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Abstract

Failure-atomic transactions are a critical mechanism for ac-

cessing and manipulating data on persistent memory (PM)

with crash consistency. We identify that small random writes

in metadata modifications and locality-oblivious memory al-

location in traditional PM transaction systems mismatch PM

architecture. We present ArchTM, a PM transaction system

based on two design principles: avoiding small writes and

encouraging sequential writes. ArchTM is a variant of copy-

on-write (CoW) system to reduce write traffic to PM. Unlike

conventional CoW schemes, ArchTM reduces metadata modi-

fications through a scalable lookup table on DRAM. ArchTM

introduces an annotation mechanism to ensure crash consis-

tency and a locality-aware data path in memory allocation to

increases coalesable writes inside PM devices. We evaluate

ArchTM against four state-of-the-art transaction systems (one

in PMDK [30], Romulus [21], DUDETM [46], and one from

Oracle [50]). ArchTM outperforms the competitor systems

by 58x, 5x, 3x and 7x on average, using micro-benchmarks

and real-world workloads on real PM.

1 Introduction

Byte-addressable persistent memory (PM) can provide

DRAM-like performance and storage-class capacity. The

state-of-the-art Intel Optane DC PM could implement up to

nine terabytes memory capacity on a single machine with

latency in hundreds of ns [31, 32, 34, 57, 72]. Such high-

performance PM is emerging in datacenters and clouds to

boost performance-critical data-intensive applications, such

as database [9,17,22,28,41,65] and graph workloads [18,25].

Crash consistency is a primary challenge in using PM.

With PM, programs can recover their persistent data on

PM even in the event of crashes. However, such a recov-

ery requires a guarantee that persistent data is in a con-

sistent state, a requirement referred as the crash consis-

tency guarantee. Failure-atomic transactions are a popu-

lar mechanism to ensure crash consistency. Extensive stud-

ies [16, 21, 27, 30, 39, 40, 49–51, 61, 67, 69, 70, 73] have pro-

posed various transaction mechanisms that generally em-

ploy logging-based (undo or redo logging) or Copy-on-Write

(CoW)-based designs.

Existing works optimize PM transactions by reducing data

copying [11,20,51,68] or persistence overhead [20,35,38,43,

56, 62]. They emulate PM based on DRAM with increased

memory latency or reduced bandwidth, but miss PM architec-

ture details. In this study, we focus on the implications of PM

architecture on transaction performance. Our performance

analysis on state-of-the-art PM transaction systems identi-

fies that the PM micro-architecture, such as internal buffers

and data block size, has significant impacts on transaction

performance. The mismatch between the transaction imple-

mentation and PM architecture can cause 3x-58x slowdown,

compared to an architecture-aware implementation.

Performance characterization of PM architecture leads us

to rethink the design of PM transactions. Logging-based trans-

actions have a double write problem because of creating

logs and updating data in-place. The excessive writes to PM

mismatch with poor write performance on PM. CoW-based

transactions avoid this problem, but suffers from performance

overhead due to metadata updates, which causes many small

writes misaligned with PM internal block size.

Therefore, high-performance PM transactions call for new

design principles tailored to the characteristics of the emerg-

ing PM architecture, which is distinctive from conventional

block devices and more than just a slower DRAM. We intro-

duce two design principles customized to PM architecture.

• Avoid small (less than 256 bytes) writes to PM. Small

writes in PM suffer from write amplification because

data in a small write must be aligned with the inter-

nal write block size (256 bytes) in PM, which wastes

memory bandwidth and delays transactions. Our char-

acterization study reveals that in state-of-the-art PM

transaction systems (one in PMDK [30], Romulus [21],

DUDETM [46], and an Oracle transaction system [50]),

more than 78% of data objects are smaller than 64 bytes,

when the transaction systems perform write operations



on 512-byte persistent objects. The main source of those

small data objects comes from metadata for transaction

runtime state, memory allocation and object mapping.

• Encourage coalescable writes. Sequential write performs

much faster than random write on PM (e.g., for 64-byte

writes, sequential write is 3.7x faster than random write).

Multiple sequential writes can be coalesced in an internal

buffer of Optane, enabling high performance.

We follow the above principles in ArchTM. ArchTM uses a

CoW-like design to avoid the double write problem in logging-

based transactions. To avoid small writes, ArchTM stores

metadata of memory allocator and data objects on DRAM

to reduce frequent small random writes to PM. However,

such a design suffers from a fundamental tradeoff between

performance and crash consistency. In particular, metadata

on DRAM, although leading to high transaction performance

can be lost when a crash happens, leading to a problem of

identifying crash consistency of data objects.

The above problem is caused by the fact that metadata is the

only connection between the transaction state and data objects

for crash recovery. Such a connection is not PM-oriented.

Removing it causes isolation between transaction state and

data objects. To address this challenge, ArchTM introduces a

lightweight annotation mechanism. This mechanism adds data

object metadata (object ID and size) and transaction ID into

the data object, and adds transaction ID into the transaction

metadata (i.e., the transaction state variable). The transaction

ID is persistent and sets up an alternative connection between

data objects and the transaction state. Using the transaction

ID, the data object ID and size, ArchTM can easily locate

data objects and identify their crash consistency after a crash.

To encourage coalescable writes, ArchTM makes best ef-

forts to allow consecutive memory allocation requests to get

contiguous memory allocations. This strategy is based on the

observation that in a transaction, data objects that are allocated

consecutively are likely to be updated together. For example,

in a key-value store system, memory allocation requests for

a key data object and a value data object associated with the

key often happen together. Writes to the key and value data

objects happen in sequential and continuous order. Hence,

allocating the key and value contiguously in the address space

likely results in coalescable write.

However, to implement the above strategy, we must re-

examine the traditional wisdom for memory allocation. The

existing memory allocators typically use multiple free lists

for each thread. Each free list supports allocation requests

for specific sizes. Such size-class-based memory allocation is

used to reduce memory fragmentation. However, it allocates

noncontiguous memory blocks to consecutive memory alloca-

tion requests if they are fulfilled by multiple free lists. Hence,

there is a fundamental tradeoff between allocation locality

and memory fragmentation.

To break this tradeoff and encourage coalescable writes,

ArchTM uses a single free list and a lightweight online de-

fragmentation mechanism. In particular, ArchTM supports

locality-aware data path using the single free list for alloca-

tion and uses a recycle list to collect and merge freed memory

blocks. For defragmentation, ArchTM aggregates data ob-

jects in highly fragmented memory regions to create large and

contiguous memory blocks.

In summary, the paper makes the following contributions:

• We reveal the performance characterization of realistic

PM hardware and pinpoint the performance problems in

the representative PM transactions. Such problems are

caused by the negligence of the characteristics of PM

architecture in traditional PM transaction designs.

• We identify two fundamental tradeoffs to enable high

performance PM transactions. We introduce a new PM

transaction design, ArchTM, customized to the PM ar-

chitecture and breaking the tradeoffs.

• ArchTM beats state-of-art PM transaction systems

PMDK, Romulus, DUDETM and the Oracle system by

58x, 5x, 3x and 7x on average, using micro-benchmarks

and real-world workloads on PM hardware.

2 Background

2.1 Persistent Memory Transactions

Failure-atomic transactions are a common solution to ensure

crash consistency on PM [16, 21, 27, 30, 39, 40, 49–51, 61,

67, 69, 70, 73]. Updates in a failure-atomic transaction either

all succeed or fail, leaving the data on PM in a consistent

state. We refer to data objects accessed in a transaction as

persistent objects. PM transactions are implemented in two

major paradigms – logging and copy-on-write (CoW).

Logging-based transactions can use either undo-logging

or redo-logging. Both logging approaches must write twice

to update a persistent object, i.e., update the log and then

the data (Figure 1 a and b). This in-place update to the data

could cause concurrent random writes because transactional

workloads could update arbitrary persistent objects.

CoW-based transactions create a new copy of a persistent

object before modifying it (Figure 1 c). All updates are cap-

tured in the new copy, i.e., out-place updates. After persisting

updates in the new copy, the system updates the pointer to the

persistent object to the new copy and discards the old copy.

Hence, CoW transactions write to PM only once. Even when

random persistent objects are updated, persisting their new

copies laid out sequentially still result in sequential writes.

2.2 Memory Management in PM Transac-

tions

In logging or CoW paradigms, logs are inserted and removed,

or copies of persistent objects are created and deleted in each

transaction. Frequent memory allocation and deallocation in

concurrent transactions require scalable solutions. Also, the
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Figure 1: Three transaction implementations: undo-logging, redo-

logging, and copy-on-write.

persistence in PM imposes unique requirements of consis-

tency and low fragmentation on memory management.

Scalable memory allocators [14,23,26,64], including state-

of-the-art PM allocators [15, 30, 66], typically implement

thread-local free lists and global free lists. An allocation re-

quest is first tried on the requester thread’s local free list

before being forwarded to the global free list. For a dealloca-

tion request, the freed memory block is added to the requestor

thread’s local free list to avoid synchronization on the global

free list. The existing memory allocators usually predefine

a set of object size classes. For each size class, the alloca-

tor maintains a list of free memory blocks of that size. An

allocation request is fulfilled by the list in the nearest size

class. Memory fragmentation occurs when the selected size

class is larger than the requested size. Unlike volatile memory,

fragmentation on PM has a longer-lasting impact. Volatile

memory may restart the program to diminish fragmentation

while fragmentation on PM persists through restarts. Besides,

a PM allocator needs to ensure its metadata in a consistent

state to avoid data loss and memory leakage after crash.

2.3 Emerging PM Architecture

Emerging persistent memories are byte-addressable, and PM

DIMMs are attached directly to the memory bus, like conven-

tional DRAM DIMMs. Processors can access PM through

load and store instructions. The Intel Optane DC PM repre-

sents state-of-the-art PM hardware [34, 57, 58, 71]. The data

transfer between the processor and PM occurs at the cache

line granularity (64 bytes). The Optane internal transactions,

however, have a granularity of 256 bytes. Write amplification

occurs as a result of the two mismatched transaction sizes.

For instance, updating a cache line (64 bytes) could result

in a 256-byte write inside the Optane media. A combining

buffer of 16KB [34] sits inside each NVDIMM to coalesce

writes. Multiple writes from the processor could be combined

into a single transaction if they occupy a contiguous 256-byte

block.

3 Performance Characterization

We study the performance of PM transactions and Optane PM

to gain insights for our design.

3.1 Transaction Performance Study

We study four representative PM transaction systems:

PMDK [30], Romulus [21], DUDETM [46], and one from Or-

acle [50]. PMDK uses undo-logging, Romulus and DUDETM

use redo-logging, and the Oracle system (denoted as OCoW)

uses CoW. The specification of our Optane platform is in

Section 6. We focus on write operations because they are

the most expensive transaction operation, and writes to PM

are expensive. A write operation in a transaction needs to

update persistent object, log (if logging-based), and metadata.

Figure 2a shows the latency breakdown of a write operation

in PM transactions. We report the performance on small (64-

byte) and large (512-byte) persistent objects. The figure shows

that most time is spent on log updates or metadata updates.

We instrument the APIs used to persist data objects (e.g.,

pmemobj_persist() in PMDK) to study the performance of

write operations. The APIs use the starting address and size

of the data objects as input. Figure 2b reports the distribution

of the persisted data size in transactions that perform write

operations on 512-byte persistent objects. The figure reveals

that more than 78% of persisted objects are smaller than 64

bytes, i.e., a lot of small writes on PM. Furthermore, we study

write amplification, quantified as the ratio between write traf-

fic in PM measured by performance counters and the number

of bytes modified by transactions. Figure 2c reports the write

amplification in transactions that perform write operations on

64- and 512-byte persistent objects. All systems exhibit write

amplification, inflating PM write traffic by 1.8x - 27x.

Performance analysis. We find that the metadata updates

are the primary source of small writes. In general, transaction

systems have four types of metadata: metadata for transaction

runtime, metadata for memory allocation, log metadata, and

metadata for persistent objects. Metadata for transaction run-

time records transaction status, e.g., COMMIT or ABORT,

and transaction IDs. Metadata for memory allocation has in-

formation about memory consumption. Log metadata has

information on logs (e.g., the indexing of log records), and is

unique in logging-based transactions. Metadata for persistent

objects store pointers to the new or old copy of persistent

objects, and is unique in CoW-based transactions. By de-

sign, CoW-based systems have more metadata updates than

logging-based ones. For instance, OCoW has about 270%

more metadata updates than the other three logging-based sys-

tems. For each update, a CoW-based transaction must allocate

a new data copy, remap pointers to the data, and deallocate the

old data copy. This process generates frequent small writes to

metadata for memory allocation and persistent objects.

3.2 Performance Study of PM Writes

We study the write performance on Optane DC PM using a

microbenchmark that performs random and sequential writes.

Each write is followed by cache line flushes to persist to PM.
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Figure 3: Sequential and random write bandwidth at

different write sizes on PM and DRAM.

Various write sizes, ranging from one to 11 cache lines, are

tested. Figure 3 reports the bandwidth of performing 100M

writes using 24 threads on PM and DRAM. We have the

following observations and insights for high-performance PM

transactions.

Figures 3a and 3b show that write bandwidth of PM is

significantly lower than that of DRAM. On our system, write

bandwidth to DRAM reaches 80 GB/s but only 13 GB/s to

Optane PM. Furthermore, on Optane PM, the peak write

bandwidth is 13 GB/s, 3x lower than the peak read band-

width. These results are consistent with the existing work [34].

Hence, reducing write traffic on PM is critical for high-

performance transactions. The logging-based transaction sys-

tems need to write data twice to update a persistent object,

which causes excessive write traffic.

Figure 3a shows that small random writes on PM perform

worse than sequential writes. When writing only 64 bytes

(Figure 3a), random write merely achieves 25% of the band-

width of sequential write. This performance gap is caused by

the 256-byte Optane internal granularity and write amplifica-

tion, and the gap reduces when the write size increases. The

logging-based transactions update persistent objects in-place.

This could result in random writes, because persistent objects

in a transaction can be randomly distributed on PM. Using

out-place updates, as in CoW-based transactions, can enable

sequential writes because the new copies of persistent objects

are manageable and can be laid out contiguously in PM.

Figure 3a shows that the random writes on PM have perfor-

mance spikes at write sizes that are a multiple of 256 bytes,

e.g., four and eight cache lines. In contrast, random writes

on DRAM (Figure 3b) exhibits no such pattern. Such per-

formance on PM is due to the effect of the write combining

buffer. It buffers and combines 64-bytes stores into a 256-

byte internal store. Small simultaneous writes to contiguous

address space are more likely to be combined into one inter-

nal store than small writes to arbitrary addresses. Therefore,

increasing the probability of concurrent writes to contiguous

address space can increase the opportunity to leverage the

combining buffer hardware to coalesce writes inside the PM.

4 Design Principles and Major Techniques

Driven by the performance characterization and analysis of ex-

isting PM transactions and PM, we introduce two design prin-

ciples and five techniques in ArchTM for high-performance

architecture-aware transactions.

• Avoid small writes on PM.

(1) Logless. ArchTM favors the CoW mechanism to

reduce write traffic to PM.

(2) Minimize metadata modifications on PM with guar-

anteed crash consistency. ArchTM keeps transient meta-

data on DRAM to avoid frequent metadata modifications

on PM. Also, ArchTM introduces an annotation mech-

anism to connect the persistent transaction state with

data objects. From the transaction state of data objects,

ArchTM can detect the consistency of data on PM and

recover from a crash.

(3) Scalable persistent object referencing. ArchTM uses

a scalable object lookup table on DRAM to quickly

locate the latest copies of persistent objects in concurrent

transactions.

• Encourage coalescable writes.

(4) Consecutive allocation requests get contiguous mem-

ory blocks. ArchTM supports a locality-aware data path

for small memory allocations to encourage sequential

writes in transactions.

(5) Avoid memory fragmentation. ArchTM employs a

lightweight online memory defragmentation technique

that examines memory usage by regions and reduces

fragmentation on PM.

4.1 Logless

ArchTM employs a CoW-like mechanism to reduce write

traffic to PM. Upon an update request, ArchTM creates a new

copy of the persistent object and applies updates to the new

copy. The out-of-place update in CoW reduces the number

of PM writes. When committing the new copy to PM, con-

secutive writes into contiguous memory addresses increase

the possibility of writes coalesced at the combining buffer.

However, naively adopting CoW incurs excessive metadata



updates on PM due to object remapping and allocation man-

agement (Section 3.1). We address this challenge by main-

taining metadata on DRAM.

4.2 Minimize Metadata Modification on PM

ArchTM places the memory allocation metadata on DRAM.

It does not record memory allocation and reclamation into

logs on PM as in previous PM transaction systems [19, 21,

30, 66, 69]. Also, ArchTM avoids modifying the persistent

object metadata on PM by using an object lookup table on

DRAM. This lookup table is used to locate the latest copy of

a persistent object quickly. Existing CoW-based implementa-

tions [50] must modify the persistent object metadata on PM

to update the pointer to the object to the new copy (Figure 1.c).

With these metadata in DRAM, ArchTM reduces small PM

writes and accelerates the lookup, but cannot ensure crash

consistency. ArchTM introduces an annotation mechanism to

guarantee crash consistency.

Annotation. ArchTM annotates a transaction by adding

a transaction ID into the transaction metadata (the transac-

tion state variable). The embedded transaction ID is per-

sisted immediately when the transaction state changes to start.

ArchTM also annotates a persistent object by adding the ob-

ject information, i.e., object ID, object size, and transaction

ID, into the object header on PM when the object is created.

During the recovery from a crash, ArchTM uses the object

ID and size to identify each persistent object on PM. Then,

ArchTM uses the annotated transaction ID to identify the most

recent copy of a persistent object, recycle the stale copies, and

discard uncommitted modifications.

4.3 Scalable Object Referencing

ArchTM uses an object lookup table to find the critical infor-

mation, such as the location of the latest copy of a persistent

object. The table is indexed by persistent object IDs. When

a persistent object is allocated, the allocator thread gets an

object ID and populates the corresponding entry in the lookup

table. Multiple threads can reference persistent objects from

the table concurrently and efficiently because DRAM sup-

ports higher bandwidth than PM.

The object lookup table is essential for high-performance

transactions. Compared to decentralized object referenc-

ing [40, 50], the object lookup table in ArchTM resides on a

contiguous DRAM space, which brings convenience for man-

agement (e.g., checkpointing) and migration. If the DRAM

space is insufficient to store the whole lookup table, the

spilling part of the table is placed on PM. Compared with

general concurrent index data structures, such as hash tables,

our object lookup table is easy to implement and has no syn-

chronization overhead. The competition between threads to

get an entry from the lookup table cannot happen, because

threads are assigned with disjoint sets of object IDs and hence

update disjoint sets of table entries. The object lookup table

can find the object metadata in one step because it uses the

object ID as the index of the table, which differs from other

indexes (e.g., hash table and B-trees) that require additional

calculations or queries to find object metadata.

4.4 Contiguous Memory Allocations

ArchTM customizes memory allocation and reclamation for

transactional workloads on PM to maximize the possibility of

sequential writes. Small allocations are the main optimization

focus because sequential writes benefit small objects more

than large objects (See Figure 3a). In ArchTM, there are two

data paths for persistent object allocation and reclamation: (1)

a regular data path for large allocations and reclamations, simi-

lar to existing allocators like JEMalloc [23]; and (2) a locality-

aware data path for small allocations. The latter optimizes

through a single free list and global recycling procedure.

A single free list is used in ArchTM for allocating objects

of various sizes. Existing approaches [14,15,23,26,30,64,66]

use multiple free lists, each for a different allocation size.

Multiple free lists could cause consecutive allocation requests

of different sizes to go to different free lists. Consequently,

those requests get noncontiguous memory allocations, and

writing to them leads to nonsequential writes to PM. Instead,

using a single list of freed segments in sorted order would

encourage consecutive requests to get sequential allocations.

To maximize concurrency, ArchTM assigns each thread with

a dedicated portion from the global free list (Section 5.1).

Recycle and merge memory blocks globally. Current ap-

proaches [14, 15, 23, 30, 64, 66] return freed memory blocks

to thread-local free lists directly. This procedure avoids syn-

chronization on managing a global free list but may harm

the locality of freed memory blocks. Free memory blocks in

a free list may be noncontiguous so that consecutive alloca-

tion requests get noncontiguous allocations. ArchTM runs a

helper thread to collect and merge freed blocks from threads.

These freed blocks are sorted and merged into a global recycle

list before returning them to the global free list. The global

recycling procedure does not happen in the critical path and

does not affect the efficiency of memory deallocation.

4.5 Reduce Memory Fragmentation

Using a single free list for various allocation sizes could result

in memory fragmentation. ArchTM uses a 64-byte size class

in the memory allocator. An allocation smaller than the size

class gets rounded up. We choose this size class to avoid false

sharing in cache lines.

ArchTM introduces an online defragmentation mechanism

to reduce memory fragmentation. The mechanism monitors

the memory usage of the persistent object pool in the back-

ground to identify underutilized memory regions. During the

memory allocation, this mechanism dynamically aggregates
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persistent objects distributed in the underutilized memory re-

gions to improve memory usage. The online defragmentation

mechanism is a user-space solution that can be enabled or

disabled. It requires no modifications to operating systems

as required by existing solutions [52]. Also, the user-space

solution is more flexible than offline static solutions [59] and

can react to changes in the application during execution.

5 ArchTM Implementation

We describe our implementation based on Section 4.

5.1 Data Structures

Persistent Data Structures on PM. ArchTM maintains a

persistent memory pool partitioned into metadata and user

data areas. As depicted in Figure 4, the metadata area stores a

root object, a list of transaction state variables, a checkpoint

field (CHKP), and a checkpoint-diff field (CHKP-diff ).

The list of transaction state variables records the state

of each ongoing transaction. Each variable encodes trans-

action state and ID, and commit ID. We use the transaction

start timestamp as transaction ID, and the transaction com-

mit timestamp as commit ID. They are global timestamps

captured at the beginning and end of a transaction. ArchTM

uses hardware clock (rdtscp in x86 architectures [6, 36]) and

prevents the constant skew of the hardware clock among pro-

cessors by the ORDO primitive [36] to ensure correct ordering

of transactions. The transaction state indicates the progress of

a transaction, e.g., BEGIN, COMMITTED, END or ABORT.

CHKP stores a persistent checkpoint of the object lookup

table to speedup recovery (Section 5.6). CHKP-diff records

the list of memory blocks (named memory segments ) pre-

allocated to each thread (Section 5.4-Allocation). CHKP-diff

is useful to track working objects before the next checkpoint.

It is implemented as an array of elements containing three

fields: ID of ongoing transactions for which the segment is

fetched, the segment start address and size.

The user data area stores persistent objects. Each object

has an object header and data. The header contains object ID

and size, and transaction ID. The user data area is divided

into a regular data path area for large object allocations and a

locality-aware data path area for small object allocations.

Transient Data Structures on DRAM ArchTM main-

tains an object lookup table and a hash set per transaction.

The object lookup table is a one-dimensional array mapping

a persistent object ID to a persistent object on PM. Each PM

object has an entry in the table. An entry has four fields, i.e., a

pointer to the latest copy (new), a pointer to the old copy (old),

a variable (named writer) storing the pointer of the transac-

tion state variable of the ongoing transaction that modifies the

latest copy, and a write lock associated with the writer to co-

ordinate parallel transactions. The hash set (named write-set)

is used to collect the IDs of all persistent objects modified

by a thread in an active transaction. Before committing a

transaction, all objects in the hash set must be persisted.

ArchTM manages metadata for two allocators on DRAM.

The first allocator allocates an entry in the object lookup table

when a persistent object is created. This allocator maintains

a list of free IDs for persistent objects (named ID list) per

core. A persistent object ID is the index of an entry in the

object lookup table. When the allocator allocates an entry, it

gets an object ID from the ID list. When a persistent object is

freed, its object ID is returned to the ID list. We reuse IDs for

persistent objects to avoid the explosion of IDs. New IDs are

created only when the ID list is empty.

The second allocator allocates persistent objects. It reuses

the metadata structures in JEMalloc [23] for the regular data

path but adds significant extensions to optimize small writes

to PM (Section 4). For the locality-aware data path, ArchTM

maintains a global free list and a global recycle list. The global

free list contains memory blocks available for allocations. To

ensure sequentially when multiple threads access the global

free list, ArchTM uses a write lock on the global free list.

To mitigate contention on the global free list, each thread

maintains a thread-private allocation list, which is a portion

from the global free list. Only when a thread exhausts its

allocation list will the thread access the global free list to get a

new portion. Therefore, synchronization on the global free list

is infrequent. The global recycle list collects memory blocks

freed by all threads. The allocator manages a deallocation list

per thread to collect deallocated memory blocks. Blocks from

these thread-local deallocation lists are gathered, sorted, and

merged into the global recycle list. Memory management is

described in detail in Section 5.4.

5.2 Background Threads

Background threads are helper threads transparent to the appli-

cation. ArchTM uses two background threads to manage the

PM pool at runtime – the garbage collection (GC) manager

and the fragmentation manager. The GC manager recycles

freed persistent objects. The fragmentation manager examines

memory usage by regions and aggregates memory blocks for

defragmentation (see Section 5.4).



Algorithm 1 Start, read, and write operations.

1: function APT_TX_BEGIN

2: volatile T xID = GLOBALTIMESTAMP()
3: T xState.ATOMIC_STORE(T xID,BEGIN)
4: Fence()
5: end function

6:
7: function APT_TX_READ(TxState, objID)

8: ob j = ob jLookupTable[ob jID]
9: if ob j.new == NULL then return ob j.old

10: end if

11: if ob j.writer→ T xID == T xState.T xID then return ob j.new

12: end if

13: if ob j.writer→ State==COMMIT T ED and ob j.writer→CommitID<=
T xState.T xID then return ob j.new

14: end if

15: return ob j.old

16: end function

17:
18: function APT_TX_WRITE(TxState, objID)

19: ob j← ob jLookupTable[ob jID]
20: if ob j.new! = NULL and ob j.writer→ T xID == T xState.T xID then

21: return ob j.new

22: end if

23: if LOCK(ob j.writer) then

24: ob j.writer = &T xState

25: ob j.new = ALLOC(ob j.old)
26: else ABORT_AND_RETRY( )

27: end if

28: ob j.new = DUPLICATE(ob j.old)
29: ob j.new.header.txID = T xState.T xID

30: # append the object to write-set

31: write_set.insert(ob jID)
32: return ob j.new

33: end function

5.3 Transaction Operations

ArchTM supports five core operations to begin, read, write,

commit, and postcommit in a transaction. ArchTM provides

snapshot isolation [8, 13] similar to existing work [12, 27, 45,

48, 55, 63] and industrial production database systems [2–5, 7,

53]. We illustrate the operations in Algorithms 1 and 2.

APT_TX_BEGIN starts a transaction and assigns a unique

ID (T xID) based on the global timestamp (Alg. 1 Line 2)

to the transaction. A transaction state variable (T xState) is

created and stored in the metadata area on PM. T xState is

a combination of the T xID, state and transaction commit

ID (CommitID). At the transaction beginning, ArchTM adds

T xID and the state BEGIN into T xState by an atomic write.

APT_TX_READ returns a pointer to a copy of the persistent

object with (ob jID). If the object is not being updated by any

transactions (Alg. 1 Line 9), the pointer to the old copy is

returned. If the object is being updated by the current transac-

tion (Alg. 1 Line 11) or a transaction committed before the

current transaction starts (Alg. 1 Line 13), the pointer to the

new copy is returned. Otherwise, ArchTM returns the pointer

of the old copy. The whole process is lock-free.

APT_TX_WRITE returns a pointer to the persistent object

ob jID ready for update. If the persistent object already has a

new copy and the most recent update to the copy is performed

by the current transaction, the pointer to the new copy is

returned (Alg. 1 Lines 20-22). If the persistent object does

not have a new copy, the application thread allocates a one,

Algorithm 2 Commit and post-commit operations.

1: function APT_TX_ON_COMMIT(TxState)

2: if EMPTY(write_set) then return

3: end if # read-only tx

4: for each ob j ∈ write_set do FLUSH(ob j.new)

5: end for Fence() # persist all modified objects

6: volatile CommitID = GLOBALTIMESTAMP()
7: T xState.ATOMIC_STORE(COMMIT T ED,CommitID)
8: Fence()
9: APT_TX_POST_COMMIT(TxState)

10: end function

11:
12: function APT_TX_POST_COMMIT(TxState)

13: for each tx ∈ Ongoing_T Xs do

14: if tx.T xID < T xState.CommitID then WAIT_FOR(tx)

15: end if

16: end for

17: while ob j← write_set.pop() do

18: FREE(ob j.old) # append to the reclaim list

19: ob j.old = ob j.new

20: ob j.new = NULL

21: ob j.writer = NULL

22: UNLOCK(ob j.writer)

23: end while

24: T xState.ATOMIC_STORE(END, INF)
25: Fence()
26: end function

acquires the write lock of the writer of the object (Alg. 1 Line

23), duplicates the old copy to the new one, and then updates

the new copy. The application thread also inserts the object ID

into the write-set. If the application thread fails to obtain the

write lock of the object, APT_TX_WRITE aborts and retries

in a new transaction.

APT_TX_ON_COMMIT commits a transaction. If the trans-

action is read-only, no persistent operations are performed.

Otherwise, ArchTM persists the modified objects recorded in

the write-set to PM (Alg. 2 Lines 4-5). After that, ArchTM

gets a global timestamp as CommitID and updates the state

to COMMITTED with CommitID in the transaction state

variable by an atomic write.

APT_TX_POST_COMMIT cleans up a committed transac-

tion. First, it checks whether there is any ongoing transaction

that starts before the current transaction is fully committed

(Alg. 2 Lines 13-16). It reclaims the old copy (i.e., putting

the old copy in the thread-private deallocation list) after the

earlier transactions are fully committed. This ensures that the

old copy of the persistent object is no longer required in any

ongoing transaction. Afterwards, ArchTM sets the new copy

as the old copy and sets the new copy as NULL. Finally, it

resets and unlocks the writer of modified objects. ArchTM

also updates and persists the transaction state to END and

CommitID to INF .

5.4 Memory Management for Transactions

ArchTM uses a customized persistent object allocator. De-

pending on the size of an allocation request, ArchTM chooses

the locality-aware data path for small allocations and use the

regular data path for the others. We describe the locality-aware

data path in this Section.



Allocation. When a thread attempts to allocate a persistent

object, ArchTM searches through the thread’s private allo-

cation list to locate the first memory block larger than the

requested size. If no block is found, ArchTM fetches freed

memory blocks from the global free list to refill the allocation

list. Each fetch takes a large and fixed-size memory segment

to avoid frequent contention on the global free list. The fetch-

ing history is stored and persisted in CHKP-diff. Each fetching

event in CHKP-diff contains the IDs of ongoing transactions,

where the segment is fetched from, the segment start address,

and the segment size. If ArchTM cannot find free memory

blocks from the global free list, ArchTM replenishes memory

blocks from the global recycle list to the global free list.

Deallocation (garbage collection). When a thread deallo-

cates a persistent object, the object is ready for GC because

no other transactions are accessing the object (Alg. 2 Lines

13-16). The deallocated object is added to the thread’s pri-

vate deallocation list. In the background, the GC manager

periodically collects freed objects from threads to the global

recycle list, during which freed blocks are zeroed. Synchro-

nization between application threads and the GC manager

is rare because an application thread only updates the head

while the GC manager only updates the tail of a deallocation

list. The global recycle list is sorted to speed up search dur-

ing allocation and fragmentation ratio computation during

defragmentation. Sorting is inexpensive because when freed

memory blocks are added to the global recycle list, they are

already mostly sorted.

Defragmentation. ArchTM implements an online defrag-

mentation mechanism to improve the memory usage of the

global recycle list. The mechanism works at the granularity

of memory regions (4KB). The defragmentation manager

monitors the fragmentation ratio (defined as the ratio of used

memory to 4KB) of each memory region in the global recy-

cle list. A memory region with a fragmentation ratio greater

than f ( f is 50% in our evaluation) is deemed underutilized.

ArchTM aggregates persistent objects in underutilized regions

and migrates them to a newly allocated memory region. For

migration, the defragmentation manager internally creates

a “mock” write transaction to ensure the atomicity of data

migration and correctness. At the end of the “mock” write

transaction, the migrated objects in the original location will

be reclaimed through the deallocation process.

5.5 Recovery Management

ArchTM follows a two-step recovery process to resume the

program from a crash.

1) Detect uncommitted transactions: This is implemented

by checking the state of each transaction state variable on

PM. If a state is neither COMMITTED nor END, ArchTM

inserts the transaction ID of the uncommitted transaction into

a temporary buffer (named uncommittedT xIDs).

2) Rebuild object lookup table: ArchTM creates a new

object lookup table on DRAM (described in Section 5.1) and

loads the object information to the new table. The loading

process is similar to processing write operations, with the

difference that the object information is retrieved from PM

instead of the user request. In particular, ArchTM scans the

user data area on PM to find persistent objects and inserts their

location information (i.e., pointers to the objects on PM) into

the lookup table. ArchTM puts the location information of

each persistent object in the lookup table based on the object

ID which indicates where the location information is in the

original lookup table. To identify an object on PM, ArchTM

relies on the object header annotated in each persistent object.

The header contains the object ID and object size, which is

used to isolate persistent objects from each other on PM.

ArchTM must eliminate object copies in uncommitted

transactions. If the transaction ID of an object copy is found

in uncommittedT xIDs, the object copy is discarded, and its

memory space is reclaimed.

Since ArchTM does not invalidate the memory blocks of a

freed object copy until the memory manager recycles them to

the global recycle list, a persistent object may have multiple

copies in the PM pool. Therefore, ArchTM must identify the

latest copy and discards the others. When ArchTM reads a

persistent object from PM and finds that the object already

exists in the object lookup table, ArchTM compares the trans-

action IDs annotated in these two copies and only keeps the

latest one. The mapping information in the object lookup

table is then updated, and the old copy is reclaimed.

Crash consistency is ensured because (1) all modifications

in uncommitted transactions are discarded, (2) all modifica-

tions in a committed transaction are persisted, and (3) only the

latest committed copy of a persistent object is retained. All

uncommitted transactions are captured in the transaction state

variables stored in PM, and all object copies with a transaction

ID in these uncommitted transactions are discarded during

recovery. A transaction is only marked committed after all

modified persistent objects in this transaction (collected in

write-set, (Alg. 1 Line 31)) are persisted (Alg. 2 Lines 4-5).

ArchTM identifies the latest committed copy of an object by

transaction IDs, which by design guarantees that a transaction

ID is no earlier than the commit ID of another transaction if

they update the same object (Alg. 1 Lines 23-27).

5.6 Reduction of Recovery Time

The recovery process may take a long time if a large number

of persistent objects exist on PM because ArchTM must scan

the entire user data area to locate objects and rebuild the

object lookup table. The recovery can take as long as tens of

minutes on PM with TBs of capacity.

We reduce the recovery time by incorporating an incremen-

tal checkpoint technique into ArchTM. In particular, ArchTM

periodically copies the modifications of the object lookup ta-

ble since the last checkpoint to PM, such that ArchTM builds



a checkpoint of the object lookup table on PM. When restart-

ing from a crash, ArchTM uses the checkpoint to resume the

object lookup table, instead of building it from scratch.

ArchTM uses the following method to detect modifications

of the lookup table since the last checkpoint. After taking an

incremental checkpoint, ArchTM temporarily blocks all trans-

actions, sets all pages of the object lookup table on DRAM

as read-only by enabling write protection, and then resumes

the transactions. Any following writes to those pages will

trigger a write-protection page fault, indicating that the page

is modified. ArchTM records the faulted pages for the next in-

cremental checkpoint. After a page fault is triggered, the page

is not write-protected, and there will be no more page faults.

At the time of incremental checkpoint, only those modified

pages are copied from DRAM to PM.

Using a persistent checkpoint of the object lookup table for

recovery is not enough to reduce recovery time, because after

a crash, the updates on object metadata since the last check-

point are lost. To solve this problem, the persistent object

allocator in ArchTM records the fetching history of memory

segments in CHCP-diff (Section 5.4-Allocation), and those

PM segments contain the modifications of persistent objects

since the last checkpoint. ArchTM scans those modified seg-

ments to find missing updates as Section 5.5. Note that page

information collected from the above page fault mechanism

cannot be used to locate missing segments, because it is on

DRAM and gets lost after crash. The page information is only

used to implement incremental checkpoint. Overall, ArchTM

uses a combination of the checkpoint of the object lookup

table and the fetching history of memory segments in CHCP-

diff to quickly restore the object lookup table.

6 Evaluation

We use an Intel Purley platform that has 2nd Gen

Intel R© Xeon R© Scalable processor, 32KB L1 caches, 1MB

L2 caches, and a shared 35MB L3 cache. The memory sub-

system consists of 12 DRAM DIMMs and PM DIMMs, pro-

viding a total of 192 GB DRAM and 1.5 TB PM. We com-

pare ArchTM with four state-of-the-art transaction systems:

PMDK [30], Romulus [21], DudeTM [46], and OCoW [50].

PMDK uses libpmemobj v1.7. Libpmemobj does not support

isolation, so we use a readers-writer lock to protect a transac-

tion from concurrent accesses. Romulus uses RomulusLR for

the best performance, and DudeTM uses the default persistent

scheduler. We set the checkpoint frequency in ArchTM to 30

seconds, and the size of the pre-allocated PM segment to two

GB. The granularity of memory regions for defragmentation

(Section 5.4) is 4KB.

6.1 Micro-benchmarks

Hash tables and red-black trees are two important concurrent

data structures widely used in database workloads [24, 37, 44,

60]. We evaluate hash tables and red-black trees with three
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Figure 5: Performance and scalability of hash table.
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Figure 6: Performance and scalability of red-black trees.

update rates (5%, 50%, and 80%) similar to [21,27,40,61,74].

Each transaction operation randomly accesses a key-value

pair to read or update. Each key-value pair uses an 8-byte key

and 16-byte value. Figure 5 and 6 present the performance

and scalability results.

Hash table. The experiments use a hash table of 10K buck-

ets, each as a single linked list. The hash table is initialized

with 100K key-value pairs. ArchTM outperforms the other

systems by 10x, 12x and 22x on average at 80%, 50%, and 5%

update rates respectively (Figure 5). ArchTM demonstrates

high scalability as the concurrency in applications increases

to the maximum. In contrast, Romulus stops scaling, and

DUDETM and OCoW have performance degradation when

the application uses more than 16 threads.

In write-intensive workloads (Figures 5a and 5b), the se-

quential write technique contributes significant improvement

at low application concurrency. When the number of applica-

tion threads continues increasing, contention on the Optane

media outweighs the write amplification. Other optimizations

in ArchTM, such as the transient metadata on DRAM, start

coping with this new bottleneck, and sustain performance

scaling. In a read-intensive workload (Figure 5c), ArchTM

achieves nearly linear speedup through scalable object refer-

encing on DRAM and lock-free read operations.

Romulus scales well when the concurrency is low (i.e., 1-8

threads) for write-intensive workloads. At high concurrency,

its single-threaded write operations become a performance

bottleneck. DUDETM cannot consume volatile logs from

DRAM to PM in time, causing long delays. OCoW has fre-

quent metadata updates on PM for object remapping, allo-

cation, reclamation, thereby reducing the overall throughput.

PMDK shows the worst performance because it uses read-

write locks extensively for logging and memory allocation.



Red-black tree. In this experiment, the red-black trees are

initialized with one million key-value pairs. ArchTM outper-

forms the other systems by 7x-13x on average. It exhibits

near-linear scalability as the number of threads increases for

the read-intensive workloads (Figure 6c).

We notice that all three workloads have performance fluc-

tuation at about 28 application threads, likely caused by the

high contention on the Optane media. This contention point

arrives later than that in the hash table, because each update

in the red-black tree needs to search longer than in the hash

table, reducing its write intensity.

PMDK, OCoW, Romulus, and DUDETM have lower scal-

ability in the red-black tree than in the hash table. In write-

intensive workloads (Figures 6a and 6b), the performance

in these systems either fails to scale or even degrade when

the concurrency increases. They suffer from the expensive

synchronization [27, 40]. The lock-free operations and scal-

able object referencing in ArchTM avoid this contention and

enables high performance at high concurrency.

6.2 Real World Workloads

We run TPC-C [42] and TATP [54]) against PMEMKV [1].

PMEMKV is a in-memory key-value store developed by Intel.

In this experiment, we use its cmap storage engine.

TPC-C. We run the new-order transaction test, where each

application thread works on its corresponding warehouse and

executes new order transactions. This workload has a 100%

update rate. On average, each transaction inserts more than

ten new objects into different tables and modifies more than

ten existing objects. ArchTM significantly outperforms others

by 10x, 9x, and 5x on average (Figure 7a). PMDK is more

than 100 times slower than others when more than 12 threads

are used. The performance of ArchTM scales up quickly to

24 application threads and then slightly declines due to write

contention on the Optane media. DUDETM only scales up to

eight threads because its performance is limited by centralized

persistent logs. Once the background thread cannot flush the

log buffer to PM in time, the application threads are delayed.

TATP. TATP is widely used for online transaction process-

ing. ArchTM outperforms DUDETM, Romulus, OCoW and

PMDK by 2x, 6x, 5x, and 13x, respectively. For evaluation, we

implement three read-only and three read-write transactions

similar to [27, 46]. The transactions in TATP are less write-

intensive than the TPC-C test. Therefore, ArchTM achieves

performance scaling up to the maximum application threads.

Since TATP has less write traffic than TPC-C, DUDETM

sustains performance at 16 threads and beyond.

We quantify the contribution from our design techniques

to performance improvement. We separate techniques into

logless, minimized metadata modification on PM (MMDPM),

and contiguous memory allocation (CMAlloction). Figure 7b

compares the performance using different techniques when

running TPC-C with 24 application threads. In this test, We
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Figure 7: Real-world workloads with PMEMKV.

use DUDETM as the baseline, and its throughput is 37 Ktps.

Minimized metadata modification on PM contributes the most

(66%) performance improvement. The logless design and the

contiguous memory allocation technique contribute 18% and

16% performance improvement, respectively. Using the same

test configuration (Figure 7b-bottom), we quantify the write

amplification in the five systems. The write amplification

in ArchTM is only 2.03. ArchTM has 3x to 8x lower write

amplification than the other systems.

6.3 Performance Analysis

Online defragmentation. We evaluate the online defrag-

mentation technique by quantifying the system throughput

and memory fragmentation rate in TPC-C and TATP against

PMEMKV. Each test uses 24 application threads. We com-

pare the performance of ArchTM with and without online

defragmentation (denoted as w.df and w.o.df in Figure 8),

with four other PM systems.

The two ArchTM-based systems outperform other systems

by 12x and 3x on average on TPC-C and TATP, respectively.

The online defragmentation in ArchTM reduces memory frag-

mentation from 58% to 69% with only 3% overhead on sys-

tem throughput on TPC-C. TATP is less write-intensive than

TPC-C, and therefore no noticeable performance loss is ob-

served from the online defragmentation. Figure 8b reports

the memory fragmentation rate of all systems. The memory

fragmentation rate of the ArchTM with online defragmen-

tation is 4%, 9%, 3%, and 5% lower than PMDK, OCOW,

Romulus, and DUDETM respectively. ArchTM with online

defragmentation is 14% lower that without it, demonstrating

the necessity of using our online defragmentation.

Contiguous memory Allocation. We evaluate the effec-

tiveness of contiguous memory allocation (CMAllocation)

in ArchTM. For comparison, we port ArchTM to use three

state-of-the-art allocators, i.e., JEMalloc [23], PM allocator

in PMDK [30], and Makalu [15]). Figure 8c reports the sys-

tem throughput when ArchTM is equipped with the different

allocators in TPC-C and TATP against PMEMKV.

The CMAllocation-based system achieves 9% and 6%
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Figure 8: Evaluate the effectiveness of online defragmenation and

contiguous memory allocation.

higher throughput than JEMalloc-based system on TPC-C

and TATP, respectively. It also offers 20% and 18% higher

throughout than PMDK- and Maruku-based systems. The

customized locality-aware data path enables CMAllocation

to encourage sequential writes on PM for better performance.

In the PMDK and Maruku allocators, the poor scalability and

frequent metadata updates become the bottleneck.

Checkpoint and Recovery Time. The checkpoint fre-

quency trades off system throughput with recovery time. We

vary the frequency from one second to 60 seconds in TPC-C

against PMEMKV. We compare the system throughput with

and without checkpoints, and find that checkpoints impose

11% overhead at the highest checkpoint frequency (i.e., one

second). At a moderate checkpoint frequency, e.g., 30 seconds,

the throughput loss diminishes to less than 1%.

We trigger a random crash after the program runs two

minutes and then time the recovery. As expected, the recovery

time increases linearly as the checkpoint frequency decreases.

For the 30 GB workload set of TPC-C, ArchTM recovers the

system in eight seconds at a checkpoint interval of 30 seconds

and the object lookup table consumes 5.6 GB DRAM. For

the same experiment, the other four systems recover faster

than ArchTM. The overhead in recovery in ArchTM comes

from scanning the PM data area because ArchTM needs to

identify updates since the last checkpoint before the crash

to rebuild the object lookup table. ArchTM trades a slightly

longer recovery time for better runtime performance based

on the assumption that crashes in the production environment

are infrequent [10].

Transaction abort rate. Transaction aborts occur when

a transaction tries to get the write lock of the writer of a

persistent object but fails. We measure the abort rate. With 24

threads running highly write-intensive workloads with 80%

update rate using the hash table and red-black tree, the abort

rate is 1% and 2% on average, respectively. With 24 threads

running the TPC-C and TATP, the abort rate is 2% and 2% on

average, respectively. In general, the abort rate is very low.

7 Related Work

Undo-logging based PM transactions. Intel’s PMDK [30]

(libpmemobj) and NV-Heap [19] use undo-logging to log per-

sistent objects on PM for crash recovery. Atlas [16] also uses

undo-logging. It provides compiler and runtime supports to

instrument writes to PM. JUSTDO logging [33] implements

an Atlas-like log management system designed for machines

with persistent caches. It stores the program counter and re-

sumes the execution of critical sections from the same point

where a crash happens. iDO [47] optimizes JUSTDO logging

by avoiding logging each persistent store. Specifically, iDO

divides the critical section into several idempotent code re-

gions and only logs live program states at the beginning of

each idempotent region within the critical section.

Redo-logging based PM transactions. NVthreads [29]

supports redo-logging for multi-threaded C/C++ programs. It

logs dirty pages tracked by the OS page protection between

critical sections. DUDETM [46] uses shadow DRAM to de-

couple transaction updates and redo-logging. It leverages a

background thread to copy and persist the modifications in

redo logs to hide the logging overhead. Romulus [21] and

Pisces [27] use variants of redo-logging. They both keep two

copies of the data and replicate updates from one copy to the

other to ensure crash consistency. Romulus uses a volatile log

to record memory locations modified during a transaction to

improve the performance of data copy. Pisces targets read-

most workloads and explores snapshot isolation to ensure

lock-free read operations.

CoW-based PM transactions. CDDS [68], BPFS [20],

and multi-version concurrency control based transactions

(e.g., TimeStone [40]) create a new copy and apply updates

to the new copy to avoid writing log records.

The above logging-based and CoW-based works opti-

mize PM transactions by reducing data replication or persis-

tence overhead. In contrast, ArchTM introduces architecture-

awareness to adapt the transaction system to leverage the

micro-architecture (i.e., internal buffer and data size block) on

the PM hardware. With the architecture-awareness, ArchTM

improves the efficiency of PM writes by avoiding small writes

and encouraging coalescable writes.

8 Conclusions

Enabling high-performance transactions is critical for leverag-

ing persistent memory for data-intensive applications. We

reveal performance problems in common transaction im-

plementations on real PM hardware and highlight the im-

portance of considering PM architecture characteristics for

transaction performance. In this paper, we present ArchTM,

an architecture-aware PM transaction system. On average,

ArchTM outperforms the state-of-the-art PM transaction sys-

tems (PMDK, Romulus, DudeTM, and the Oracle system) by

58x, 5x, 3x, and 7x respectively.
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