to maximize negative gradient of the loss
function [28] and then pruned [11] to improve robustness.
GBM usually has many shallow trees, as opposed to the
random forest that has fewer but deeper trees.

Training decision tree ensembles. There are several
algorithms to train tree ensembles. XGBoost [9] is a scalable
boosting system that gains popularity in recent years. XG-
Boost applies a histogram and some refinements to GBM,
aiming to reduce the size of training data to enable faster
training. Lightgbm [19] is also a boosting tool. It uses a
histogram-based tree splitting method to speed up the leaf
split procedure and reducememory consumption. CatBoost [34]
is an efficient algorithm for vector representation of cate-
gorical data. Some existing work parallelizes decision tree
training on multi-core CPU and many-core GPU [18, 27, 40].

Optimization of decision tree inference. FIL [10] is
one of the few work focusing on improving throughput of
decision tree inference on GPU. However, FIL has inefficient
memory accesses, load imbalance and high reduction cost
discussed in Section 3. Tahoe addresses these problems. Ren
et al. [36] propose techniques to accelerate irregular data-
traversal applications on SIMD architectures. Their work
can be applied to improve inference performance. However,
there are four fundamental differences between their work
and Tahoe: (1) They only focus on data layout optimization,
and their layout optimization does not consider tree simi-
larity and does not systematically arrange tree nodes in all
trees; (2) They heavily rely on the programmer to use an
intermediate language to specify tree traversal, instead of
automatically“learning” how to build layout as in Tahoe;
(3) They do not consider the impact of sample/tree place-
ment on memory and reduction overhead; and (4) They use
a performance model to decide data layout, but the perfor-
mance model only considers last level cache misses and is
too heavyweight to be applied online.

9 Conclusions
Decision tree ensembles play an important role in many ap-
plications. However, how to use them efficiently for inference
on GPU is challenging because of irregular memory access
patterns and load imbalance across threads. This paper re-
veals that ignorance of tree structures is the fundamental
reason accounting for the above performance problem. We
introduce Tahoe, an inference engine on GPU that consid-
ers the common paths of tree traversal and the similarity of
tree topologies to address the problem. Tahoe largely out-
performs an industry-quality inference engine.
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10 Appendix: Artifact Description/Artifact
Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We conduct all experiments on a high-end server with 24

Intel Xeon E6-2760 v3 CPU cores running at 2.30GHz. The
server is also equipped with three generations of NVIDIA
GPUs, namely, Tesla K80 (Kepler), Tesla P100 (Pascal), and
Tesla V100 (Volta). Some details of the experiments are listed
below. 1) Speedup. We conduct experiments to test execution
time by using our runtime algorithm, i.e., Tahoe and take
the FIL as the baseline method. We use 15 input forests to
evaluate the execution time. 2)We test the accuracy of perfor-
mance model by running the 15 input forests on three GPUs.
3) We quantify the effectiveness of memory coalescence,
load imbalance, and blockwise reduction. 4)We evaluate the
performance of Tahoe framework in both strong and weak
scaling.

10.1 ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created soft-
ware artifacts are maintained in a public repository or are
available under an OSI-approved license.
List of URLs and/or DOIs where software artifacts are

available: https://github.com/zhen-xie/Tahoe.git
Hardware Artifact Availability: There are no author-

created hardware artifacts.
Data Artifact Availability: Some author-created data

artifacts are maintained in a public repository or are available
under an OSI-approved license.

List of URLs and/or DOIs where data artifacts are available:
https://github.com/zhen-xie/Decision-tree-ensemble.git

10.2 BASELINE EXPERIMENTAL SETUP
Relevant hardware details: NVIDIATesla K80 (Kepler), NVIDIA
Tesla P100 (Pascal), and NVIDIA Tesla V100 (Volta) GPU;
Intel Xeon E6-2760 v3 CPU;
Operating systems and versions: Ubuntu 16.04 runing

Linux kernel 4.4.0-206-generic;
Compilers and versions: g++ v5.4.0
Applications and versions: CUDA v11.0
Libraries and versions: RAPIDS FIL v0.18
Key algorithms: Locality-sensitive hashing;
Input datasets and versions: machine learning dataset

(HOCK, Higgs, SUSY, allstate, cifar10, covtype, cup98, gisette,
year, hepmass, ijcnn1, phishing, aloi, and letter)
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