
Sentinel: Efficient Tensor Migration and Allocation
on Heterogeneous Memory Systems for Deep

Learning
Jie Ren∗, Jiaolin Luo∗, Kai Wu∗, Minjia Zhang†, Hyeran Jeon∗, Dong Li∗

∗University of California, Merced, †Microsoft
{jren6, jluo38, kwu42, hjeon7, dli35}@ucmerced.edu, minjiaz@microsoft.com

Abstract—Memory capacity is a major bottleneck for training
deep neural networks (DNN). Heterogeneous memory (HM)
combining fast and slow memories provides a promising direction
to increase memory capacity. However, HM imposes challenges
on tensor migration and allocation for high performance DNN
training. Prior work heavily relies on DNN domain knowledge,
unnecessarily causes tensor migration due to page-level false
sharing, and wastes fast memory space. We present Sentinel,
a software runtime system that automatically optimizes tensor
management on HM. Sentinel uses dynamic profiling, and co-
ordinates operating system (OS) and runtime-level profiling to
bridge the semantic gap between OS and applications, which
enables tensor-level profiling. This profiling enables co-allocating
tensors with similar lifetime and memory access frequency into
the same pages. Such fine-grained profiling and tensor collocation
avoids unnecessary data movement, improves tensor movement
efficiency, and enables larger batch training because of saving in
fast memory space. Sentinel reduces fast memory consumption
by 80% while retaining comparable performance to fast memory-
only system; Sentinel consistently outperforms a state-of-the-art
solution on CPU by 37% and two state-of-the-art solutions on
GPU by 2x and 21% respectively in training throughput.

Index Terms—heterogeneous memory, deep neural network
training, memory management

I. INTRODUCTION

Deep neural networks (DNN) have been shown preliminary
success in many fields. However, training those models can
be extremely memory-consuming. For example, the recent
language models and translation models have 100s of billions
of parameters [1] requiring 100s of GB of memory for training.
Although it has been repeatedly demonstrated that larger
models and more data lead to improved model accuracy on
many tasks [2]–[4], the memory becomes a major bottleneck
either when training models with more weight parameters or
with larger batch sizes. Lack of memory causes DNN training
to have out-of-memory crashes and limits the sizes of the
model and batch for training, causing degradation in training
effectiveness and efficiency [5], [6]. Adding more DRAM can
mitigate the problem, but often comes with huge costs. In this
work, we look into overcoming the memory scaling issue for
DNN training by leveraging heterogeneous memory (HM) to
achieve larger memory capacity.

HM is an emerging memory architecture. Within HM, mul-
tiple memory components with different technologies are com-
bined to construct main memory. HM is typically composed

of a high-capacity memory (but with relatively worse perfor-
mance, such as non-volatile memory) and a high-performance
memory (but with smaller capacity, such as DRAM). HM
brings a promising solution to increase memory capacity and
avoids the limitation of existing memory technologies.

HM for DNN training has been explored by several stud-
ies [5]–[11]. Most of them focus on mitigating GPU-side
memory space limitation by leveraging larger CPU-side sys-
tem memory [5], [6], [8]–[11], while a recent study demon-
strates a HM that uses a persistent memory to scale the
CPU-side DRAM capacity [7]. As observed in these studies,
computation efficiency of using HM requires a careful memory
management, such as timely tensor placement and migration,
subject to the access patterns of tensors and the performance
disparity of different memory components. More specifically,
existing solutions explore methods to proactively release and
prefetch temporarily inactive tensors, determine inactive ten-
sors based on DNN topology, and find data swap time between
memories by analyzing tensor access order [7]–[10] or using
detailed domain knowledge [5], [6], [11].

However, there has not been a study that thoroughly eval-
uates individual tensor characteristics and the semantic gap
between operating system/architecture and memory manage-
ment in deep learning frameworks. Missing this study leaves
many performance improvement opportunities on the table.
For example, most of the existing solutions focus on the
order of tensor accesses to determine the timing and target
tensors to swap. However, such solutions are oblivious to
tensor characteristics such as number of tensor accesses in
memory and tensor lifetime, which would lead to unnecessary
tensor migrations. For example, some tensors such as short-
lived ones might be better to stay in fast memory rather than
unnecessarily migrated to be used only a few times or never
used again.

More importantly, most of the existing studies tackle tensor
placement at the granularity of individual tensors. However,
as the memory management of operating system (OS) and
underneath architecture is conducted at the page level, such
a tensor-level mapping would lead to memory fragmentation
or unexpected tensor migration if multiple tensors having
different access patterns are mapped to the same page. For
example, if there are four pages, where 25% of each page is
mapped with tensors frequently accessed in the similar time

1

and having similar lifetime, all four pages would need to be
placed in fast memory, even though the remainder of the four
pages is filled with rarely accessed tensors whose lifetimes
are different from that of the frequently accessed tensors.
However, if we co-locate all frequently accessed tensors to one
page in this example, placing this single page in fast memory
would be sufficient for high performance training.

To address the aforementioned issues, we propose Sentinel,
a software runtime system that automatically manages and
optimizes tensor migration and allocation in HM, and allows
to train DNN models with a much smaller size of fast memory
but achieves performance similar to that on the fast memory-
only system. To do that, we first conduct an extensive study on
workload characteristics of DNN. We observe that there are
a large number of small (less than one page) and short-lived
(lifetime shorter than one layer) tensors. On the other hand, the
peak memory consumption of frequently accessed tensors (hot
tensors) is not big (tens of MB), and tensors commonly share
pages but with different access frequencies. These observations
indicate that an ideal memory management strategy for DNN
training should co-locate tensors with similar lifetime and
access frequency in fast memory while minimizing page-level
false sharing to reduce peak consumption of fast memory. To
our best knowledge, this is the first in-depth tensor and mem-
ory mapping characterization of DNN training; It is generally
applicable on linear and non-linear network topologies and
includes all tensors, which is different from those of existing
studies [5], [6], [12], [13] that focus on specific tensors (e.g.,
input tensors of convolution operations or model weights) on
certain DNN.

Driven by the observations, Sentinel enables efficient DNN
training with three major innovations. First, Sentinel imple-
ments a tensor-level dynamic profiling to collect characteristics
of individual tensors which is impossible in the traditional
page-level profiling. This method bridges the semantic gap
between OS and DNN application. It allows the runtime
to associate tensors with the DNN topology, dynamically
identifying long-lived but sparsely accessed tensors that can
be migrated. More importantly, our profiling method counts
tensor accesses in memory (i.e., the number of accesses to
each tensor in memory), not just checks whether tensors are
referenced in operations as in many HM management solutions
for DNN training [5]–[9], [12], [14]. Counting tensor accesses
in memory is fundamental for memory optimization for DNN,
because it leads to new optimization techniques, such as
tensors co-location and being graph-agnostic.

Second, Sentinel improves tensor migration efficiency by
avoiding page-level false sharing and unnecessary tensor
movement, which is often ignored in related work [5]–[9],
[12], [14]. Sentinel aggregates small tensors having a similar
lifetime and access count into the same page to prevent page-
level false sharing. Sentinel also pins short-lived tensors to
a reserved fast memory space to prevent their unnecessary
movement to slow memory. Note that the unnecessary move-
ment of short-lived tensors are commonly observed in existing
page-level data migration [15] and hardware-managed caching

mechanisms [16]–[18], which leads to memory bandwidth
waste and performance loss.

Third, Sentinel employs a performance model-directed
proactive migration strategy. Similar to existing solutions [9],
Sentinel dynamically moves unused tensors out of fast memory
and moves to-be-used tensors into fast memory to save its
space. However, unlike existing studies [5], [6], we consider
performance trade-off between migration frequency and per-
formance benefit, as frequent tensor movement can be exposed
to the critical path and cause performance loss. To identify
the optimum migration interval that not only reduces memory
capacity but also avoids performance loss, we introduce ana-
lytical performance models that allow exploration of various
migration intervals and effectively find the optimum one with
negligible runtime overhead. The performance models bring
great flexibility and high performance for tensor migration
across layers for various DNN topologies. The tensor migra-
tion is controlled purely subject to the performance models
to maximize overlap between tensor migration and DNN
training, unlike existing studies that use migration algorithms
heuristically designed for given network topologies [5], [6],
[12], [13] or limited memory capacity [8], [9].

In summary, the key contributions are as follows.
• Characterization study. We systematically analyze how

tensors are allocated and accessed in TensorFlow.
• Runtime system. We introduce a runtime system, Sentinel,

which is featured with a novel profiling method counting
memory accesses at the tensor level. Guided by analytical
performance models, Sentinel enables efficient tensor migra-
tion by avoiding page-level false sharing and unnecessary
data movement.

• Evaluation. We evaluate Sentinel on two HM systems: one
is based on DDR4 (fast) and Optane DC persistent memory
(slow), and the other is based on NVIDIA V100 GPU
(fast) and CPU (slow). On the Optane-based system, we
show that using only 20% of peak memory consumption of
DNN models as fast memory size (a 5X reduction), Sentinel
achieves similar performance (9% performance difference
on average) to DRAM-only system. Furthermore, Sentinel
consistently outperforms two state-of-the-art solutions (
IAL [19] and AutoTM [7]) as well as DRAM-cached Optane
(using DRAM as a hardware cache) and first-touch NUMA
policy, by 37%, 17%, 23% and 70% in training throughput,
respectively. On the GPU-based system, Sentinel enables
larger batch size in training by 1.9X and higher training
throughput by 2X than vDNN [6], and enables comparable
batch size and higher training throughput by 16%, 17%
and 65% than three state-of-the-art solutions (Capuchin [9],
AutoTM [7] and SwapAdvisor [8]), respectively.

II. BACKGROUND

Training DNN models. A typical DNN model comprises
of a stack of layers, each of which is a group of neurons.
Each neuron in a layer computes a non-linear function of
the outputs of neurons in the preceding layer, using a set
of weights. Training DNN often involves a large number

2

TABLE I
COMPARISON BETWEEN EXISTING WORK ON HM MANAGEMENT FOR

DNN TRAINING.

Dynamic
profiling

Fast memory
usage

minimization

Graph
agnostic

Count tensor
accesses

in memory

Page-level
false sharing

avoidance
vDNN [6] N N N N N
Superneurons [5] N N N N N
Layrub [12] N N N N N
SwapAdvisor [8] N N Y N N
AutoSwap [14] N N Y N N
AutoTM [7] N Y Y N N
Capuchin [9] Y N Y N N
HALO [25] Y N Y N N
Sentinel Y Y Y Y Y

of training iterations (each iteration is a training step). In
each step, a batch of training samples are fed into DNN.
Performance of each step (e.g., execution time and memory
access pattern) remains stable across steps, hence highly
predictable [20]–[22]. Training DNN often uses a framework,
such as TensorFlow [23] and PyTorch [24]. These frameworks
use a dataflow execution model where the workload of DNN
is modeled as a directed graph. Operations, such as 2D con-
volution, matrix multiplication, and array concatenation, are
implemented as primitives. Those operations are represented
as nodes in the graph. Within the graph, edges between nodes
capture dependencies between nodes.

Recent efforts. Heterogeneous memory is used for DNN
training recently [5]–[9], [12]. We comprehensively compare
state of the art with Sentinel in Table I from multiple per-
spectives. In Table I, dynamic profiling captures the effects of
inter-operation parallelism on memory accesses and is gener-
ally applicable on various input data sizes and architectures,
which are often missed in static profiling. Minimization of
fast memory usage means making best efforts to reduce fast
memory size; This also means targeting on all tensors (not
just a few tensors such as feature maps) to look for migration
opportunities. Being graph agnostic means there is no need
of detailed DNN knowledge (such as which tensor is feature
map or weight), which makes the solution more general,
instead of just for some specific DNN models. Counting tensor
accesses in memory totals the number of memory accesses
at data object level, which is much more than just checking
whether data objects are referenced in operations [5]–[9], [25].
Counting tensor accesses provides optimization opportunities
to co-locate tensors and prioritize data migration. Avoiding
page-level false sharing is necessary to improve page migration
efficiency and achieve additional savings of fast memory
usage, revealed in Section III-B. Sentinel excels, because it
uses dynamic profiling, count tensor accesses in memory, and
is graph agnostic; Sentinel has high migration efficiency and
enables larger model (or larger batch) training. Sentinel is
applicable to both CPU and GPU, as demonstrated in this
paper, while some state-of-the-arts (e.g., Capuchin [9]) focus
only on GPU and use expensive recomputation to save GPU
memory, whose effectiveness on CPU remains to be studied.

There are large differences between generic memory man-

agement (GMM) (e.g, tcmalloc [26] and garbage collection
(GC) in a managed language/runtime) and Sentinel: (1) Tensor
lifetime management in GMM lacks DNN semantics and
hence misses opportunities to timely migrate tensors to avoid
performance loss or save fast memory, hence fails to minimize
fast memory usage, evidenced in Table IV; (2) GMM cannot
work well on GPU at tensor levels; (3) Without coordination
of OS, GC ignores the impact of CPU cache hierarchy on main
memory accesses; (4) Current DNN training frameworks are
not based on managed runtime and cannot easily employ GC.

III. ANALYSIS AND CHARACTERIZATION OF MAIN
MEMORY ACCESSES IN DNN

We characterize main memory accesses to drive our design.

A. Profiling Framework

We build a profiling framework. It is integrated into Ten-
sorFlow and used in a profiling phase (one training step) to
direct tensor management at runtime (Sec. IV). The profiling
framework collects the following information: (1) the number
of main memory accesses per tensor, (2) tensor size and
(3) lifetime. To collect the above information, the profiling
framework includes the support at both OS and TensorFlow
runtime levels. At OS level, Sentinel collects the number of
memory accesses at the page level. This is implemented by a
software-only solution. In particular, to track a page for access
counting, Sentinel sets a reserved bit (bit 51) in its PTE (i.e.,
poisoning PTE) and then flush the PTE from TLB. When the
page is accessed, a TLB miss occurs and triggers a protection
fault. Sentinel uses a customized fault handler to count this
page access, poisons the PTE, and flushes it from TLB again
to track next page access.

To bridge the semantic gap between OS and DNN frame-
work, each memory page has only one tensor (but a tensor
can use more than one pages). This is implemented by mak-
ing object allocation aligned with memory page. Using this
method, page-level profiling becomes tensor-level profiling.
This method slightly increases memory footprint (Sec. VII) but
it only happens during the profiling phase of Sentinel on slow
memory. After the profiling phase, tensors are re-organized
to reduce memory footprint and improve performance. Data
reorganization happens during memory allocation (Sec. III-B),
and hence does not stop training process and does not impact
performance. The profiling method does not increase the
consumption of fast memory.

At the TensorFlow runtime, Sentinel leverages memory
(de)allocation to get the size and lifetime of tensors. Moreover,
Sentinel introduces an API that allows the user to annotate
DNN to indicate the end of each layer in DNN. Based on the
above infrastructure, Sentinel is able to associate a tensor with
the DNN topology (i.e., we can know which layer(s) a tensor
is alive), which is helpful to direct tensor migration.

Our profiling method uses only one training step for pro-
filing. During the profiling, Sentinel captures each page read
and write by repeatedly poisoning the page. This is expensive
because of system calls and TLB misses. However, it does

3

not lose profiling accuracy. Also, considering that a typical
DNN training involves millions of training steps, the profiling
overhead is easily amortized. The traditional profiling methods
face a dilemma between profiling overhead and accuracy. In
particular, frequently collecting memory access information
brings high profiling accuracy at the cost of large runtime over-
head, and vice versa [27]–[31]. Leveraging the repetitiveness
of DNN training, Sentinel breaks the dilemma, and enables
both high profiling accuracy and low profiling overhead.

Our profiling method is featured with the coordination
between OS and TensorFlow runtime. This provides accurate
profiling, which is unachievable by TensorFlow runtime alone.
In particular, OS allows us to track memory accesses filtered
by processor caches; Working with the coordination between
OS and TensorFlow runtime, we do not need to handle
pointer aliasing commonly found in TensorFlow implemen-
tation, which is difficult to be handled by a runtime solution.

B. Observations and Preliminary Analysis

We profile DNN models listed in Table III and have the
following observations to guide our design:

Observation 1: There are a large number of small tensors
with short lifetime in DNN training workloads.

We define a tensor as small if it is smaller than a page size.
A tensor is alive after it is allocated and before it is freed.
We define the lifetime of a tensor in terms of the number
of layers where the tensor is alive. In the rest of the paper,
we define short-lived tensor as those whose lifetime is no
longer than one layer. Taking ResNet-32 as an example (its
configuration is in Table III), 92% of its tensors have lifetime
no longer than one layer. Among them, 98% is small tensors.
The peak memory consumption of short-lived tensors is small,
and typically bounded by a few GB.

Observation 2: The uneven distribution of hot and cold
tensors provides opportunities for tensor management.

For example, 52.3% of tensors (using 907 MB, which is
54% of total memory pages) in ResNet-32 are accessed less
than 10 times in main memory. On the other hand, some
tensors in ResNet-32 are frequently accessed (having > 100
accesses), taking only 4 MB (0.2% of total memory pages).
They are the candidates to be placed into fast memory, and
their size is a small portion of total memory pages.

Observation 3: Page-level false sharing exists in DNN. The
page-level profiling (not tensor-level) for tensor management
can be misleading.

For example, in ResNet-32, if we perform tensor-level
profiling, in a training step, for those less-frequently accessed
tensors that have only 1-10 accesses in main memory, their
total object size is 908 MB. However, if we perform page-level
profiling, in the same training step, for those memory pages
with 1-10 accesses in main memory, their total page size is 764
MB. This indicates that some less-frequently accessed tensors
fall into some pages that are counted as more frequently
accessed in page-level profiling. Hence, if one uses page-
level profiling to guide data management, those less-frequently
accessed tensors can be placed into fast memory and waste

Backward Propaga-on

Forward Propagation

nn.conv2d nn.bn nn.relu nn.conv2d nn.bn nn.conv2dnn.relu

nn.conv2d nn.bn nn.relu nn.conv2d nn.bn nn.conv2dnn.relu

𝑤"

long-lived tensorLegend
short-lived tensor

layer boundary

𝑤#𝑤$

Fig. 1. An example to show tensor access patterns across layers in ResNet-32.
This figure shows the first three layers and the last three layers in ResNet-32.

𝑥 padding 𝑥" weighted sum

w

stride bais

𝜕𝐿
𝜕𝑦

&

𝑑𝑤
gradient

𝜕𝐿
𝜕𝑦

transpose gradient
𝑑𝑥

𝑤&

nn.conv2d backward propagation

nn.conv2d forward propagation

𝑦

Fig. 2. Data processing in a TensorFlow operation, nn.conv2d.

memory space and bandwidth. We refer to the above result as
page-level false sharing.

Example. We use ResNet-32 as an example to characterize
tensors. Figure 1 shows operations in six layers; Figure 2
shows tensor processing in Operation nn.conv2d commonly
used in DNN’s forward and backward propagation.

Short-lived tensors. We find two cases. (1) Inside an oper-
ation, tensor processing (e.g., padding and transpose shown
in Figure 2, expansion, concatenation and squeeze) often
generates short-lived tensors, which are only used in that op-
eration; (2) The output tensor of some operation is short-lived,
exemplified by the output of batch normalization (i.e.,nn.bn in
Figure 1). Memory allocation and free for a short-lived tensor
always happen in one layer.

Long-lived tensors. We find two cases. (1) Weights as-
sociated with each layer (shown as “w1” and “w2” etc.
in Figure 1). They are allocated before training steps, and
updated throughout them. (2) Intermediate results generated
in a layer and consumed by the downstream operations in
another layers. An example is the output tensors of operations
nn.conv2d and nn.relu in the forward propagation layers
shown in Figure 2. These output tensors are consumed by
the backward propagation layers to calculate gradients. The
memory space for these intermediate results is allocated when
they are generated and then freed after they are consumed.

Memory access patterns. Memory accesses to tensors are
associated with layers. Memory accesses to short-lived tensors
tends to be ephemeral and bursty, which means in a layer, there
can be a number of short-lived tensors created, accessed a few
times, and freed. Memory accesses to a long-lived tensor tend
to be sparse and periodical, which means memory accesses
happen in a couple of specific layers, but not all layers.
In addition, memory allocations for long-lived intermediate
results and short-lived tensors are interleaved throughout the
training process, which causes page-level false sharing.

4

No Migration

𝑙𝑎𝑦𝑒𝑟(")

Reserve space in
fast memory

𝑙𝑎𝑦𝑒𝑟($)
Dynamic Profiling Data Organization Fast memory

Slow memory

Sentinel

𝑙𝑎𝑦𝑒𝑟(%)

𝑙𝑎𝑦𝑒𝑟(&)

𝑙𝑎𝑦𝑒𝑟(')

DNN model
short-lived tensor
long-lived tensor

HM

Set PTE & intercept
protection fault Mem alloc/dealloc

reserved
short-li

ved tensor

Adaptive Migration
Determine

migration intervals
Test

& trial

long-lived tensor

4

3

2

Fig. 3. Overview of Sentinel. The white and shadow boxes represent
functionality and mechanisms, respectively.

Design choices. Profiling results motivate us to make three
design choices. (1) We choose DNN layer as the basic gran-
ularity for tensor management, given the fact that lifetime
and memory access patterns of tensors are associated with
layers. This choice brings convenience for tensor prefetching
and migration overhead controlling. (2) We treat tensors dif-
ferently, instead of using a unified policy to manage them
as in [19], [27]–[31]. This choice allows us to enable high
performance and minimize fast memory capacity. (3) We do
not use static analysis as in [32] to decide data placement,
because static analysis lacks timing information needed to
overlap data migration and computation; It cannot accurately
capture main memory accesses and ignores the impact of
thread-level parallelism on data locality.

IV. DESIGN

A. Overview

Figure 3 overviews Sentinel. Sentinel uses dynamic profiling
(Sec. IV-B) to collect the number of main memory accesses
at tensor level and lifetime of tensors based on customized
memory allocation. The dynamic profiling uses one training
step to collect the information. After that, Sentinel re-organizes
memory allocation for short-lived tensors to facilitate tensor
management and avoid page-level false sharing.

Driven by the profiling results, Sentinel treats short- and
long-lived tensors separately. Short-lived tensors are allocated
in contiguous memory space in fast memory and not involved
in tensor movement. This method (Sec. IV-C) avoids unneces-
sary tensor movement. To handle long-lived tensors, Sentinel
uses an adaptive migration algorithm (Sec. IV-D). It partitions
each training step into many migration intervals based on DNN
model topology. In a migration interval, Sentinel migrates
tensors needed for the next interval, overlapping application
execution with tensor migration. Sentinel must determine
an appropriate migration interval length 1, such that tensors
can be timely migrated from slow to fast memory before
they are needed by the next migration interval and without
running out of fast memory. We formulate the problem and
determine the optimum length. We also use a test-and-trial
algorithm to determine if the migration cannot finish before

1We distinguish migration interval and migration interval length in the rest
of the paper. The number of layers in a migration interval is the migration
interval length.

the next interval, whether continuing migration can lead to
better performance.

B. Dynamic Profiling and Data Reorganization

Sentinel integrates the profiling framework into TensorFlow.
Based on the profiling results, Sentinel uses a customized
memory allocation policy in the remaining training steps,
described as follows. (1) For those short-lived tensors alive
in the same layer, they are allocated into the same pages,
because of their similarity in lifetime and the number of
memory accesses. (2) For those long-lived tensors that reside
in the exactly same layers, we use the following algorithm to
determine their memory co-allocation. We first sort them in
terms of the number of memory accesses in descending order,
and then allocate them in contiguous memory pages, following
the order. As a result, tensors with the similar memory access
pattern can be allocated into the same memory pages. (3) For
those long-lived tensors that do not reside in the same layers,
they never share any memory page. (4) Long- and short-lived
tensors never share any memory page.

The above data reorganization happens to long- and short-
lived tensors allocated in the middle of the training. Those
tensors are allocated and freed in each training step, allowing
Sentinel to reorganize them across training steps without
impacting program correctness. A few long-lived tensors (e.g.,
weights and input samples) are allocated before the training
process; They cannot be reorganized in the middle of training,
because that changes memory addresses of the tensors and
causes wild pointers. Sentinel ensures that these tensors never
share pages to avoid page-level false sharing.

C. Handling Short-Lived Tensors

During training, an individual short-lived tensor is not
accessed many times (e.g., less than 10 times in ResNet-32)
in main memory, compared to many long-lived tensors. Our
profiling results show that there are a large amount of short-
lived tensors throughout the whole training, and they share the
same memory access characteristics (i.e., short life time, small
size, and infrequent accesses in main memory). We must use
a general policy to manage them.

We use the following algorithm to manage short-lived ten-
sors. We allocate a continuous memory space in fast memory
for them. Tensors in this space are never considered for
migration. This space is reused for short-lived tensors as they
are allocated and freed throughout the training. The space is
reserved at the beginning of each migration interval to accom-
modate short-lived tensor in the interval. Doing this, Sentinel
guarantees that there is always memory space for short-lived
tensors (i.e., no competition from long-lived tensors), because
the placement of short-lived tensors is critical for performance.
Within a migration interval, the space can be dynamically
shrunk to free space for long-lived tensors, when a memory
page in the space is no longer needed by short-lived tensors.

The above method addresses the limitation of the existing
methods that use a caching algorithm [17], [28], [29], [33]
to decide tensor placement. Those methods move short-lived

5

tensors to slow memory, even though they are not accessed
any more. This causes unnecessary tensor movement and
wastes memory bandwidth. Furthermore, short-lived tensors
unnecessarily stay longer in fast memory, wasting valuable
space in fast memory. The above problem is caused by the
fact that making the decision on the movement of short-lived
tensors takes some time, due to the necessity of counting
memory accesses to run the caching algorithm. Also, counting
memory accesses for individual tensors can be inaccurate,
because tensors with different memory access patterns share
memory pages.

In our design, fast memory is always large enough to
host short-lived tensors. If not, short-lived tensors will be
frequently moved between fast and slow memories. This tensor
movement is highly inefficient in terms of both performance
and energy efficiency. Hence, we assume that the fast memory
size is at least larger than the peak memory consumption of
those short-lived tensors (discussed in Section IV-E). Since
short-lived tensors are frequently allocated and freed and we
reuse the same memory space to host them, the size of peak
memory space for short-lived tensors is small, and typically
bounded by a few GBs, making it feasible to host them in fast
memory without consuming too much space.

D. Adaptive Layer-Based Migration

We migrate long-lived tensors because they are used
sparsely and periodically. The tensor migration is controlled
by the migration interval length which determines how fre-
quently we migrate tensor between fast and slow memories.
In particular, we partition a training step (i.e., one forward step
plus one backward step) into equal-sized intervals, exemplified
in Figure 4.

Tensor migration from slow to fast memory is triggered at
the beginning of each interval, aiming to prefetching tensors
needed by the next interval into fast memory before the next
interval starts. Tensor migration follows a decreasing order of
tensors in terms of number of memory accesses to each tensor,
such that tensors with the largest number of memory accesses
are migrated to fast memory first. The order information is
available after data reorganization (Sec. IV-B). Following this
order for migration allows Sentinel to make the best use of
fast memory for high performance, in case certain tensors are
left out in slow memory, which is discussed later. The tensor
migration is overlapped with DNN training computation as
much as possible, such that the overhead of tensor migration
is removed from the critical path.

Tensor migration from fast to slow memory happens in
the middle of the interval, when the long-lived tensor is no
longer accessed by any operation in the interval. Such tensor
migration is used to save fast memory space as much as
possible, in order to accommodate upcoming tensor migration.
We can know if a long-lived tensor will be used by any
operation in an interval by using the profiling results.

We define the migration interval in terms of layers in DNN,
not in terms of execution time, because of the following three
reasons. First, the layer-based migration interval naturally

…

O
ne

 L
ay

er

O
ne

 L
ay

er

…

O
ne

 L
ay

er

O
ne

 L
ay

er

… …

n layers

Migration from S to F
(for fast data access) migration for B

n layers

Migration Interval A

Migration from F to S
(for space saving)

Migration Interval B

migration for after-B

migration for A migration for B

trigger migration

neuron

Fig. 4. Tensor migration based on the migration intervals. “S” and “F” stand
for slow and fast memories respectively.

0.76
0.82

0.91 0.92 0.89
0.77 0.72

0

0.25

0.5

0.75

1

0

100

200

300

400

MIL=5 MIL=6 MIL=7 MIL=8 MIL=9 MIL=10 MIL=11

N
or

m
al

ize
d

tr
ai

ni
ng

 th
ro

ug
hp

ut

Tr
ai

ni
ng

 th
ro

ug
hp

ut
 (i

m
g/

se
c)

Training throughput Normalized training throughput

Be
tte
r

SP

Fig. 5. Performance (training throughput) variance as we change the migration
interval length (MIL). “SP” stands for sweet spot (the optimum migration
interval length).

guarantees the completion of operations at the end of the
interval, because no operation runs across layers. The time-
based migration interval cannot guarantee that, and hence
needs inevitable synchronization between application execu-
tion and tensor migration, causing performance loss. Second,
each layer is associated with a computation phase with a
memory access pattern (e.g., which tensors are accessed and
their lifetime). The layer-based migration interval allows us
to easily leverage the memory access patterns collected at
the profiling phase to guide tensor migration. Third, the
time-based migration imposes challenges on deciding which
operations are executed in which migration interval, because
of operation-level parallelism.

Determining an appropriate migration interval length is
challenging. If the migration interval length is too long or too
short, we cannot achieve the best performance. Figure 5 shows
the performance when we use different interval lengths to train
ResNet-32 on an Optane-based platform (shown in Table II).
There is a 21% performance variance when we change the
interval length from 5 to 11. When the interval length is
8, we achieve the best performance. Hence, determining an
appropriate interval length is critical for performance.

We analyze the trade-off between long and short migration
interval lengths as follows. If the interval length is long,
then the tensors to migrate for an interval is large. The
interval length cannot be too long. Otherwise the tensors to
migrate can be larger than the available space in fast memory.
This constraint on the interval length is the space constraint,
formulated in Equation 1.

If the interval length is short, then the available execution

6

time to overlap tensor migration with application execution is
short. The interval length cannot be too short. Otherwise, the
tensor migration time is largely exposed to the critical path.
We want to minimize the migration time exposed to the critical
path, which is formulated in Equation 2.

In Equations 1 and 2, RS is the fast memory space for short-
lived tensors, S is the fast memory size, and MIL stands
for the migration interval length. RS is a function of the
migration interval length (different migration interval lengths
have different RS). In Equation 1, Tensor is the size of
tensors for migration in an interval; In Equation 2, BW is
the migration bandwidth from slow to fast memory, and T is
the DNN training time in an interval. (S −RS(MIL))/BW
is the tensors migration time. Tensor and T are functions
of the interval length (different interval lengths have different
Tensor and T).

Space constraint: Tensor(MIL) < S −RS(MIL) (1)

Goal: arg min
MIL

((S −RS(MIL))/BW − T (MIL)) (2)

RS is relatively stable, according to our profiling results:
There is only a small variance as we change MIL. Hence
S−RS(MIL) is near constant. Tensor(MIL) and T (MIL)
are monotonically increasing functions of MIL (i.e., a larger
MIL indicates larger Tensor and T , and vice versa).

After collecting the profiling results, Sentinel uses Equa-
tion 1 to narrow down the search space of finding the optimum
migration interval length; Sentinel then uses profiling results to
estimate performance of using various interval lengths, based
on which to determine the best one according to Equation 2.
This exploration is quick, because it does not need to run
any training operations, and the search space has only one
dimension (i.e., the migration interval length). Due to the
quick exploration and low-dimensional search space, using a
statistical algorithm such as the genetic algorithm or Markov
Chain Monte Carlo for multi-dimensional space as the existing
work [8], [34] is not necessary.

We cannot use training steps to try every possible migra-
tion interval length to determine the best one without using
performance modeling, because it raises concerns on runtime
overhead, when the number of layers (and sub-layers that can
be used as an interval) in a DNN model is very large.

We encounter three possible tensor migration cases at
the end of a migration interval. We discuss them as follows.
Assume that we have two intervals, A and B, and B is right
after A. Sentinel migrates tensors at the beginning of A for
B. At the end of A, we have three cases.

• Case 1: All tensor migration has been finished;
• Case 2: Tensor migration cannot finish, because of lack

of space in fast memory;
• Case 3: Tensor migration cannot finish because of lack of

time for migration (there is still space in fast memory).
In Case 1, once B starts, all of the migrated tensors are in

fast memory, which is the ideal case. Case 2 can happen, even
though the space constrain is respected for tensor migration

for B, because some tensors in A may not be timely migrated
from fast to slow memory to save space for B; Case 3 can
happen, because the optimization goal ensures the migration
time exposed to the critical path is minimized but the migration
may not necessarily finish when B starts. We must avoid Cases
2 and 3 for the best performance. The migration interval length
has impact on how often the three cases happen. Given a fast
memory size, a short interval length can create more Case 3
while a long interval length can create more Case 2.

To avoid Case 2, long-lived tensors are immediately moved
out of fast memory in the middle of A to save space, once
the remaining operations in A do not need them. This solution
prevents all occurrences of Case 2 in our evaluation.

To handle Case 3, we can either continue migration and
let B wait for the migration completion, or leave tensors in
slow memory. The continuation of tensor migration exposes
tensor migration into critical path, but the execution of B uses
tensors in fast memory; On the contrary, leaving tensors in
slow memory uses the tensor in slow memory but avoids tensor
migration overhead. This is a classic trade-off between data
locality and data movement. To determine which method leads
to the better performance, we use a test-and-trial algorithm.

In particular, whenever Case 3 happens at the end of an
interval, we use one training step to try the continuation of
tensor migration, and use another training step to try no-tensor-
migration. We measure the performance of the two methods
and use the better method in the remaining training steps.

The above algorithm does not cause significant runtime
overhead, because Sentinel uses at most two training steps
for test and trial to handle each occurrence of Case 3 and
the number of occurrences is less than 10 in our evaluation,
while the total number of training steps is easily millions. We
quantify runtime overhead in Sections VII-B and VII-C.

E. Discussions

The lower bound on fast memory size. Although fast
memory can be smaller with Sentinel, there is a lower bound
on fast memory size to avoid significant performance loss.
This lower bound is the peak memory consumption of short-
lived tensors among all migration intervals plus the largest
long-lived tensor. Smaller than this bound, the runtime system
has to either frequently migrate short-lived tensors or has no
space to accommodate long-lived tensors, which easily causes
performance loss larger than 20%.

Handling dynamic graphs. Sentinel focuses on common
DNN models with static graphs, similar to other work [7],
[22]. Some frameworks, such as PyTorch and TensorFlow
2.0, support dynamic graphs. Depending on the input size
within a batch, these frameworks generate a different dataflow
graph with a right shape to accommodate the batch. Hence
there could be multiple graphs. To handle dynamic graphs, the
existing solution pads zeros at the end of input [35], such that
batches have the same structure. This transforms a dynamic
graph into a static one, but at the cost of larger memory
footprint and unnecessary computation. We use a solution
similar to [22] that uses bucketed profiling. In particular,

7

Sentinel bucketizes input sizes into a small number of buckets
(at most 10). Input sizes in the same bucket have a similar
graph. Sentinel profiles each bucket to decide tensor migration.

Handling control dependencies. A static graph can have
control flow. Depending on input values in a batch, the graph
can have different dataflow, causing different memory access
patterns. Sentinel handles this by tracking dataflow. Whenever
a new dataflow is encountered, Sentinel triggers profiling and
makes migration decisions again.

Support of dynamic migration interval length. Sentinel
uses the same length for all migration intervals. An alternative
approach is to use different lengths for different intervals.
Using such a dynamic interval length is helpful to avoid Cases
2 and 3. However, this method brings minimal performance
benefit in practice, because Cases 2 and 3 do not happen
often (see Table III). Also, determining appropriate dynamic
migration interval lengths has to explore a large search space
of migration interval length, causing larger runtime overhead.

V. APPLYING SENTINEL TO GPU

Sentinel can be applied to HM on CPU; With slight ex-
tension, it can also be applied to address memory capacity
limitation on GPUs by treating GPU’s global memory and
CPU’s main memory as fast and slow memories respectively.
We name Sentinel for GPU, Sentinel-GPU.

Profiling method. GPU typically uses a proprietary driver
that we cannot modify to trigger protection faults to enable
tensor-level profiling as for CPU. Although there is an open-
source GPU driver [36], it supports limited types of GPU and
is not stable; Although recent GPU has a paging mechanism to
trigger traditional page faults [37], it cannot be used to count
memory accesses on GPU, once pages are loaded into GPU
memory; A binary instrumentation tool such as NVBit [38]
or compiler tool can instrument load/store instructions but
cannot directly measure main memory accesses. Hence, there
is no tool to count memory accesses at page or tensor level
for GPU. Also, introducing new hardware counters to collect
page access statistics is possible, but hardware modification is
expensive and unscalable.

To address the above problem, we use a customized pinned
memory mechanism to enable tensor-level profiling for GPU.
The traditional pinned memory mechanism allows GPU to
access pages resident on CPU memory. By allocating tensors
on pinned memory on CPU, we can use the existing profiling
mechanism in Sentinel to count memory accesses from GPU.
In particular, whenever GPU accesses a pinned memory page
on CPU, a protection fault is triggered on CPU and handled
by the fault handler in Sentinel to count it. Using the above
method, we do not lose accuracy of counting memory accesses
on GPU, because protection faults are caused by memory
accesses on GPU, not on CPU.

However, implementing the above idea faces a challenge.
The traditional pinned memory mechanism disables paging,
such that when GPU accesses a page resident on CPU memory,
the page is guarantee to be there. The implementation of this
mechanism includes using the system call mlock() to lock PTE.

As a result, Sentinel cannot modify the specific bit (bit 51) to
trigger protection fault.

To address the above problem, we customize the pinned
memory mechanism. In particular, Sentinel intercepts mlock()
and bypasses it. To disable paging to ensure the correctness of
the pinned memory mechanism, Sentinel temporarily disables
OS-level page swapping mechanisms during the profiling
using the existing system calls. This does not lock PTE, and
hence allows Sentinel to set the bit to trigger protection faults.

Sentinel uses the above customized mechanism during the
profiling, but must revert to the traditional GPU memory
allocation and accesses in TensorFlow to avoid expensive CPU
memory accesses. This reversion is feasible for those tensors
that are repeatedly allocated and freed across training steps,
but not possible for a few tensors that are allocated before all
training steps and freed after them. For each of those tensors,
Sentinel creates two copies, one using pinned memory and
accessed during profiling, while the other using the traditional
GPU memory allocation and used after profiling. Creating two
copies does not require the user to change the implementation
of DNN training, because it can be done by pointer switch
through the runtime implementation. The two copies need to
be synchronized after profiling to ensure the remaining training
uses the most updated tensors. This synchronization overhead
is paid in only one training step and ignorable in the whole
training. We quantify this overhead in Section VII-C.

Handling Case 3. In Case 3, tensor migration cannot finish
in time, because of lack of time for migration. A possible
solution to handle this case on CPU-based HM is to leave
tensors in slow memory on CPU. On GPU, however, the
tensors must be placed on GPU memory when GPU accesses
them (accessing CPU memory is too slow). Hence, there is
no need to use the test-and-trial algorithm to handle Case 3.
Handling this case must wait for tensor migration to complete,
but subject to the optimization goal in Equation 2.

VI. IMPLEMENTATION

We implement Sentinel in Linux v5.6.0 and TensorFlow
v1.14. We change OS kernel for memory profiling; We change
the TensorFlow runtime system for page migration (Figure 6).
Sentinel introduces three APIs to trigger/stop memory pro-
filing and identify DNN layers, which are start profile(),
end profile(), and add layer(). start profile() triggers a system
call to enable tracking of main memory accesses, memory
(de)allocation to record lifetime of tensors. add layer(), placed
at the end of each layer, informs the runtime of where is each
layer to determine migration intervals. Adding start profile()
and end profile() includes only two lines of changes to the
DNN model. Adding add layer() includes 10-100 lines, de-
pending on how many layers there are in a DNN model.

Figure 6 shows implementation details. Sentinel skips the
first 10 training steps used by TenorFlow to detect hardware
configurations, and uses the 11th for profiling. During the
profiling, Sentinel collects memory access and lifetime infor-
mation for each tensor from OS and TensorFlow respectively.
After the profiling phase, Sentinel uses three helper threads:

8

import tensorflow as tf
…
def train(self):

for step in train_steps:
if(step == 11)

tf.start_profile()
if(step == 12)

tf.end_profile()
…

return prediction_array

def conv_bn_relu_layer(…):
…

tf.add_layer()
return output

...

kernel space

Track mem
allocation/deallocation

user space

Set PTE;
Intercept protection faults

mmap b/w user and kernel spaces

tensor access info

tensor lifetime info

An analysis thread
reorganizes tensors

A migration thread moves pages into fast mem

A migration thread moves pages out of fast mem

Fig. 6. Implementation overview.

one for information analysis to determine migration intervals
and make migration decision, one for data migration from
fast to slow memory, and one for migration in the opposite
way. The two migration threads work in parallel to accelerate
migration. Sentinel uses the Linux system call move pages()
to migrate pages. Sentinel extends TensorFlow memory al-
location and free functions by adding the customized data
reorganization policy. Before the training happens, tensor are
allocated in slow memory. After collecting the profiling results,
Sentinel manages tensor allocation and migration.

GPU implementation. Similar to Sentinel, Sentinel-GPU
leverages the APIs to enable online profiling and tensor
management. To manipulate tensor allocation, Sentinel-GPU
intercepts TensorFlow GPU memory allocators (such as Al-
locateRaw and gpu bfc Allocator), similar to [9]. Sentinel-
GPU replaces those allocators with the customized ones for
pinned memory control or tensor collocation. add layer() is
implemented as a CUDA kernel to execute at the end of each
DNN layer. For short-lived tensors, Sentinel-GPU manages
a memory pool allocated by cudaMalloc and enforces data
reorganization. For long-lived tensors, Sentinel-GPU triggers
bi-direction tensor movement by using CUDA events and
streams. In particular, Sentinel uses two CUDA streams: one
for computation and the other for tensor movement. Sentinel
inserts tensor movement events into the stream based on the
decision on the migration intervals. Sentinel-GPU achieves
asynchronous tensor movement with cudaMemPrefetchAsync.

VII. EXPERIMENTAL RESULTS

A. Experimental setup

We evaluate Sentinel on two HM platforms. One, named
Optane-based HM, uses DRAM and Intel Optane DC persis-
tent memory (PMM) as fast and slow memories respectively
on CPU; The other, named GPU-based HM, treats GPU
global memory and CPU main memory as fast and slow
memories respectively. Table II gives details. PMM has two
operating modes, Memory Mode and App-direct Mode. In
Memory Mode, DRAM works as a hardware-managed cache
to PMM. Running the application in this mode does not
require modifications to the application. App-direct Mode
allows programmer to explicitly control memory accesses to
PMM and DRAM. Sentinel works in App-direct Mode and
beats Memory Mode for large model training.

TABLE II
HARDWARE OVERVIEW OF EXPERIMENTAL SYSTEM.

Optane-based HM
CPU An Intel Xeon Gold 6252 CPU @2.30GHz
Last Level Cache 36608KB
Fast Memory DDR4 DIMM: 96GB
Slow Memory Optane DC PMM: 756GB

GPU-based HM
GPU Nvidia V100 with 16GB with 15.75 GB of GDDR6
CPU Intel(R) Xeon(R) E5-2670 with 128 GB of DDR4
Interconnect PCIe 3.0×16

TABLE III
DNN MODEL FOR EVALUATION.“SEN.”, STANDS FOR SENTINEL.

DNN Model Dataset
(Batchsize)

Peak men. (GB) # of steps used in Sen.
w/o Sen. w/ Sen. profiling test & trial

ResNet-32 CIFAR-10 (128) 14.10 14.19 1 3
BERT-large CoLA (32) 35.39 35.51 1 3

LSTM PTB(20) 11.12 11.25 1 0
DCGAN MNIST (128) 15.68 15.79 1 3

MobileNet CIFAR-10 (128) 14.15 14.26 1 1
ResNet-200 CIFAR-10 (4K) 99.73 100.01 1 7
BERT-large CoLA (128) 133.59 133.90 1 3

LSTM PTB (4K) 29.97 30.09 1 0
DCGAN celebA (10K) 115.10 115.23 1 7

MobileNet CIFAR-100 (4K) 142.07 142.59 1 7

We evaluate five DNN models with small and large batch
sizes (Table III). We use the implementations of LSTM
and MobileNet from TensorFlow [39], ResNet from [40],
Bert from [41], and DCGAN from [42]. We use the default
precision setting (FP32 or FP16) for floating point numbers.
We report training throughput when the execution time per
step becomes constant (usually after the first couple of steps).

B. Sentinel on Optane-based HM

Evaluation methodology. We compare Sentinel with a
state-of-the-art memory management solution for HM on
CPU [19]. This solution is based on a FIFO-based active
list, and we name it improved active list (IAL). We also
compare Sentinel with AutoTM [7]. AutoTM uses Integer
Linear Programming (ILP) to decide tensor movement and
placement based on static profiling and nGraph compiler. To
enable fair comparison, we implement the AutoTM’s memory
management solution in TensorFlow. We compare Sentinel
with IAL and AutoTM using the same fast memory size, which
is 20% of the peak memory consumption of DNN models.
This setting follows previous work [7], [19]. In addition, we
compare Sentinel with the default NUMA allocation policy
(first-touch NUMA) and Memory Mode. In our platform,
DRAM and PMM belong to two NUMA nodes.

Overall performance. Figure 7 shows performance of IAL,
AutoTM and Sentinel normalized by that of slow memory-
only system. We use DNN models with small batch sizes for
evaluation, because IAL code cannot work well for large batch
sizes, either due to segfault or more than 10x performance
slowdown. The figure shows that performance difference be-
tween Sentinel and fast memory-only system (shown as the red
horizontal line in the figure) is very small (no difference in

9

1x
1.2x

3.1x 3.2x

0

1

2

3

4

1x

2.8x

4.7x

6.2

0

2

4

6

8

1x

2x 2.1x

2.5x

0

1

2

3

1x

2x

3.3x
3.5x

0

1

2

3

4

1x

1.3x

1.7x
1.8x

0

1

2
Be

tt
er

Sp
ee

du
p

ov
er

 S
lo

w
-m

em
 o

nl
y

ResNet-32 BERT-large LSTM DCGAN MobileNet

Slow-mem only SentinelAutoTMIAL

Fig. 7. Performance speedup of IAL, AutoTM and Sentinel over slow-
memory only. The red horizontal line shows performance of fast-memory
only. Performance is normalized by that of slow-memory only.

1x

1.5x
1.7x

2.1x

0

0.8

1.6

2.4

1x

2.2x
2.5x

2.9x

0

1

2

3

1x 1x 1x 1x

0

0.5

1

1.5

1x
1.1x

1.2x
1.3x

0

0.5

1

1.5

1x

1.4x 1.45x 1.5x

0

0.6

1.2

1.8

Be
tt
er

Sp
ee

du
p

ov
er

 fi
rs

t-t
ou

ch
 N

U
M

A

ResNet-200 BERT-large MobileNetLSTM DCGAN

First-touch NUMA Memory Mode SentinelAutoTM

Fig. 8. Performance with first-touch NUMA, Memory Mode, AutoTM and
Sentinel, normalized by that of first-touch NUMA.

DCGAN, and 9% difference on average), while IAL has 46%
performance difference on average. Sentinel outperforms IAL
by 37% on average (up to 56%). Sentinel outperforms AutoTM
by 17% on average (up to 31%) because of the following
reasons. First, all tensor movements in AutoTM between fast
and slow memories are exposed to the critical path, which
incurs runtime overhead. Second, AutoTM uses static profiling
to conclude that the output of an operation should be placed
into slow memory with negligible performance impact. This
conclusion is not true when the output is large. Sentinel uses
dynamic profiling and attempts to put all tensors needed by
the upcoming operations into fast memory, hence avoiding the
performance problem.

Table IV reports the total size of migrated tensors in
one training step using IAL, AutoTM and Sentinel. Sentinel
has 85% and 32% more migrations (on average) than IAL
and AutoTM respectively. Frequent migrations allow Sentinel
to make best use of fast memory for performance. Those
migrations are overlapped with training to hide overhead.

Figure 8 shows performance with large batch sizes for
first-touch NUMA, Memory Mode, AutoTM, and Sentinel.
Training with large batch sizes consumes large memory con-
sumption (Table III), creating challenges on data management
in HM. The results are normalized by performance of first-
touch NUMA. The results show that for the models whose
peak memory consumption is larger than fast memory (e.g.,
ResNet200, BERT large, DCGAN and MobileNet), Sentinel
outperforms first-touch NUMA, Memory Mode and AutoTM
by 1.7x, 1.2x and 1.1x (on average) respectively. For the
models whose peak memory consumption is less than the fast
memory size (LSTM), Sentinel has the same performance as
first-touch NUMA, Memory Mode and AutoTM. In this case,
DRAM is large enough to hold all tensors. This case shows
ignorable overhead of Sentinel.

TABLE IV
TOTAL SIZE OF MIGRATED TENSORS IN ONE TRAINING STEP.

ResNet BERT DCGAN LSTM MobileNet
IAL 3.1GB 2.8GB 0.8GB 0.7GB 0.55GB
AutoTM 5.1GB 2.3GB 0.7GB 1.2GB 0.8GB
Sentinel 8GB 4GB 1.2GB 1.2GB 0.95GB

M
em

or
y

Ba
nd

w
id

th
 G

B/
s

M
em

or
y

Ba
nd

w
id

th
 G

B/
s

(a) IAL, DRAM ratio = 20%

Elapsed Time(b) Sentinel, DRAM ratio = 20%

Elapsed Time

Fig. 9. Memory access bandwidth during training of ResNet-32.

Memory bandwidth. We analyze memory bandwidth con-
sumption in IAL and Sentinel, shown in Figure 9. Compared
with IAL, Sentinel consumes much higher (7.3x on average)
memory bandwidth in fast memory, indicating that fast mem-
ory accesses happen much more often in Sentinel than in IAL.
Sentinel also has lower memory bandwidth consumption in
slow memory, compared with IAL, indicating that Sentinel
reduces accesses in slow memory.

Runtime overhead. Table III shows total number of training
steps used for profiling and test-and-trial. Those steps have
longer execution time than regular training steps, hence intro-
ducing runtime overhead. On average, Sentinel uses only 1.8
steps. Each of those steps is extended by up to 5x in terms
of execution time. However, such overhead is amortized by
millions of steps. As a result, the runtime overhead of Sentinel
is negligible (less than 1%).

Memory overhead. Using Sentinel for tensor-level profiling
increases peak memory consumption, causing memory over-
head. Table III shows peak memory consumption. Sentinel
does not increase peak memory consumption much (by 2.4%
at most). This is because tensors larger than one page domi-
nate total memory consumption. Profiling those tensors with
Sentinel does not cause memory overhead.

Sensitivity study. We change fast memory size and measure
performance with small batches. Figure 10 shows the results.
In general, larger fast memory gives better performance. When
the fast memory size is 60% of peak memory consumption,
all of DNN models on HM with Sentinel do not have any per-
formance difference from the fast memory-only system. Also,
with Sentinel, performance is not sensitive to fast memory
size: There is at most 17% performance variance when fast
memory size is changed from 20% to 40% of peak memory

10

0.69
0.65

0.88 0.88

0.77

0.89

0.81

0.91

0.99

0.92

0.97 0.98
1 1 11 1 1 1 1

0.6

0.8

1

ResNet BERT LSTM DCGAN MobileNet

N
or

m
al

ize
d

pe
rf

or
m

an
ce

10% 20% 40% 60% of memory consumption of DNN

Fig. 10. Performance with Sentinel under various sizes of fast memory. The
fast memory size is shown as the percentage of peak memory consumption
of DNN models. Performance is normalized by that of the fast memory-only.

6
9

26

35

1.2 2
6.25 7.5

0

10

20

30

40

ResNet-32 ResNet-56 ResNet-110 ResNet-152

Pe
ak

 m
em

or
y c

on
su

m
pt

io
n

(G
B)

Peak memory consumption in ResNet
Peak memory consumption of fast memory with Sentinel

Fig. 11. Comparison between peak memory consumption of DNN models
and fast memory size for ResNet variants.

consumption. This demonstrates how Sentinel effectively uses
tensor movement to make the best use of fast memory.

Saving fast memory size. Figure 7 shows using 20% of
peak memory consumption of DNN models as fast memory
size, Sentinel on HM has similar performance (9% difference
on average) as the fast memory-only. This brings 80% saving
in fast memory. Figure 10 shows using 60% of peak memory
consumption as fast memory size, no performance loss.

To further study Sentinel’s effectiveness, we use ResNet
with various topology and peak memory consumption. We
report the minimum fast memory size with which Sentinel
performs the same as the fast memory-only. Figure 11 shows
peak memory consumption and fast memory size for all
ResNet variants. The figure shows that although peak memory
consumption increases quickly as ResNet becomes more com-
plicated, the fast memory size increases in a much slower rate
because of adaptive layer-based migration. This demonstrates
the effectiveness of using Sentinel to save fast memory size.

C. Sentinel on GPU-based HM

Evaluation methodology. We use Nvidia Tesla V100 GPU
shown in Table II with CUDA v10.1 for evaluation. We
compare Sentinel-GPU with five existing work on GPU, in-
cluding Unified Memory (UM) [37], vDNN [6], AutoTM [7],
SwapAdvisor [8] and Capuchin [9]. UM automatically moves
tensors from CPU to GPU in the event of a GPU page fault,
and moves least-used pages from GPU to CPU. vDNN is
a solution using GPU-based HM for DNN training. vDNN
focuses on convolution layers and migrates input tensors of
convolution layers between CPU and GPU memories; vDNN
tries to overlap the migration of the input tensors with convo-
lution computation. AutoTM works for both CPU and GPU,

and uses ILP to decide tensor movement and placement. We
implemented asynchronous tensor migration in AutoTM as
described in [7]. SwapAdvisor uses the Generic Algorithm
(GA) to find a good combination of memory allocation and op-
eration scheduling on MXNet [43]. Capuchin is a state-of-the-
art solution using GPU-based HM for DNN training. Capuchin
overlaps tensor movement with training. When the tensor
movement overhead is too large to be overlapped, Capuchin
discards tensors and recomputes them when needed to save
GPU memory. vDNN, SwapAdvisor, AutoTM and Capuchin
are either close-sourced or not implemented on TensorFlow.
We implement their migration strategies in TensorFlow.

Profiling method. We make the comparison in terms of
profiling method. UM does not use any profiling, and uses
on-demand tensor movement. As a result, UM causes large
runtime overhead because most of tensor movement is exposed
to the critical path. vDNN does not use any profiling, but
heavily rely on domain knowledge to decide tensor migration.
As a result, vDNN only works for specific models (feedfor-
ward CNN models) and cannot handle recursive structures in
DNN models. AutoTM collects execution time of individual
operations at compilation time. Such static profiling method
misleads tensor migration, when the batch size or hardware
used in production is different from the ones used in static
profiling. SwapAdvisor uses a lot of training steps for dynamic
profiling. Because of the GA algorithm SwapAdvisor uses
to decide tensor migration, SwapAdvisor suggests to use 30
minutes to make the final migration decision at runtime [8];
According to our experimental results, for a large model such
as BERT-large, SwapAdvisor cannot make the decision within
30 minutes. This decision process is too slow for some model
training (e.g., NLP fine-tuning which can take less than two
hours [41]). Capuchin and Sentinel use dynamic profiling,
whose overhead is negligible (a few seconds and less than
1%).

Maximum batch size. We compare vDNN, AutoTM, Swa-
pAdvisor, Capuchin and Sentinel-GPU in terms of maxi-
mum batch size each solution can achieve, given the same
GPU memory capacity. This comparison aims to show how
effectively these solutions save GPU memory. We do not
evaluate UM, because its maximum batch size is limited
by CPU memory and can be much larger than that with
vDNN and Sentinel-GPU, but with much worse performance
(shown in Figure 12). Table V shows the result. The result
for “TensorFlow” in Table V is collected without using tensor
migration. Compared with TensorFlow without tensor migra-
tion, Sentinel-GPU increases batch size by 4.18x on average.
vDNN is designed for feedforward CNN models and cannot
handle recursive structures in a DNN graph. Hence it cannot
work for LSTM and BERT-large. For CNN models, Sentinel-
GPU outperforms vDNN by 1.9x. This is because Sentinel-
GPU migrates tensors as many as possible to save GPU
memory, whereas vDNN only focuses on input tensors of the
convolution layers. Sentinel-GPU outperforms SwapAdvisor
by 1.1x. This is because SwapAdvisor aims to minimize
training time instead of minimizing memory consumption of

11

tensors in GPU. AutoTM, Capuchin and Sentinel-GPU achieve
a comparable maximum batch size, because all of them try to
migrate tensors out of GPU memory as much as possible. They
differ in training throughput, discussed as follows.

Training throughput. For each model, we use three batch
sizes, shown in Figure 12. Throughput in Figure 12 is normal-
ized by that of UM. With the largest batch size shown in Fig-
ure 12, Figure 13 shows the performance for two components
(migration overhead in the critical path and recomputation) in
one training step for deeper analysis, and percentage numbers
on top of bars in Figure 13 are the ratio in terms of execution
time of one training step. For Sentinel-GPU, Figure 13 shows
performance breakdown results to quantify the contributions of
various techniques in Sentinel-GPU. “Direct tensor migration”
does not use migration interval and trigger tensor migration
simply based on tensor forthcoming usage; It does not reserve
space for short-lived tensors; “w/ det. MI” uses an optimal
migration interval length but without space reservation; “w/all”
is the full featured Sentinel.

UM vs. Sentinel-GPU. Sentinel-GPU has 1.1x-7.8x higher
throughput than UM. Such a large performance gain comes
from effectively prefetching tensors from CPU to GPU and
reduction of migration overhead in Sentinel-GPU.

vDNN vs. Sentinel-GPU. For CNN models, Sentinel-GPU
outperforms vDNN by 2x. Similar to Sentinel-GPU, vDNN
tries to overlap tensor movement with computation. However,
vDNN does not consider time difference between layers,
which exposes most of tensor migration overhead to critical
path (3x more than with Sentinel-GPU).

SwapAdvisor vs. Sentinel-GPU. Sentinel-GPU outperforms
SwapAdvisor by 65% on average (up to 110%). The GA
in SwapAdvisor is too slow (more than 30 minutes) to find
an optimal solution for tensor placement and migration. The
process of finding the solution causes slowdown; The tensor
migration overhead in SwapAdvisor is 81% larger than that in
Sentinel-GPU, because SwapAdvisor fails to hide that.

AutoTM vs. Sentinel-GPU. Sentinel-GPU outperforms Au-
toTM by 17% on average (up to 29%). Sentinel-GPU with
the space reservation reduces migration overhead by 8% of
training time, compared with AutoTM, because this technique
avoids unnecessary tensor movement while AutoTM exposes
tensor movement into the critical path. Avoiding page-level
false sharing in Sentinel-GPU contributes additional 9% ben-
efit over AutoTM.

Capuchin vs. Sentinel-GPU. Sentinel-GPU outperforms Ca-
puchin by 16% on average (up to 21%). Because of the per-
vasiveness of page-level false sharing, Sentinel-GPU improves
performance by 11% - 21%. In Capuchin, recomputation takes
about 11% of the training time while Sentinel-GPU does
not have recomputation overhead. As a result, although the
migration time in Capuchin is shorter than in Sentinel-GPU,
the net effect is that Sentinel-GPU outperforms Capuchin.

VIII. RELATED WORK

Comparison with recent efforts on using HM for DNN
training. We review and evaluate them in Sections II and VII.

TABLE V
MAXIMUM BATCH SIZE WITH VDNN, AUTOTM, SWAPADVISOR,

CAPUCHIN AND SENTINEL-GPU

ResNet-200
(CIFAR10)

BERT-large
(CoLA)

LSTM
(PTB)

DCGAN
(celebA)

MobileNet
(CIFAR100)

TensorFlow 1K 5 800 0.6K 0.8K
vDNN 4.2K not work not work 1.4K 1.2K
AutoTM 5.6K 27 1.4K 2.5K 3.2K
SwapAdvisor 5.4K 25 1.2K 2.4K 3.1K
Capuchin 5.9K 27 1.4K 2.7K 3.2K
Sentinel-GPU 5.7K 28 1.5K 2.5K 3.2K

Using Managed Runtime for Data Management on HM.
Existing efforts [32], [44]–[46] leverage managed runtime such
as JVM. There are two differences between them and Sentinel.
(1) The existing efforts couple data migration with garbage
collection, and hence miss opportunities to minimize data
migration overhead; (2) The existing efforts do not proactively
migrate data objects to save fast memory space.

Page-based Runtime Data Management on HM. Existing
proposals [19], [27]–[31], [47], [48] explore various page
placement polices based on memory access profiling. Some
works [27]–[29] track page accesses by setting and resetting
PTE as Sentinel does, but this tracking mechanism incurs high
runtime overhead. Unlike the above work, Sentinel leverages
DNN domain knowledge, and hence only profiles a small
portion of total execution (one training step) without paying
large runtime overhead and losing accuracy. Also, Sentinel
associates page-level profiling results with tensors, making
profiling results more meaningful for tensor migration.

IX. CONCLUSIONS

Training DNN faces a problem on memory capacity. This
paper focuses on how to use HM to address this problem with-
out losing training throughput while saving fast memory. We
introduce a runtime system (Sentinel) based on a unique and
comprehensive performance study on all tensors in various lin-
ear and nonlinear models. The runtime system is featured with
a novel tensor-level profiling method and runtime techniques
to improve tensor migration efficiency for high performance
and saving fast memory capacity. Evaluating on Optane-based
HM and CPU-GPU-based HM, we show Sentinel outperforms
seven software- and hardware-based solutions.

ACKNOWLEDGMENT

We thank anonymous reviewers for their instructive com-
ments. This work was partially supported by U.S. National
Science Foundation (CNS-1617967, CCF-1553645 and CCF-
1718194).

REFERENCES

[1] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton,
and J. Dean, “Outrageously Large Neural Networks: The Sparsely-Gated
Mixture-of-Experts Layer,” CoRR, vol. abs/1701.06538, 2017.

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

12

Be
tt

er
Sp

ee
du

p
ov

er
 U

M 4.65x
5.1x

6.9x

1.5x
2.1x

2.9x

1.7x
2.2x

3x

5.2x

6.5x

7.8x

4.5x

5.7x

7.3x

0

2

4

6

8

1.2K 1.4K 1.6K 6 8 10 1K 1.2K 1.4K 0.8k 1k 1.2k 1K 1.2K 1.4K

ResNet-200 BERT-large LSTM DCGAN MobileNet

UM vDNN AutoTM SwapAdvisor Capuchin Sentinel-GPU

Fig. 12. Performance of UM, vDNN, AutoTM, SwapAdvisor, and Capuchin and Sentinel-GPU, normalized by that of UM. vDNN cannot
work for BERT and LSTM.

Be
tt

er
Ex

ec
ut

io
n

tim
e

(m
s)

Migration overhead on critical path Re-computation overhead

Direct tensor migration w/ det. MI w/ det. MI and space-reservation w/ all

0

10

20

30

40

vD
NN

Au
toT

M

Sw
ap
Ad
vis
or

Ca
pu
chi
n

Se
nti
ne
l-G
PU 1 11 1 1 1

Sentinel-
GPU

MobileNet

0

40

80

120

160

vD
NN

Au
toT

M

Sw
ap
Ad
vis
or

Ca
pu
chi
n

Se
nti
ne
l-G
PU 1 11 1 1 1

Sentinel-
GPU

0

50

100

150

200

vD
NN

Au
toT

M

Sw
ap
Ad
vis
or

Ca
pu
chi
n

Se
nti
ne
l-G
PU 1 11 1 1 1

Sentinel-
GPU

0

20

40

60

80

vD
NN

Au
toT

M

Sw
ap
Ad
vis
or

Ca
pu
chi
n

Se
nti
ne
l-G
PU 1 11 1 1 1

Sentinel-
GPU

ResNet200

0

30

60

90

120

vD
NN

Au
toT

M

Sw
ap
Ad
vis
or

Ca
pu
chi
n

Se
nti
ne
l-G
PU 1 11 1 1 1

Sentinel-
GPU

BERT-large LSTM DCGAN

29%

18%
19%

16%
14%

15%

17%

13%

6%

11% 4%

7%

12%12%

15%

10%

27%

16%
17%

15%

12%

13%

40%

20%
20%

29%

23%

15%
14%

19%
17%

15% 6%

16%

10%

8%

10%
11%

12%

15%

17%
16%

15%
13%

25%
20%
20%

15%

Be
tt

er
Ru

nt
im

e
ov

er
he

ad
 n

or
m

al
ize

d
by

 to
ta

l e
xe

cu
tio

n
tim

e

Fig. 13. Performance breakdown for vDNN, AutoTM, SwapAdvisor, Capuchin and Sentinel-GPU. “det. MI” stands for “determine an
appropriate migration interval length”. Percentage numbers on top of bars are the ratio in terms of execution time of one training step.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[5] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska,
“Superneurons: Dynamic gpu memory management for training deep
neural networks,” in Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’18, (New
York, NY, USA), p. 41–53, Association for Computing Machinery, 2018.

[6] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-49, 2016.

[7] M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella, “Au-
totm: Automatic tensor movement in heterogeneous memory systems
using integer linear programming,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, 2020.

[8] C.-C. Huang, G. Jin, and J. Li, “Swapadvisor: Pushing deep learning
beyond the gpu memory limit via smart swapping,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’20, (New
York, NY, USA), p. 1341–1355, Association for Computing Machinery,
2020.

[9] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and
X. Qian, “Capuchin: Tensor-based gpu memory management for deep
learning,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’20, (New York, NY, USA), p. 891–905, Association
for Computing Machinery, 2020.

[10] T. D. Le, H. Imai, Y. Negishi, and K. Kawachiya, “TFLMS: Large
model support in tensorflow by graph rewriting,” in arXiv preprint
arXiv:1807.02037, 2018.

[11] C. Meng, M. Sun, J. Yang, M. Qiu, and Y. Gu, “Training deeper models
by GPU memory optimization on TensorFlow,” in ML Systems Workshop
in NIPS, 2017.

[12] H. Jin, B. Liu, W. Jiang, Y. Ma, X. Shi, B. He, and S. Zhao, “Layer-
centric memory reuse and data migration for extreme-scale deep learning
on many-core architectures,” ACM Trans. Archit. Code Optim., vol. 15,
Sept. 2018.

[13] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” arXiv: Learning, 2016.

[14] J. Zhang, S. Yeung, Y. Shu, B. He, and W. Wang, “Efficient
memory management for gpu-based deep learning systems,” CoRR,
vol. abs/1903.06631, 2019.

[15] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble page
management for tiered memory systems,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’19, (New York, NY,
USA), pp. 331–345, ACM, 2019.

[16] Intel, “Big Memory Breakthrough for Your Biggest Data Challenges.”
https://www.intel.com/content/www/us/en/architecture-and-technology/
optane-dc-persistent-memory.html.

[17] L. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hybrid

13

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

memory systems,” in Proc. Int. Conf. Supercomputing (ICS ’11), 2011.
[18] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu, “Row

buffer locality aware caching policies for hybrid memories,” in Proc.
IEEE 2012 30th Int. Conf. Computer Design (ICCD ’12), 2012.

[19] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble page
management for tiered memory systems,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’19, 2019.

[20] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
memory for energy-efficient neural network training: A heterogeneous
approach,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 655–668, Oct 2018.

[21] J. Liu, D. Li, G. Kestor, and J. S. Vetter, “Runtime Concurrency Control
and Operation Scheduling for High Performance Neural Network Train-
ing,” in International Parallel and Distributed Processing Symposium,
2019.

[22] M. Sivathanu, T. Chugh, S. S. Singapuram, and L. Zhou, “Astra:
Exploiting Predictability to Optimize Deep Learning,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019.

[23] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015.

[24] “Pytorch.” https://pytorch.org/, 2019.
[25] M. Han, J. Hyun, S. Park, and W. Baek, “Hotness- and Lifetime-Aware

Data Placement and Migration for High-Performance Deep Learning on
Heterogeneous Memory Systems,” IEEE Transactions on Computers,
vol. 69, no. 3.

[26] Google, “tcmalloc.” https://github.com/google/tcmalloc.
[27] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent

page management for two-tiered main memory,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,
China, April 8-12, 2017, pp. 631–644, 2017.

[28] T. Hirofuchi and R. Takano, “Raminate: Hypervisor-based virtualization
for hybrid main memory systems,” in Proceedings of the Seventh ACM
Symposium on Cloud Computing, SoCC ’16, (New York, NY, USA),
pp. 112–125, ACM, 2016.

[29] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, “Heteroos —
os design for heterogeneous memory management in datacenter,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pp. 521–534, June 2017.

[30] K. Wu, J. Ren, and D. Li, “Runtime data management on non-volatile
memory-based heterogeneous memory for task-parallel programs,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, 2018.

[31] K. Wu, Y. Huang, and D. Li, “Unimem: Runtime Data Management
on Non-volatile Memory-based Heterogeneous Main Memory,” in SC,
2017.

[32] C. Wang, H. Cui, T. Cao, J. Zigman, H. Volos, O. Mutlu, F. Lv,
X. Feng, and G. H. Xu, “Panthera: Holistic memory management for
big data processing over hybrid memories,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, 2019.

[33] W. Zhang and T. Li, “Exploring Phase Change Memory and 3D
Die-Stacking for Power/Thermal Friendly, Fast and Durable Memory
Architectures,” in International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2009.

[34] Z. Jia, M. Zaharia, and A. Aiken, “Beyond Data and Model Parallelism
for Deep Neural Networks,” in SysML Conferenc, 2019.

[35] Google, “Tensorflow Bucketing.” https://
www.tensorflow.org/versions/r0.12/, 2017.

[36] Nvidia, “Nouveau: Accelerated Open Source driver for nVidia cards.”
https://nouveau.freedesktop.org/wiki/, 2019.

[37] Nvidia, “Unified Memory.” https://devblogs.nvidia.com/
unified-memory-in-cuda-6/, 2019.

[38] O. Villa, M. Stephenson, D. Nellans, and S. Keckler, “NVBit: A
Dynamic Binary Instrumentation Framework for NVIDIA GPUs,” in
IEEE/ACM International Symposium on Microarchitecture, 2019.

[39] “TensorFlow models.” https://github.com/tensorflow/models, 2019.
[40] “A TensorFlow Implementation of Deep Convolutional Generative Ad-

versarial Networks.” https://github.com/carpedm20/DCGAN-tensorflow,
2018.

[41] “TensorFlow code and pre-trained models for BERT.” https://github.
com/google-research/bert, 2019.

[42] “ResNet in TensorFlow.” https://github.com/wenxinxu/
resnet-in-tensorflow, 2017.

[43] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” 2015.

[44] S. Akram, J. B. Sartor, K. S. McKinley, and L. Eeckhout, “Write-
rationing garbage collection for hybrid memories,” in Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, 2018.

[45] M. Wu, Z. Zhao, H. Li, H. Li, H. Chen, B. Zang, and H. Guan,
“Espresso: Brewing java for more non-volatility with non-volatile
memory,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’18, 2018.

[46] S. Akram, J. B. Sartor, K. S. McKinley, and L. Eeckhout, “Crystal gazer:
Profile-driven write-rationing garbage collection for hybrid memories,”
in Abstracts of the 2019 SIGMETRICS/Performance Joint International
Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS ’19, 2019.

[47] J. Liu, J. Ren, R. Gioiosa, D. Li, and J. Li, “Sparta: High-performance,
element-wise sparse tensor contraction on heterogeneous memory,” in
Proceedings of the 26rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’21, 2021.

[48] J. Ren, M. Zhang, and D. Li, “Hm-ann: Efficient billion-point nearest
neighbor search on heterogeneous memory,” in 34th Conference on
Neural Information Processing Systems (NeurIPS 2020), November
2020.

14

https://nouveau.freedesktop.org/wiki/
https://devblogs.nvidia.com/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/unified-memory-in-cuda-6/
https://github.com/tensorflow/models
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/wenxinxu/resnet-in-tensorflow
https://github.com/wenxinxu/resnet-in-tensorflow

	Introduction
	Background
	Analysis and Characterization of Main Memory Accesses in DNN
	Profiling Framework
	Observations and Preliminary Analysis

	Design
	Overview
	Dynamic Profiling and Data Reorganization
	Handling Short-Lived Tensors
	Adaptive Layer-Based Migration
	Discussions

	Applying Sentinel to GPU
	Implementation
	Experimental Results
	Experimental setup
	Sentinel on Optane-based HM
	Sentinel on GPU-based HM

	Related Work
	Conclusions
	References

