Betty: Enabling Large-Scale GNN Training with Batch-Level
Graph Partitioning

Shuangyan Yang
University of California, Merced
Merced, California, USA
syang127@ucmerced.edu

Wengqian Dong
University of California, Merced and Florida International
University
Miami, Florida, USA
wdong@fiu.edu

ABSTRACT

The Graph Neural Network (GNN) is showing outstanding results
in improving the performance of graph-based applications. Recent
studies demonstrate that GNN performance can be boosted via
using more advanced aggregators, deeper aggregation depth, larger
sampling rate, etc. While leading to promising results, the improve-
ments come at a cost of significantly increased memory footprint,
easily exceeding GPU memory capacity.

In this paper, we introduce a method, Betty, to make GNN
training more scalable and accessible via batch-level partition-
ing. Different from DNN training, a mini-batch in GNN has com-
plex dependencies between input features and output labels, mak-
ing batch-level partitioning difficult. Betty introduces two novel
techniques, redundancy-embedded graph (REG) partitioning and
memory-aware partitioning, to effectively mitigate the redundancy
and load imbalances issues across the partitions. Our evaluation of
large-scale real-world datasets shows that Betty can significantly
mitigate the memory bottleneck, enabling scalable GNN training
with much deeper aggregation depths, larger sampling rate, larger
training batch sizes, together with more advanced aggregators, with
a few as a single GPU.

CCS CONCEPTS

« Computer systems organization — Heterogeneous (hybrid)
systems; « Computing methodologies — Neural networks.

KEYWORDS

Efficient training method; Heterogeneous memory; Graph neural
network; Graph partition; Redundancy elimination; Load balancing

ACM Reference Format:

Shuangyan Yang, Minjia Zhang, Wengian Dong, and Dong Li. 2023. Betty:
Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning.
In Proceedings of the 28th ACM International Conference on Architectural

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9916-6/23/03.

https://doi.org/10.1145/3575693.3575725

Minjia Zhang
Microsoft Research
Redmond, WA, USA

minjiaz@microsoft.com

Dong Li
University of California, Merced
Merced, California, USA
dli35@ucmerced.edu

Support for Programming Languages and Operating Systems, Volume 2 (ASP-
LOS °23), March 25-29, 2023, Vancouver, BC, Canada. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3575693.3575725

1 INTRODUCTION

Graph neural network (GNN) has emerged as an effective para-
digm to learn rich relation and interaction information in irregular
graph-based structures. Since its debut, it has led to accuracy break-
throughs in a wide range of tasks such as link prediction [16], node
and graph classification [37, 41], visualization [2], and clustering
and community detection [25].

Recent efforts show that GNN training efficiency or accuracy can
be improved by using larger batch sizes (e.g., from mini-batch train-
ing to full-batch training) [10, 13], training with more sophisticated
aggregators (e.g., LSTM and attention networks) [23, 38], increasing
aggregation depth (e.g., from 1 to 112) [20], using a larger sampling
rate (i.e., to include more neighbors for aggregation) [45], or using
deeper and wider neural encoders [20]. However, despite leading
to promising results, the improvements often come at a cost of
significantly increased memory consumption. For example, GNNs
learn vector representations of nodes by recursively aggregating
features of their neighboring nodes, increasing the aggregation
depth would make the number of feature vectors that need to be
loaded into memory for aggregation grow exponentially. Given that
device memory of the hardware accelerator (e.g., GPU) is a scarce
resource, the methods such as deep aggregation can easily run into
scalability challenges. As such, many methods are applied to only
small-scale graphs (e.g., hundreds of thousands of nodes) or with
a shallow structure (e.g., less than three layers) in GNN models to
explore the node dependencies before running out of memory.

To work around the memory capacity bottleneck, prior work
explored both algorithmic and system optimizations. On the algo-
rithm side, a popular method is sampling [21, 42, 44], which samples
a subset of neighbors to compute the feature for a given node/sub-
graph. By reducing the sampling rate, the number of neighbors
participating in aggregation is reduced, leading to reduced memory
consumption. However, this method requires careful consideration
of the sampling strategy and may cause loss of important neighbor
information that hurts the final model accuracy.

https://doi.org/10.1145/3575693.3575725
https://doi.org/10.1145/3575693.3575725

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

On the system side, researchers and practitioners have also built
specialized GNN frameworks that optimize the GNN training ef-
ficiency. For example, state-of-the-art GNN training frameworks,
such as DGL [3], PyTorch Geometric [30], and NeuGraph [24], sup-
port convenient and highly efficient graph operation primitives (e.g.,
aggregators) in terms of compute and memory efficiency. However,
as the batch size or aggregation depth increases, especially when us-
ing more memory intensive aggregators, GNN training can still run
out of memory. Frameworks such as DGL also support distributed
training for GNN (DistDGL [44]), where they partition the graph
across multiple GPUs and/or multiple nodes, and leverage the aggre-
gated memory from multiple GPUs to scale out the GNN training.
While being an effective approach, these methods often increase the
hardware cost of training GNN models significantly. For example,
training Relational Graph Convolution Network (RGCN) [36] with
mag-Isc (a large graph with 7B edges 240M vertices [8]) needs 32
NVIDIA T4 GPUs [45] (16 GB memory and more than $2,000 per
GPU), which could be a barrier for many model scientists who lack
access to many GPUs.

In this work, we analyze GNN scalability bottlenecks and identify
that feature vectors and their corresponding hidden maps involved
in aggregation as a major source of memory consumption for GNN
training. To reduce the memory usage, one effective method is ap-
plying batch-level partitioning, where a mini-batch is partitioned
into K micro-batches. The GNN model then calculates partial gra-
dients for each micro-batch and uses accumulative gradients of
all micro batches to update the whole model weights. The benefit
of the batch-level partitioning is that it allows the model to train
the same effective batch size but with a reduced memory footprint,
and the model convergence and quality will not be affected by the
change of batch sizes.

However, the batch-level partitioning is challenging for GNN. Un-
like traditional deep learning training, where a mini-batch consists
of inputs and labels that fall into a 1:1 mapping relationship, the out-
put/labels and input features in GNN have much more complicated
dependencies (e.g., N:M). In particular, this complex dependency
creates two challenges: (1) high redundancy. A naive partitioning
scheme would create a large amount of redundancy across micro-
batches, because an input node might be duplicated into multiple
micro-batches if it is a shared neighbor across several nodes that get
partitioned into different micro-batches. (2) Load imbalance. Most
micro-batches would have a similar amount of memory consump-
tion, but there could be one or a few micro-batches that have an
unbalanced load (usually caused by partition strategies we selected),
which will lead to an increase of the maximum memory footprint
on device.

To tackle these challenges, we formulate the batch-level partition-
ing problem for GNN as a multi-level bipartite graph partitioning
problem, and introduce two novel techniques to partition a batch.
(1) Betty constructs a redundancy-embedded graph and transforms
the redundancy reduction problem to a min-cost flow cut problem.
The later can be effectively solved via a generic graph partitioning
algorithm. (2) To reduce the maximal memory footprint, Betty in-
troduces a memory-aware partitioning algorithm which partitions
a batch based on accurate estimation of the memory usage of GNN
batches. Together, Betty effectively reduces the memory footprint
while minimizing the redundancy across micro-batches, making

Shuangyan Yang, Minjia Zhang, Wengian Dong and Dong Li

it feasible to train GNN with deeper aggregation, larger sampling
rate, or bigger GNN networks.
In summary, we make the following contributions.

e We conduct an analysis of the memory bottleneck in GNN
training and identify opportunities and challenges of reduc-
ing the memory usage of GNN via batch-level partitioning.

e We formulate the batch-level partitioning as a multi-level
bipartite graph partitioning problem and provide system
support to partition a batch while allowing it to achieve
the same accuracy with reduced memory footprint, without
requiring any hyperparameter changes.

e We introduce two novel techniques, redundancy-embedded
graph and memory-aware partitioning, to reduce the redun-
dancy while effectively mitigating the load imbalance issue
from the batch-level partitioning.

e We conduct extensive experiments on different sizes of graphs,
including a billion-scale graph to demonstrate how Betty
enables large-scale GNN training on single GPU without
suffering from out of memory (OOM) and losing accuracy.
Compared with a set of other graph partition algorithms
(Metis, range, and random), Betty improves computation
efficiency by 20.6%, 21.1%, and 22.9% respectively.

2 BACKGROUND AND RELATED WORK

We review background information in this section.

2.1 GNN Preliminaries

GNN s are a family of neural networks performed on an input
graph to encode graph information. Nodes in the graph used by
GNN represent entities in a learning problem (e.g., a user in a social
network), and each node carries a feature vector. Edges in the graph
represent the relationship between nodes, which is quantified with
edge weights. A computation layer in a GNN model consists of
graph operations and neural operations. All computation layers of
a GNN builds its computation graph.

e Graph operations: A node (called the center node) collects
features vectors of its neighbor nodes, performs aggregation
operations (e.g., reduction), and then updates its own fea-
ture vector. After the graph operations, GNN encodes graph
structure and information using the new feature vectors.

o Neural operations are performed either independently among
nodes or in center-neighbor patterns according to the graph
structure. When using the center-neighbor patterns, the
neighborhood relationship is utilized and the neural opera-
tions are performed for each center node using neighbors’
features. Figure 1 is an example performing neural opera-
tions (particularly LSTM) using a center-neighbor pattern.

Equation 1 is an example of a computation layer including the
graph and neural operations. This equation computes the hidden
features of a center node v on the layer [+1. hl is the hidden features
used as an input for the layer . u — v indicates a directed edge
from the node u to the node v; ey, is the edge weight, D, is the
in-degree of v. The layer averages the features of neighbor nodes
of v, and then computes using weights wl In practice, aggregating
all the neighbors can lead to huge memory consumption. As a
result, practitioners often set a bound called fanout degree, where

Betty: Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning

Table 1: Common computation layers in GNN

Layer type | Formulation

Sum SUMy—o (L, * ey)

Mean SUMu_,U(hL % eyy/Dy)

Pooling MAX, o (ACT(W! ® hl, © e,,,))
LSTM LSTM,_,,(hY)

Feature Vector| ”! o
z o &

Iy £2) : :

. o | Collect features i
2 2 - :
) @ : i : Tml
: . : T ;
' : Z11 Ti2 cr Tim : !

T : | ‘

C i To1 Toz - Tom |LsTvM[s T™] |

o : . zy i
. ;' C Tnl Tn2 et Tnm 2 o
Zm : :

o T Tm

Graph Operations Neural Operations

Figure 1: An example of applying neural operations (LSTM).

the maximum number of neighbors used for aggregation should
not exceed this bound. The fanout degree bound is often satisfied
via graph sampling. The hidden features for the next layer h*! is
produced after applying an activation function, ReLU. Table 1 lists
a couple of common computation layers.

*1 = ReLU ((SUMy— o (eun © BL/Dy)) ® W) 1)

In the rest of the paper, all nodes in the input graph are called
input nodes, and the center nodes in the last layer of GNN model
are named output nodes. Like other neural network training, GNN
training can either use full batch (e.g., in gradient descent) or mini-
batches (e.g., in stochastic gradient descent).

2.2 GNN Framework

There are a handful of GNN frameworks [4, 12, 13, 19, 24, 42-44].
Deep Graph Library (DGL) is a popular GNN framework. Its dis-
tributed version, DistDGL [44], uses the Metis partition algorithm
[14] to reduce communication between GPUs; AliGraph [42] and
DistGNN [26] use the similar strategies. Except the graph partition
method, P3 [5] uses pipeline and a caching strategy to speed up
distributed GNN training. PyTorch Geometric (PyG) [4] partitions
features (not nodes) to implement the distributed GNN learning.

[46] use feature decomposition to speedup GNN inference with
small input graphs. PCGraph [43] uses the similar method. Neu-
Graph [24] focuses on a single machine with multi-GPUs and lever-
ages a variant of node-centric parallel graph abstraction (GAS, the
gather-apply-scatter) [22] to partition the input graph using Metis.
Roc [13] and Lux [12] uses a partition strategy that dynamically
adjusts loads between GPU based on a cost model. They pay atten-
tion to load balance but not redundancy. Pytorch-BigGraph [19]
reduces GPU memory by swapping embeddings of each partition
to hard drive.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

For graph partitioning, most of the existing efforts pay attentions
to reduce communication overhead or balance loads between GPU.
PyTorch Geometric aims to save memory but the memory saving
is constrained by the feature dimension. In contrast, Betty is the
only work that recognizes the big impact of node redundancy on
GNN training efficiency and reduces it while balancing loads. Also,
Betty is the only effort that use heterogeneous GPU/CPU memory
to maximize memory saving.

We implement Betty based on DGL in this paper and use DGL
as strong baseline, because DGL is a state-of-the-art GNN library.
It has been generally considered as the best performing framework
for GNN training due to its many optimizations against single-GPU
efficiency such as fused message passing kernels, shared-memory
graph store, indegree bucketing, and many more [40]. It has been
shown that DGL has superior performance than other alternatives
(e.g., DGL performs 2x faster than PyTorch Geometric, another
state-of-the-art GNN library. Also, for a 2-layer GCN model with
Reddit dataset on a P100 GPU, the training throughput of DGL is
6x better than Roc. Hence, DGL provides a high bar for the study
of performance and memory saving.

‘ SAGE+LSTM |77 SAGE+Mean [] SAGE+Pool

m
o %2 ________ [0]0),%1 %2 _________ 0O0M,
= 20 20
=) i
7
g 10 . H 10 -
= 0 g
({\/Iean Pool LSTM 1 2 3 4
(a) aggregator (b) # of layers
m
o %2 ,,,,,,,, OOM 32 ,,,,,,,, O0OM
& 20 20
=)
g 10 10
g 0 0
64 128 256 10 15 20
(c) hidden size (d)# of fanout

Figure 2: The memory consumption of running GraphSAGE
on ogbn-products. (a) Comparison results between neighbor
aggregators. The number of SAGE layers is 2, the hidden size
is 256, and the fanout degree for the two layers is 10 and 25
respectively. (b) Comparison results varying the number of
SAGE layers. The aggregator is Mean and the hidden size 256.
For the four layers of SAGE, the fanout degree is 10, 25, 30
and 40 respectively. (c) Comparison varying the hidden size.
Similar to the configuration in (b), but varying the hidden
dimension sizes from 64 to 256. (d) Comparison results vary-
ing fanout degree. The SAGE layer is 1, the hidden size is 256
and the aggregator is LSTM.

2.3 Removing Memory Capacity Wall for DNN
Training

There are many recent efforts [7, 7, 11, 17, 27, 29, 31-34, 39] mit-

igating GPU-side memory space limitation by leveraging larger

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

9% <1% [Jinput features

6% [IEdges
6% |[___lOutput labels
) < 19 | B Hidden output in aggregator
I Parameters in aggregator
55% [CIHidden output in GNN
[Gradients
21% | Parameters in GNN
\ [IOptimizer states

3%<1%

Figure 3: The GPU memory consumption of 1-layer Graph-
SAGE with the Mean aggregator and the dataset ogbn-
products (fanout=10 and hidden size=64).

CPU-side system memory. AutoTM [7] uses linear programming
to decide how to partition large neural network models on hetero-
geneous memory. ZeRO-Offload [33] offloads optimizer states and
computation to CPU memory to save GPU memory consumption.
ZeRO-Infinity [31] leverages heterogeneous storage architecture
(i.e., GPU memory, CPU memory, and NVMe storage) to offload
activation, parameters, and optimizer states. Capuchin [29] uses
a combination of tensor recomputation and a prefetching mech-
anism to decide tensor offloading to CPU memory. Sentinel [32]
uses a prefetching mechanism and limited domain knowledge on
neural work for tensor offloading, based on a tensor-level profiling
mechanism. The above efforts focus on partitioning the large neural
network model itself, not the model input (i.e., the input graph in
the case of GNN), and hence cannot be easily applied to GNN with
large graphs as input.

3 GNN WORKLOAD ANALYSIS

In this section, we conduct a preliminary analysis that guides the
design in Section 4.

3.1 Memory Capacity Bottleneck

To analyze the scalability bottleneck, we analyze the memory usage
of a popular GNN network GraphSAGE [6] with a large dataset
obgn-products [9] on an NVIDIA RTX6000 GPU with 24GB mem-
ory (Section 6 includes more details about this dataset and our
experiment setup). Figure 2 shows that GNN scalability has been
severely limited by the GPU memory capacity. While simple aggre-
gators such as Mean and Pool incur <10GB memory consumption,
more advanced aggregators such as LSTM are much more mem-
ory hungry and easily lead to over 24GB of memory consumption
and OOM error, making training with these more advanced ag-
gregators infeasible on larger datasets. Similarly, as we increase
the aggregation depth, the memory consumption increases almost
exponentially and runs into OOM with deeper GNNs (e.g., running
OOM at the 4th-layer as in Figure 2(b)). Furthermore, the limited
memory also prevents GNN from using wider hidden size (Fig-
ure 2(c)) and larger fanout degree for aggregation (Figure 2(d)). As
such, the memory capacity has become a severe bottleneck for data
scientists and practitioners to use more advanced GNN training
methods. As we show in Section 6, Betty avoids OOM and enables
those memory-consuming cases.

Shuangyan Yang, Minjia Zhang, Wengian Dong and Dong Li

3.2 Memory Consumption Analysis

To understand the reason behind the GPU memory bottleneck, we
conduct analysis to characterize the memory consumption during
GNN training, using GraphSAGE [6] and the Mean aggregator on
the dataset obgn-products [9] as an example. Figure 3 shows the
results. The output node labels, input node features, and edges in
Figure 3 come from the graph. The hidden layer output, activation,
optimizer states, and gradients come from GNN. The aggregator
also consumes memory because of the hidden layer output and
parameters in Mean.

Figure 3 reveals that the input node features take the largest
portion (55%) of the total memory consumption. This is different
from the traditional neural network models where model param-
eters, activation, and optimization states dominate the memory
consumption [31, 33]. The input features might not be the biggest
part of the memory footprint all the time. It’s related to the aggre-
gator type. For some aggregators (e.g., LSTM), the input features
are smaller than the activation, but still takes the second largest
memory consumption with large-scale graphs. Hence, we focus on
reducing the peak memory consumption of input node features to
enable large-scale GNN training without losing training accuracy.

3.3 Reducing Batch Size to Remove Memory
Capacity Bottleneck

One straightforward solution to mitigate the GNN memory capacity
bottleneck is to use a smaller mini-batch size, such that each mini-
batch corresponds to a smaller subgraph for aggregation. However,
this solution has a major drawback that it has a non-trivial impact
to the statistical property of GNN model training. Figure 4 shows
the difference in training loss and validation accuracy between
using full-batch training versus small-batch training. The exper-
iments are done with GraphSAGE and ogbn-products, using the
same hyperparameter settings for both cases. While a smaller mini-
batch size reduces the total memory consumption, the training and
validation curve of these two trainings are quite different.

For example, the training curve of the small batch size has more
fluctuations than the full-batch training, and the test accuracy also
degrades when training with more epochs. Although the test accu-
racy climbs more quickly in the first few iterations comparing with
full batch training, the training diverges after a few epochs. Such
a difference is caused by the change of the effective batch size of
the model, which is one of the most critical hyperparameters for
GNN training to achieve fast convergence and high model quality.
Changing the effective batch size often requires model scientists
and practitioners to make additional adjustment to the hyperparam-
eters, such as learning rate schedule and weight decaying to ensure
that the model still carries the same convergence quality. Therefore,
it is desirable to reduce the memory overhead and improve the
scalability of GNN in a way transparent to the GNN users.

4 DESIGN
4.1 Overview

Betty reduces the memory consumption of GNN training via the
batch-level partitioning and using both CPU and GPU memory

Betty: Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning

3-layer Graph-SAGE using ogbn-products

e
»

e
s

Loss

ol " ‘1 oty | |
0 200 400 0 200 400
Epoch Epoch
—— Full-batch training Small-batch training

(4]
I
|
Test accuracy

e
o iv

Figure 4: The loss and test accuracy of full-batch vs. small-
batch training using ogbn-products. The full batch size is
196,615. The number of small batch is 16, each with 12,289.

to enable training of advanced GNNs on single GPU. We formu-
late the batch-level partitioning in GNN as a multi-level bipartite
graph partitioning problem and study how such partitioning can
be done while allowing the GNN training to leverage accumula-
tive gradients of the partitioned micro-batches to achieve the same
training results as the original batch without the need of adjusting
any hyperparameters from model scientists (Section 4.2). During
the generation of micro-batches, duplicated nodes are created. Min-
imizing the redundancy is critical in the graph partition algorithm
in Betty, discussed in Section 4.3.

While the batch-level partitioning reduces the memory foot-
print, it introduces challenges of high redundancy across parti-
tioned micro-batches and load imbalance. We describe two novel
techniques to mitigate the redundancy. In Section 4.3, we describe
how we construct a redundancy-embedded graph and transform
the redundancy reduction problem as an equivalent min-flow cost
cut problem, which we solve via a high performance min-flow cut
algorithm. In Section 4.4, we describe how we perform memory-
aware graph partitioning via accurate estimation of the memory
usage of GNN batches. This method allows Betty to quickly figure
out how many partitions a batch should be split to meet a memory
capacity constraint. Figure 5 overviews the workflow of Betty.

4.2 Batch-Level Partitioning

4.2.1 Why batch-level partitioning? We propose to use the batch-
level partitioning to reduce memory footprint of GNN training.
Although it is also possible to reduce the mini-batch size to reduce
memory footprint, such a method has a non-trivial impact on the
model convergence and generalization, discussed in Section 3.3.
The batch-level partitioning partitions a batch into micro-batches
and calculates the loss and gradients after each micro-batch. In
short, reducing the mini-batches can cause degradation in accuracy
and demand changes of hyper-parameters; using micro-batches,
there is no such problems.

Figure 6 shows the difference between mini-batch training and
micro-batch training training in terms of gradient accumulation.
Using the micro-batch training, instead of updating the model pa-
rameters after each backpropagation, the model can wait and accu-
mulate the gradients over consecutive micro-batches and ultimately
updates the parameters based on the accumulated gradients from
the entire batch. The benefit of this simple optimization is that it

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

allows the model to train with a much lower memory footprint
while achieving the same convergence without any changes on
hyperparameters or optimizers, a system-level optimization that is
transparent to the model training process.

4.2.2 Background: Batch in GNN — Multi-level Bipartite. Different
from traditional DNN training, where the input to a neural network
consists of mini-batches and each batch contains 1:1 mapping of
features (e.g., images and texts) and labels, in the simplest case, a
GNN mini-batch is actually a bipartite graph. In a bipartite structure,
the center node is called destination node and one-hop neighbors of
the destination node are called source nodes in the rest of the paper.
The bipartite graph is represented as G = (U, V, E), where U is a set
of source nodes, V is a set of destination nodes, and E is a set of edges
that records the source-to-destination relationships. V contains the
nodes that are labelled and are used for learning GNN, and V is
the union of the neighbors of v € V for the entire V. Since each
node v can have multiple neighbors and each node in U can also
be a neighbor of multiple nodes in U, they form a N:M mapping of
features (e.g., neighbors of nodes) and labels (e.g., labels for nodes).
Furthermore, for each u € U, there is a corresponding feature
vector Xy, and inputs to GNN may include features from high-order
neighbors, e.g., to capture k-hop neighbors’ feature information and
aggregate neighbors from multiple hops recursively by stacking
multiple DNN layers [6]. Therefore, in a GNN model, each mini-
batch is a hierarchical bipartite.

Figure 7 gives an example of a two-level bipartite structure in
GNN training where the nodes 8 and 5 form a batch. For the des-
tination node 8, the GNN aggregates features of the source nodes
from the node 8 (i.e., the nodes 4, 5, 7, and 11); for each source node
(e.g., the node 4), the GNN aggregates features of its source nodes
one hop-away (e.g., the source nodes 3, 5, and 8 for the node 4),
which forms a two-level bipartite structure. The bipartite together
with the embedding features of the destination nodes form a batch
and are sent as a single object to the GNN model for training.

4.2.3 Partitioning the Multi-level Bipartite for Micro-Batch GNN
Training. Based on the bipartite structure of the batch in GNN
training, Betty divides each batch into K micro-batches, where each
micro-batch is still a hierarchical bipartite that is a subgraph of the
original bipartite. In particular, we define the batch-level partitioning
problem here: We partition a bipartite graph G = (U, V, E) into k
sets of bipartite sub-graphs GI’c = (Ug, Vi, E) where k € [0,K — 1].
The disjoint union of Vi is V, and the union of Uy is U. Uy for
different subgraphs can have overlapping nodes.

These partitioned multi-level bipartite then get streamlined from
the host memory to the accelerator’s on-device memory for aggre-
gation and the forward computation. During the backward pass,
gradients for each micro-batch are computed based on the same
model parameters used for the forward pass. Furthermore, after
each backward propagation, the intermediate results are released
and only the gradients are stored in GPU memory. At the end of
each batch, gradients from all K micro-batches are accumulated and
applied to update the GNN model parameters. Those gradients are
equivalent to the gradients calculated using the full-batch training.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

REG | | REG
Construction| |Partition

Shuangyan Yang, Minjia Zhang, Wengian Dong and Dong Li

e Model

| Micro- ! | Training

Block —! batch 1| Results
Generation| ! !

A
K I Update the batch partition

parameter K

Figure 5: Workflow of Betty.

------- > Forward Propagation Backward Pr LLI(

777777 Epoch t Mini-batch Training Epoch (t+1)
&S a: -
L =8 L= 8
(GNN Model Parameters)
7777777 Epoch t Micro-batch Training Epoch (t+1)
i | =9 =22 == o
: B ‘. Updat¢ E
: iterl iter2 i iter N :
: [GNN Model Parameters | C

Figure 6: Workflow for mini-batch training and micro-batch
training to tell the difference between the two trainings.

|:|Neural Network ._D .
e @ @
@ ®
@ @ "B
® g =@
(a) Input graph

©008

(b) Two-level bipartite structure

Figure 7: An example of the bipartite structure in GNN.

4.3 Redundancy Reduction

4.3.1 Why redundancy matters? While partitioning the batch (i.e.,
the multi-level bipartite) reduces the memory consumption because
a micro-batch corresponds to a smaller bipartite that consumes less
memory, there are two challenges in this partitioning process: (1)
Without any control, each micro-batch may consume a variable
amount of memory and there is no guarantee that the memory
consumption per micro-batch remains constant. Therefore, it is still
possible that the GNN model runs OOM when some of the micro-
batches have unbalanced loads that exceed the memory capacity;
(2) The partitioning can introduce a large amount of redundant

nodes that lead to wasted memory and compute. We note that
conceptually for some input graphs that have special topology, such
as those with isolated subgraphs, there might be zero redundancy
after partitioning. When these factors are mixed together with the
multi-level bipartite structure in the batch, this problem becomes
extremely complicated.

To further explain the redundancy problem, we use Figure 8 as
an example. Figure 8 shows a bipartite graph that corresponds to
a batch. To simplify the explanation, we let the batch to include
only 1-hop neighborhood and the batch is only partitioned into
two micro-batches. Each micro-batch corresponds to a bipartite
subgraph that contains the partitioned destination node as well
as all the source nodes required for aggregation. Figure 8 shows
two partition methods ((a) and (b)), and the nodes 1 and 8 are the
destination nodes.

We note that although the destination nodes 1 and 8 are disjoint
in these two subgraphs, there are source nodes shared by both
subgraphs (e.g., nodes 3, 5, 6, and 7 in the partition method (a)
are included in both subgraphs, and similarly for nodes 5 and 6 in
the partition method (b)). Therefore, the partition method selected
affects the number of shared nodes. The downside of having shared
nodes included in multiple micro-batches is that the GNN model
needs to perform multiple rounds of data loading and computation
for those nodes, which not only increases the memory consumption
for a micro-batch but also adds additional cost from computation
and data movement from CPU to GPU. Figure 8 also shows that a
different method would lead to smaller bipartite subgraphs while
satisfying the memory constraints. In Section 6, we also empirically
show that when using a redundancy-unaware graph partition al-
gorithm, such as Metis [14], to partition a batch into 8 partitions,
it can introduce node redundancy by 23.5% in comparison to a
redundancy-aware partitioning algorithm (e.g.,Betty). As a result,
the memory consumption and training time both get increased by
27.6% and 47.6%, respectively.

4.3.2 Redundancy-Embedded Graph Construction and Partition.
Given the importance of redundancy reduction, one obvious chal-
lenge is how to partition a GNN batch to minimize the redundancy.
It may appear at first that one can apply an existing graph partition-
ing algorithm, such as [14, 15], to solve this problem. However, the
generic graph partitioning algorithms are often designed to solve
the min/max-cost flow problem, which minimizes/maximizes the
weights of cut edges while balancing the workload across partitions,
an objective different from reducing redundancy.

To effectively reduce the redundancy within micro-batches, we
transform the redundancy elimination problem to a min-cost flow

Betty: Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning
® ®
@
© @& @ O, Q O,
@ ® RO

Redundant nodes
{3,5,6,7}

(o)
Partition method (a)
®
O

(0)
O ?;(él;ndant nodes

©)
@~ @

O @ Partition method (b)
®
Input graph @ O

Figure 8: An example to depict the node redundancy problem.

problem by constructing an auxiliary graph called Redundancy-
Embedded Graph (or REG). In REG, the weight on an edge is the
number of neighbors shared by the two nodes connected by the
edge. Therefore, the higher weight an edge has in REG, the more
neighbors the two connected nodes share, and the more redundancy
will be created when splitting those two nodes into two micro-
batches. The node set in REG is the same as the original node set. In
essence, the weights embed redundancy information, and finding a
K-way partitions of REG that minimizes the cut flow is equivalent
to minimizing the redundancy from micro-batches. We depict the
construction of REG in detail as follows and in Algorithm 1.

The construction of REG happens on CPU and it is based on
the adjacency matrix representation of the graph. Assume that
the matrix A in Equation 2 is a binary adjacency matrix where
the element a;; in A is a binary value indicating if there is any
connection from the nodes i to j. The representation of REG, C, is a
multiplication of AT and A. The elements of C are calculated using
Equation 3. The element c;; in Equation 4 counts the number of
shared neighbors between the nodes i and j, because when ay;ay ;
=1, we know that the node k is a shared neighbor between i and j.
Lines 1- 4 in Algorithm 1 depicts the above details.

ailr a2 -+ ain 1, Ifnodeihas
dz1 dzz ctt d2n edge pointing
A= s aij = . (2
to node j
anl An2 "' dnn 0, Otherwise
c=ATxA
[a11 a1 -+ am ailr a2 -+ ain
aiz a4z - an azy az -+ dzn
= X
l41n A42n *** Q4nn anl1 Qn2 *°° Qnn (3)
[c11 ez -+ cin
€21 €22t Con
ICn1 Cn2 °° Cnn

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

n

+ apianj = Z AkiAkj (4)
k=1

Cij = diidij +aziazj +- -

Once C is generated, we further remove nodes that are not out-
put and remove self-loop. The resulting graph is the final REG
(Lines 5-7 in Algorithm 1). With REG, we can apply any existing
graph partitioning algorithm that minimize the cut flow. In this
work, we adopt Metis (Line 8) to partition REG, given that Metis
has demonstrated strong scalability on large-scale graph partition-
ing problems [44]. We collect output nodes to construct a list for
partitioning and bipartite generation (Lines 9-12).

Algorithm 1: REG partitioning

input :The bipartite graph (e.g., a DGL Block) of the
output (smallest) layer in multi-layer GNN full
batch training : bipartitey,g;
The number of partitions: K

output:batched_output_nodes_list

u,0 = Get_edges(bipartitey,g;);

2 graphpomo = Graph_init((u, v));

3 A = Get_adjacency_matrix(graphpomo);

4 REG = Matrix_multiplication(Transpose(A), A);

5 non_output_nodes = get_non_output_nodes(REG);

6 REG = Remove_nodes(REG, non_output_nodes);

7 REG = Remove_self_loop(REG);

partitions = Metis_partition(REG, K);

for part in partitions do

10 nids = Get_output_nodes_ids(part);

L batched_output_nodes_list.append(nids)

-

]

©

1

-

12 return batched_output_nodes_list

4.4 Reducing Maximal Memory Footprint

Reducing redundancy reduces the redundant data movement and
computation, but it is not sufficient to get the best performance
because of partitioning imbalance.

4.4.1 Why looking into imbalanced partitions? The load imbal-
ance can lead to large variance in memory usage when executing
micro-batches. The peak memory consumption of GNN training is
determined by the largest micro-batch. Table 2 gives two examples
of such load imbalance. The two examples use GraphSage with
dataset ogbn-arxiv and use the REG-based partitioning. Example 1
partitions the graph into two micro-batches, while Example 2 par-
titions it into four. In Example 1, the memory consumption of the
micro-batches differ by 10.4%, while Example 2, it differs by up to
31.9%. In the two examples, the second and the fourth micro-batches
determine the peak memory consumption respectively.

One may think that simple solutions such as random graph par-
tition can mitigate the load imbalance because it does not explicitly
control node distribution between micro-batches. However, as we
show Section 6.5, random partitioning (applied on output nodes,

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 2: Two examples with load imbalance.

2 batches 4 batches
(Example 1) (Example 2)
Batch id 0 1 0 1 2 3
Mem/GB | 1.91 2.13 0.97 | 1.04 | 0.79 | 1.17

based on that generate hierarchical bipartite) creates a large num-
ber of redundancy, which to an extent barely reduces the memory
consumption, especially when a graph topology is complex.

4.4.2 Source of Load Imbalance. To figure out what causes the
imbalanced partitions, we perform a deeper analysis on how state-
of-the-art GNN frameworks process batches, using DGL as an ex-
ample. Existing GNN frameworks often employ in-degree bucketing
algorithms to perform the aggregation operation, i.e., the nodes
with the same in-degrees are gathered into the same bucket (called
NodeBatch) to improve computation efficiency of aggregation [40].
However, such an algorithm creates challenges both in memory
management as the graph becomes larger and in the batch-level
partitioning.

Indegree-bucketing leads to the bucketing explosion and
partition imbalance. Figure 9 (a) shows the distribution of desti-
nation nodes in terms of in-degree. During the aggregation stage,
GNN would group nodes with the same in-degree into one bucket so
that the received messages in a bucket can be processed as a dense
tensor. However, this bucketing is often done for the first M de-
grees, where M is often a small value (e.g., < 10). The nodes whose
in-degrees are larger than M are bucketed into the last bucket. Such
a method does not create an issue when a graph is small, because
the connections (or in-degrees) in small graphs are often limited.
However, as the graph size increases, the in-degree often follows
a power law distribution and may have a long tail [1], where the
accumulated nodes that fall into this long tail become intractable.

The in-degree bucketing leads to a so called explosion of bucketing
problem, where the last bucket becomes much larger than the rest of
the buckets that represent lower in-degrees due to accumulated long
tail. When performing aggregation one NodeBatch after another,
the GPU memory consumption can be bounded by the last bucket
where the number of nodes is the largest among all buckets.

The in-degree explosion creates the load imbalance during the
batch-level partitioning. Figure 9 (b) shows the results of partition-
ing a batch into two micro-batches on GraphSAGE (using dataset
ogbn-arxiv) using the REG-based partitioning. The results show
that the micro-batch 1 has nearly 19% more nodes than the other
in the last bucket (the bucket 10). This is because the last bucket
has much more nodes than other buckets. The REG partitioning
cannot eliminate such imbalance.

4.4.3 Memory-aware Partitioning. One straightforward idea to ad-
dress the load imbalance problem is to further increase the number
of partitions. However, there is a major challenge in this approach:
the memory consumption of a batch in GNN does not follow a
linear relationship, making it difficult to know ahead of time how
many partitions are sufficient to reduce the maximal memory con-
sumption to meet a memory constraint. Although it is possible to
figure this out via trial-and-error if a partition strategy does not

Shuangyan Yang, Minjia Zhang, Wengian Dong and Dong Li

4‘1 -layer GraphSAGE using ogbn-arxiv
0*

g 3f S
] 88 Full batch §
2
G 17 .
o N N
= J g NN 3 0o
2 4 (g6 8 10
.
] . 00 Micro-batch 0 E
E o . B @ Micro-batch 1 %
o V-9 f |:| 7 B - 7
= H ‘ i 17 07 0z na 6z 0 11
2 4 ()6 8 10

of in-degree

Figure 9: (a) The in-degree distribution of destination nodes;
(b) The in-degree distribution for two micro-batches.

prevent OOM, it may largely waste computation in the retrying
process. To tackle this challenge, we introduce a memory-aware
re-partitioning algorithm that quickly decides the partition count
via an accurate estimation of the memory usage of a micro-batch
without triggering the expensive training cost. In the next, we de-
scribe how we estimate the memory usage of a micro-batch and
introduce a memory-aware batch-level partitioning algorithm.

Partition memory estimation. The memory consumption
is estimated by counting (1) the number of model parameters
(NPGNN), (2) the total dimensions of input features (Nj, X Hip), (3)
the number of output node labels (Nyy;), (4) the size of all blocks, (5)
the size of hidden layers’ output in GNN, (6) the size of intermediate
results from the aggregator, (7) the number of gradients, and (8) the
number of optimizer states. The definition of all parameters can be
found in Table 3.

While counting (1)-(3) are straightforward, the estimation for
(4)-(8) requires some explanation. The estimation of (4) is based on
a quantification of edges in all blocks (a block represents a bipartite
structure). The number of edges in a block is E. Since each edge in
a block is represented by two node IDs (the source and destination
node of the edge) and a weight (if there is any), hence, the size of a
block is E x 3.

n
The estimation of (5) is , (N; X h;), where n is the number of
i=0

hidden layers in GNN; N; and h; are the number of destination
nodes in each hidden layer, and the dimension of hidden feature in
each node.

The estimation of (6) depends on the type of the aggregator. If
the aggregator is LSTM, then the size of intermediate results for
the LSTM aggregator is estimated by Equation 5.

fanout
Z Li X Bi x Hx 18 (5)
i=1
The size of intermediate results of LSTM is dominated by the
product of the input sequence length and the input feature size
H. In our context, LSTM is applied to the nodes with various in-
degrees, but the in-degree is bounded by fanout. Given an in-degree

Betty: Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning

Table 3: Notation for memory estimation

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 4: Training datasets

Parameter | Description | | Dataset | #node features | #nodes | #edges |
NPGNN # of model parameters in GNN w/o aggregator Cora 1,433 2,708 10,556
NPagq # of model parameters in the aggregator Pubmed 500 19,717 44,338

Nin # of input nodes Reddit 602 232,965 114,615,892
H; Dimension of input feature ogbn_arxiv 128 169,343 2,315,598
Noutr # of output nodes ogbn_products | 100 2,449,029 | 61,859,140

h Hidden dimension of GNN model

n # of layers in the GNN model

E # of edges in a block dgl.to_block(). The blocks are needed for future graph opera-
L In-degree of an destination node tions during the GNN training.

B # of nodes share the same in-degree

K # of partitions (micro-batches)

L;, the number of nodes with the same in-degree L; is B;. L; X B;
gives the number of the nodes fed into LSTM. The constant 18 in
Equation 5 is an implementation-dependent. Using PyTorch, the
number of intermediate results generated per node is 18 [35]. Hence,
Equation 5 quantifies the number of intermediate results for LSTM.

The estimation of (7) is NPGNN + NPagq-

The estimation of (8) depends on the type of optimizer. For
the most popular optimizer Adam, the optimizer states are the
momentum and variances of the gradients. Hence, the estimation
of (8) is (NPgNN + NPAgg) X 2.

The memory allocation for (6) can be freed during the back-
ward propagation where the memory consumption for (7) starts to
dominate. Besides (6) and (7), the memory consumption of other
tenors remains stable throughout the training steps. Hence, the
peak memory consumption comes from the maximum of (6) and
(7) plus other tenors.

Batch re-partitioning based on memory estimation. After
K — way partitioning of REG, Betty estimates the memory con-
sumption of each micro-batch without execution on GPU. If the
micro-batch with the largest memory consumption violates the
memory capacity constraint, Betty tries (K + 1) — way partitioning
of REG and estimates the memory consumption again. The above
process stops until the memory consumption of all micro-batches
meets the memory capacity constraint.

5 IMPLEMENTATION

Betty is based on DGL and uses its APIs to implement the batch-
level graph partitioning and enable large-scale GNN training. Betty
is a Python-based module for DGL.

Graph partition. Betty implements the graph partition algo-
rithm (discussed in Section 4.3.2) as a DGL function, dgl.betty().
dgl.betty() employs dgl.adj_product_graph() to create REG
and split it with dgl.metis_partition(). dgl.betty() uses the
existing DGLgraph. in_edges() to get the indexes of source nodes
and edges for a given destination node, which is needed for graph
partition. Those indexes and the raw graph, after the partition,
are fed to dgl.edges_subgraph() to generate subgraphs in the
DGLgraph format. Those subgraphs are then used to generate
blocks (representations of bipartite structures in DGL) by using

SAGE+LSTM [7Z7ZZ] SAGE+Mean [Z777] SAGE+Pool
B2 LSTM, Betty Mean, Betty [ZZ%] Pool, Betty

m 30 30 T T
o224 - . - . 24 . .
= 20 20
S)
a0 . %
(5] &
> 0
%ean Pool LST 1 2 3 4 5
(a) aggregator (b) # of layers
30 30
24 24
20 20

10F [% % 10%

0 0
64 128 256 512 10
(c) hidden size

Memory/GB

15 20 800
(d)# of fanout

Figure 10: Betty breaks the memory capacity constraint in
Figure 2. This figure uses the same configurations as Figure 2.

Index mapping. In DGL, each node (or edge) can have multiple
indices, depending on the scope where nodes and edges are. Before
sampling, each node/edge can has a global index in the raw graph.
After sampling, each node/edge has a global index in the full-batch
graph. After the graph partition, each node/edge has a local index
in each micro-batch.

Using the global indices in the graph (i.e., the symbols dgl.NID
and dgl.EID) provided by DGL, Betty can retrieve node and edge in-
formation when working in the full-batch graph by using full_bat-
ch_block.srcdataldgl.NID]and full_batch_block.edatal[dg-
1.EID] respectively. Betty can also retrieve node and edge informa-
tion from the full batch graph when working in a micro-batch i by
using batch_i.srcdataldgl.NID]andbatch_i.edataldgl.EID]
(note that dgl.NID and dgl.EID refer to the indices in the scope
of the full-batch graph). However, there is no way to allow Betty
to retrieve node and edge information from the raw graph when
working in a micro-batch. To address the problem, Betty introduces
a dictionary to bookmark the relationship between the local indices
in the micro-batch and the global indices in the graph during the
block generation and after the graph partition.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

3-layer GraphSAGE+Mean using OGBN-products
fan-out=(25,35,40)

-

T T

- A
N O

better
Max memory consumption/GB

o w o ©

1 2 4 8 16 32 64
Number of batches

Figure 11: The reduction of max memory consumption of
GPU compared with the full-batch training and three graph
partition algorithms (i.e., range partition, random partition,
and Metis).

6 EVALUATION

Platform. We use a system with two Xeon E5-2698 v4 CPUs (40
cores running at 2.20 GHz) and an NVIDIA Quadro RTX 6000 GPUs.
We use CUDA 10.1/cuDNN 7.0 to run GNNs on NVIDIA GPUs.
We use Python 3.6, Pytorch [28] v1.7.1 and DGL [40] v0.7.1 for
model training. The RTX6000 we use only has 24 GB GPU memory.
Though one A100 can provides 80 GB GPU memory, it still cannot
meet the memory requirements for very large scale GNN training.
Workloads. We use five datasets (or five input graphs) with various
features, which are shown in Table 4. We use two GNN models,
GraphSage [6] and GAT [18].

6.1 Reduction of Peak Memory Consumption

Breaking the memory capacity wall. We re-evaluate the cases
in Figure 2 but with Betty. Figure 10 shows the results.

With Betty, all OOM cases are addressed. With Betty, we are
able to run a sophisticated aggregator LSTM (Figure 10.a) using
nine micro-batches; we can run the GNN model with more layers (4
and 5 layers) using 3 and 60 micro-batches respectively; we are able
to run the GNN model with larger hidden sizes (256 and 512) using
3 and 32 micro-batches respectively; we are also able to increase
fanout to 20 and 800 using 2 and 13 micro-batches respectively.

Comparison with other graph partition algorithms. Besides
using Betty, we use three common graph partition algorithms:
range partition, random partition, and Metis. The three partition
algorithms partition the graph based on the IDs of output nodes.
With the range partition, the space of output node IDs is evenly
and sequentially partitioned. With the random partition, the space
of output node IDs is evenly and randomly partitioned. With the
three partition algorithms, in each partition, the output nodes and
their one-hop neighbors are co-located in the same partition.

In general, Betty reduces max memory consumption by 16.3%,
10.5%, 27.2%, 30.98%, and 48.3% for datasets Cora, Pubmed, Red-
dit, ogbn-arxiv, and ogbn-products respectively, compared with
other graph partition methods. Figure 11 shows the results for
GraphSAGE model with the dataset OGBN-products with different
numbers of batches. The figure reveals that compared with other
partition algorithms(range, random and Metis), Betty reduces max

Shuangyan Yang, Minjia Zhang, Wengian Dong and Dong Li

Table 5: DGL v.s. Betty training Accuracy

l Dataset [Model [DGL / Acc (%) [Betty/ Acc (%)]

SAGE | 80.65 % 0.71 80.28 £ 0.73

Cora
GAT 80.40 + 1.17 78.24 £ 1.85
Pubmed SAGE | 77.12 £ 0.63 76.22 £ 0.32
GAT 76.89 £ 0.79 76.15 £ 0.89
. SAGE | 94.80 + 0.08 94.80 + 0.08
Reddit GAT | 89.73+223 | 89.61 279
ogbn-arxiv SAGE | 71.80 + 0.32 71.80 £ 0.32
GAT 69.52 £ 0.09 68.62 £ 0.10
ogbn-products | SAGE | 75.95 + 0.43 76.12 £ 0.36

memory consumption by 48.3% and 37.7% on average. This demon-
strates the effectiveness of Betty in reducing node redundancy. This
effectiveness comes from the quantification of redundancy and em-
bed it into the graph partition algorithm, which is missing in any
other partition algorithm.

Peak memory consumption vs. training time. As we de-
crease the batch size, Betty is able to reduce max memory con-
sumption as a cost of increasing training time on GPU (without
considering data transfer time). Micro-batches are executed sequen-
tially, hence increasing training time (compared with the full-batch
training). The increase of training time comes from the increase of
node redundancy shown in Section 6.5 and lower GPU utilization.
Compared with the traditional methods of using mini-batch train-
ing to break the wall, micro-batch training is 36.4% faster (using
2-layer GraphSAGE with the mean aggregator and OGBN-products)
and reduces hardware cost. There is a batch size where there is a
good balance between the reduction of peak memory consumption
and training time.

Figure 12 shows the trend of the reduction of memory consump-
tion and increase of training time as we increase the number of
batches. The configurations of GraphSage (such as the number of
layers and aggregator) for each dataset are carefully chosen such
that when the number of batches is 1, we can train the GNN without
OOM. The figure shows that depending on the GNN model topol-
ogy, the aggregator type, and dataset, the batch size that achieves
the good balance varies, and often in the range of 4-8.

6.2 Training Accuracy and Convergence

Table 5 shows the training accuracy for the original DGL using the
full-batch training, and DGL using Betty and micro-batch training.
GAT cannot use the ogbn-product dataset. Hence, there is no re-
sult for GAT using ogbn-product in Table 5. Compared with the
full-batch training, micro-batch training enabled by Betty has ig-
norable loss in training accuracy, because the micro-batch training
is mathematically equivalent to the full-batch training.

To study the model convergence, we train the GNN models with
all datasets, and present the convergence curves for GraphSage
with ogbn_arxiv, which are shown in Figure 13. The figure show
the convergence curves for the full-batch training and micro-batch
training with three different numbers of batches and with the same
model hyperparameters. The figure shows that the four curves are
very close to each other, no matter how we change the number of
batches. This result shows the model convergence is not impacted

Betty: Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning

-+~ Max memory consumption

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

—+— Training time

ogbn-arxiv Reddit Pubmed Cora ogbn-products c
g 2-layer GraphSAGE MEAN 4-layer GraphSAGE MEAN 2-layer GraphSAGE LSTM 2-layer GraphSAGE LSTM 1-layer GraphSAGE LSTM GEJ
S 00 8 5 12 T 6012 — 0.80.7 7 2 2
) I~ N S RS N - ‘ D g ‘ g
°a - 4 n : i -
5 £ 15 4 10 R B B I3 : :4 0.1 : KO'GO.G 7 159 g
=3 3 . i S |3
&ls10 ‘ R 104 s I
3 12 ‘ 05 3
;5 : 8 T 20.08 o2 2
s 11 ST me / 10, =
é 0 e 10 GHP/A —00.06 T lg 04 GE)
Vé NV X R0 o) NV X R0 NV X R0 o) Z\(
= (a) (b) &) o
Number of batches =

Figure 12: The tendency of peak memory consumption and training time per epoch as the number of micro batches increases.

3-layer GraphSAGE+Mean using OGBN-arxiv

80
;\;70 p——— i i
; 60 _— N
&)
® 50 —
8 40 full batch training
@ 30 / — — —Micro batch training-- 2 batches
B 20 / fffff Micro batch training-- 4 batches
g — Micro batch training-- 8 batches

o

10 30 50 70 9 110 130 150 170 190
#Epoches

Figure 13: Convergence curves for full-batch training and
micro-batch training with three different numbers of
batches.

by Betty and micro-batch training. Using all other datasets, we can
see the same results.

6.3 Training Time

We evaluate the training time (including data transfer) with various
numbers of batches. Since using Betty, there is no training accuracy
loss and the convergence curve remains the same as using the full-
batch training, we report the training time in one epoch. Figure 14
shows the results. We choose GraphSage model with an aggregator
Mean and dataset ogbn-products. Among all cases that do not cause
OOM when the number of batches is one, this case has the largest
memory consumption.

We notice that when the number of batches becomes larger, the
training time becomes larger. This is because a larger number of
batches leads to higher node redundancy. For example, when the
number of batches is 64, the node redundancy increases by 440%,
compared with the case when the number of batches is 1. Also, the
data transfer time increases because of lower GPU bus utilization.

6.4 Computation Efficiency

We evaluate the computation efficiency of Betty. The computation
efficiency is defined as the total number of nodes in all micro-
batches divided by one epoch time. Using micro-batches, node
redundancy is created because of the block structures, although
Betty reduces the node redundancy. With the node redundancy, we

3-layer GraphSAGE+Mean using OGBN-products

fan-out=(25,35,40)

50 I I I I

I Training time w/o data movement ‘

40 | Data movement time j
:

o
3|8 Bar-1: Range
o3 | Bar
kA 30 Bar-2: %andom
< g 20 Bar-3: Metis

c Bar-4: Betty

=)

10

0

1 2 4 8 16 32 64
Number of batches

Figure 14: Training time + data movement time variance
when we use different numbers of batches. We use GraphSage
with the aggregator Mean and dataset ogbn-products.

3-layer GraphSAGE+Mean using OGBN-products
6 x107 fanout=(25,35,40)

A

.;-—".':N

--A-Random |
--8-- Metis
Betty

|

!
4 8 16 32 64
Number of Batches

o

-
N

better
Computation Efficiency ~

N e

|

|

O !

Q

a3 i

S

Figure 15: Evaluation of computation efficiency.

want to see if the computation efficiency is decreased, compared
with using the full-batch training. Figure 15 shows the results.
The figure reveals that as we change the number of batches, the
computation efficiency of Betty remains the same as that of the full-
batch training, although the number of redundant nodes increases.
This indicates that Betty does not unproportionally increase the
training time, leading to stable computation efficiency.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Shuangyan Yang, Minjia Zhang, Wengian Dong and Dong Li

Table 6: Time and Memory consumption between Micro-batch and Mini-batch train (mean aggregator)

Total number of the first layer input | Training time per epoch/(sec) ‘ CUDA Memory consumption/(GB) ‘

of batches | Micro-batch Mini-batch Micro-batch Mini-batch Micro-batch Mini-batch
1 1,829,066 1,829,275 0.49 0.47 6.38 6.37
2 2,277,172 3,318,923 0.5841 0.6213 3.56 491
4 2,964,874 5,810,587 0.7551 1.0331 2.12 3.52
8 4,061,037 9,665,382 0.8535 1.3364 1.27 2.35
16 4,980,601 14,997,172 1.2219 2.4867 0.71 1.47
32 6,335,635 21,424,398 1.6699 3.4034 0.46 0.87
64 7,820,693 27,988,444 2.5511 4.8501 0.29 0.50

3-layer GraphSAGE+Mean using OGBN-products
fan-out=(25,35,40)

60 I I
S50 ERange
B §40 | | I Random
E B30 | | I Metis
" [IBetty
020
210
"5 0 [T Tl
\e 2 4 8 16 32 64

Number of batches

Figure 16: Evaluation of input nodes redundancy

Table 7: Memory Estimation Error for the LSTM aggregator

Dataset Fanout | # of batches [Error rate(%) ‘
Cora 10 4 8 6.9 7.4
pubmed 10 4 8 7.6 8.2
Reddit 10 4 8 5.4 6.2
ogbn-arxiv 10 4 8 3.5 4.0
ogbn-products 10 4 8 3.2 3.8

6.5 Evaluation of Removing Node Redundancy

We evaluate the effectiveness of the graph partition in Betty, com-
pared with the range, random, and Metis partition algorithms. Fig-
ure 16 shows the results. Using 64 batches, the number of redundant
input nodes for the range, random, Metis and Betty is 118,253,165,
118,269,959, 118,281,306 and 5,808,923 respectively, compared with
using two batches. Betty reduces the node redundancy by up to
49.2% and 28.4% on average. In all cases, Betty leads to the smallest
number of redundant nodes. This benefit is especially pronounced
when the number of batches is large. Such large benefit demonstrate
the effectiveness of using REG.

6.6 Time and Memory reduction comparing
with mini-batch

Table 6 shows an example about the training time and memory

consumption between micro-batch and mini-batch. The dataset

used is OGBN-products, the model is 2-layer GraphSAGE with

mean aggregator. And the size of fanout is 10,25.

We observe that overall the training time (without data prepar-
ing) and memory consumption of micro-batch is smaller than
mini-batch based training. The difference becomes larger when
the number of batches increases. The time and memory reduction
primarily comes from the node redundancy reduction. For example,
when the number of batches is 64, the input node redundancy of
Betty is 7820693/1829066 ~ 4.2, which is significantly smaller in
comparison with that of mini-batch train based training, which is
27988444 /1829275 ~ 15.3.

6.7 Evaluation of Memory Estimation Error

We present the memory estimation error for the LSTM aggregator in
Table 7. The LSTM aggregator is memory consuming and estimating
its memory consumption is more challenging than other common
aggregators (e.g., pooling and Mean). We use the hidden size 256
in LSTM and the LSTM has 1 layer in our evaluation. In general,
the error rate of our estimation is low (less than 8% in all cases).
Though OOM rarely happens in our evaluation because the error
rate of the estimation is low, it can still be triggered in theory. In
the future, we plan to incorporate the estimation error into Betty’s
batch re-partitioning strategy if Betty detects that a micro-batch is
getting close to the memory capacity.

7 CONCLUSIONS

GNN has been becoming a powerful tool to learn from graph-
structured data. Continuing the success of GNN depends on not
only GPU model innovation, but also system software support. In
this paper, we target on a specific system problem faced by GNN: the
memory capacity problem. We introduce a system support (named
Betty) to enable GNN training with large and complex graphs, based
on the idea of micro-batches to partition the large graph and fit
into GPU memory. The method of graph partitioning in Betty is
aligned with multi-level bipartite in GNN training. Recognizing
the challenges brought by the bipartite structure for redundancy
reduction and load balance, we introduce a new graph partition
algorithm and system implementation to support the GNN training
based on micro-batches. We show that Betty allows GNN training
with billion-scale graphs on single GPU without OOM and losing
training accuracy. As for future work, we plan to optimize the REG
construction and graph partition to reduce the partitioning over-
head. We also plan to extend Betty to multi-GPU training to speed
up the training process.

Betty: Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive com-
ments. This work was partially supported by U.S. National Science
Foundation (OAC-2104116, CNS-1617967, CCF-1553645 and CCF-
1718194) and the Chameleon Cloud.

A ARTIFACT APPENDIX
A.1 Abstract

This artifact includes the source codes and expected experimental
data for replicating the evaluations in this paper.

We implement figure 2 to denote the OOM situation of current
advanced GNN training, and applied figure 10 to illustrate Betty
break the memory wall. We implement memory consumption es-
timation during the workflow of Betty, shown in figure 5. We use
figure 12 to denote the tendency of peak memory consumption
and training time per epoch as the number of micro batches in-
creases. And the model convergence is not impacted by Betty and
micro-batch training can be proved by the figure 13.

The framework of Betty is developed upon DGL(pytorch back-
end). The requirements: pytorch >= 1.7, DGL >= 0.7. The other soft-
ware dependency include sortedcontainers, pyvis, pynvml, tqdm,
pymetis, seaborn.

Our experiments result denoted in paper were collected from the
machine with a RTX6000 GPU(24 GB memory) and Intel(R) Xeon(R)
Gold 6126 CPU @ 2.60GHz. You can use a different configuration
with at least one GPU.

A.2 Artifact Summary

e Model: In artifact evaluation, we mainly use GraphSAGE model to
show the performance of Betty.

Data set: The datasets used are ogbn-arxiv and ogbn-products,
which can be download directly from Open Graph Benchmark(OGB)
website.

Run-time environment: Ubuntu18.04, CUDA 11.2 pytorch >= 1.7,
DGL >= 0.7. It’s also compatible with Ubuntu16.04, CUDA 10.1, the
details can be found in github repo README.md ’install require-
ments’. Here, python 3.6 is the basic configuration in requirements.

You also can use other python version, e.g. python3.8, but you need
configure the corresponding pytorch and dgl version.

Hardware: At least one GPU.

e Metrics: GPU memory usage and execution time.

Experiments: To save time, we choose figure 5, 9, 2&10, 12, 13 to
denote that Betty can reduce max memory consumption efficiently

without change the training convergence.
How much disk space required (approximately)?: 60GB.

How much time is needed to prepare workflow (approxi-
mately)?: 1 hour.

e How much time is needed to complete experiments (approxi-
mately)?: a few hours.

Publicly available?: Yes.

Code licenses (if publicly available)?: GNU General Public Li-
cense v3.0

Data licenses (if publicly available)?: MIT License

A.3 Description

A.3.1 How to access. You can obtain the artifact from here .

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Betty

datasets

Figures
pytorch
README.md

L_ requirements.sh
Figure 17: Directory structure of the artifact.

A.3.2 Hardware dependencies. The results denoted in paper were
collected from the machine with a single RTX6000 GPU(24 GB
memory), when the GPU you use with a different memory limi-
tation, the OOM situation of mini batch train might be different.
And to replicate the largest benchmark requires up to 60GB RAM.
Except above, there are no other special hardware requirements.

A.3.3 Software dependencies. Ubuntu18.04, CUDA 11.2, python 3.6,
pytorch 1.7 or higher, DGL 0.7 or higher. The main softwares will be
used includes DGL, pytorch,sortedcontainers, pyvis, pynvml, tqdm,
pymetis. The different version of software might have incompatible
problems, please take care it when you install software.

A.3.4 Data sets. The datasets (OGBN-arxiv and OGBN-products)
we use in artifact can be download directly from Open Graph Bench-
mark(OGB) Dataset.

A.3.5 Models. The model used in artifact is GraphSAGE with
different aggregator, number of layers, hidden size and so on.

A.4 Installation

Obtain the artifact (see Section A.3.1), extract the archive files.

Then, download the benchmarks and generate full batch data into
folder /Betty/dataset/. You can execute the bash file gen_data. sh
in folder /Betty/pytorch/micro_batch_train/ with fanout 10,25,
then you can find the folder /Betty/dataset/fan_out_10, 25 con-
tains pickle files of full batch data after sampling.

A.5 Experiment workflow

We display the directory structure of our artifact in Figure 17. The
directory pytorch contains all necessary files for the micro-batch
training and mini-batch training. In folder micro_batch_train,
graph_partitioner.py contains our implementation of redun-
dancy embedded graph partitioning. block_dataloader.py is im-
plemented to construct the micro-batch based on the partitioning
results of REG. The folder Figures contains these important fig-
ures for analysis and performance evaluation. In Section A.6, we
describe how these scripts to replicate the results shown in these
figures to help performance evaluation.

A.6 Evaluation and expected results

As we choose scripts of some figures to replicate the evaluation,
hence, the commands need to be executed are mainly located in
the folder Figures. For example, in figurel12/, you can execute
bash file to get the result of full batch, 2, 4, 8, 16, 32 micro batches
and save result to folder /Betty/Figures/figurel12/log/, then

https://github.com/HaibaraAiChan/Betty#readme
https://github.com/HaibaraAiChan/Betty#readme
https://ogb.stanford.edu/docs/nodeprop/
https://ogb.stanford.edu/docs/nodeprop/

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

execute data_collection.py to summarize the max memory and
time consumption data of different micro batches training. These
data are stored into a table shown in README.md in figure12/.

The output of the executions will be stored in 1og/ folder in each
figure folder, the log of expected results were stored in log/bak/
folder, the figures and/or tables of expected results are shown in
each figure folder.

More details you can find in README . md in each figure folder.

REFERENCES

[1] Abraham Addisie, Hiwot Kassa, Opeoluwa Matthews, and Valeria Bertacco. 2018.
Heterogeneous memory subsystem for natural graph analytics. In 2018 IEEE
International Symposium on Workload Characterization (IISWC). IEEE, 134-145.
https://doi.org/10.1109/IISWC.2018.8573480

[2] Ben Bogin, Matt Gardner, and Jonathan Berant. 2019. Representing schema
structure with graph neural networks for text-to-SQL parsing. arXiv preprint
arXiv:1905.06241 (2019). https://doi.org/10.1145/3534678.3539294

[3] DGL. [n.d.]. Deep Graph Library. https://www.dgl.ai/.

] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019). https://doi.org/10.
48550/arXiv.1903.02428
[5] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed deep graph

learning at scale. In 15th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 21). 551-568.

[6] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017). https://doi.org/doi/10.5555/3294771.3294869

[7] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and Venkatesh
Akella. 2020. Autotm: Automatic tensor movement in heterogeneous memory
systems using integer linear programming. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 875-890. https://doi.org/10.1145/3373376.3378465

[8] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure
Leskovec. 2021. OGB-LSC: A Large-Scale Challenge for Machine Learning on
Graphs. CoRR abs/2103.09430 (2021). https://doi.org/10.48550/arXiv.2103.09430

[9] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,

Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for

machine learning on graphs. Advances in neural information processing systems

33 (2020), 22118-22133. https://doi.org/10.48550/arXiv.2005.00687

Yaochen Hu, Amit Levi, Ishaan Kumar, Yingxue Zhang, and Mark Coates. 2020.

On Batch-size Selection for Stochastic Training for Graph Neural Networks.

(2020).

Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. Swapadvisor: Pushing deep

learning beyond the gpu memory limit via smart swapping. In Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems. 1341-1355. https://doi.org/10.1145/3373376.

3378530

Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and

Alex Aiken. 2017. A Distributed Multi-GPU System for Fast Graph Process-

ing. Proc. VLDB Endow. 11, 3 (2017), 297-310. https://doi.org/10.14778/3157794.

3157799

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improving

the accuracy, scalability, and performance of graph neural networks with roc.

Proceedings of Machine Learning and Systems 2 (2020), 187-198.

[14] George Karypis and Vipin Kumar. 1995. METIS-unstructured graph partitioning
and sparse matrix ordering system, version 2.0. (1995).

[15] Brian W Kernighan and Shen Lin. 1970. An efficient heuristic procedure for
partitioning graphs. The Bell system technical journal 49, 2 (1970), 291-307.
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

[16] Diederik P. Kingma and Jimmy Ba. 2018. Graph Attention Networks. In Interna-
tional Conference for Learning Representations (ICLR). https://doi.org/10.48550/
arXiv.1710.10903

[17] Tung D Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya. 2018.
Tflms: Large model support in tensorflow by graph rewriting. arXiv preprint
arXiv:1807.02037 (2018). https://doi.org/10.48550/arXiv.1807.02037

[18] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. Graph Classification Using
Structural Attention. In International Conference on Knowledge Discovery and
Data Mining. https://doi.org/doi/pdf/10.1145/3219819.3219980

[19] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large scale graph
embedding system. Proceedings of Machine Learning and Systems 1 (2019), 120—
131. https://doi.org/10.48550/arXiv.1903.12287

[20] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020. Deepergcn:
All you need to train deeper gens. arXiv preprint arXiv:2006.07739 (2020). https:

[10

[11

[12

[13

[21

[22

[23

[24

[25

[26

[27]

(28]

[29]

(32]

(33]

[34

[35

[36

@
=

[38

[39

Shuangyan Yang, Minjia Zhang, Wengian Dong and Dong Li

//doi.org/10.48550/arXiv.2006.07739

Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020. PaGraph:
Scaling GNN Training on Large Graphs via Computation-Aware Caching. In
Proceedings of the 11th ACM Symposium on Cloud Computing. https://doi.org/10.
1145/3419111.3421281

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph Hellerstein. 2010. GraphLab: A New Framework for Parallel Machine
Learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence. https://doi.org/doi/10.5555/3023549.3023589

Zhilong Lu, Weifeng Lv, Zhipu Xie, Bowen Du, and Runhe Huang. 2019. Lever-
aging Graph Neural Network With LSTM For Traffic Speed Prediction. In 2019
IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Com-
puting, Scalable Computing & Communications, Cloud & Big Data Computing,
Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CB-
DCom/IOP/SCI). IEEE, 74-81. https://doi.org/10.1109/SmartWorld-UIC-ATC-
SCALCOM-IOP-SCI.2019.00056

Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. 2019. {NeuGraph }: Parallel Deep Neural Network Computation on
Large Graphs. In 2019 USENIX Annual Technical Conference (USENIX ATC 19).
443-458. https://doi.org/doi/10.5555/3358807.3358845

Fragkiskos D Malliaros and Michalis Vazirgiannis. 2013. Clustering and com-
munity detection in directed networks: A survey. Physics reports 533, 4 (2013),
95-142. https://doi.org/10.1016/j.physrep.2013.08.002

Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evan-
gelos Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nesreen K Ahmed,
and Sasikanth Avancha. 2021. Distgnn: Scalable distributed training for large-
scale graph neural networks. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1-14. https:
//doi.org/10.1145/3476483

Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. 2017. Training
deeper models by GPU memory optimization on TensorFlow. In Proc. of ML
Systems Workshop in NIPS, Vol. 7.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019). https://doi.org/doi/10.5555/
3454287.3455008

Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan
Yang, and Xuehai Qian. 2020. Capuchin: Tensor-based gpu memory management
for deep learning. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems. 891-905.
https://doi.org/10.1145/3373376.3378505

PyG. [n.d.]. PyTorch Geometric. https://pytorch-geometric.readthedocs.io.
Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. 2021. Zero-infinity: Breaking the gpu memory wall for extreme scale deep
learning. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-14. https://doi.org/10.1145/
3458817.3476205

Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li. 2020.
Sentinel: Efficient Tensor Migration and Allocation on Heterogeneous Memory
Systems for Deep Learning. In International Symposium on High Performance
Computer Architecture (HPCA). https://doi.org/10.1109/HPCA51647.2021.00057
Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-Offload:
Democratizing Billion-Scale Model Training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 551-564. https://doi.org/10.48550/arXiv.2101.06840
Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W
Keckler. 2016. vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1-13. https://doi.org/doi/10.
5555/3195638.3195660

Hagsim Sak, Andrew Senior, and Francoise Beaufays. 2014. Long short-term mem-
ory based recurrent neural network architectures for large vocabulary speech
recognition. arXiv preprint arXiv:1402.1128 (2014). https://doi.org/10.48550/arXiv.
1402.1128

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. 2017. Modeling Relational Data with Graph Convolu-
tional Networks. CoRR abs/1703.06103 (2017). https://doi.org/10.48550/arXiv.
1703.06103

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Magazine
29,3 (2008), 93-106. https://doi.org/10.1609/aimag.v29i3.2157

Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, and Tieniu Tan. 2019. An
attention enhanced graph convolutional Istm network for skeleton-based action
recognition. In proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 1227-1236. https://doi.org/10.48550/arXiv.1902.09130
Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,
Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dynamic GPU Memory

https://github.com/HaibaraAiChan/Betty/tree/master/Figures/figure12#readme
https://doi.org/10.1109/IISWC.2018.8573480
https://doi.org/10.1145/3534678.3539294
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/doi/10.5555/3294771.3294869
https://doi.org/10.1145/3373376.3378465
https://doi.org/10.48550/arXiv.2103.09430
https://doi.org/10.48550/arXiv.2005.00687
https://doi.org/10.1145/3373376.3378530
https://doi.org/10.1145/3373376.3378530
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1807.02037
https://doi.org/doi/pdf/10.1145/3219819.3219980
https://doi.org/10.48550/arXiv.1903.12287
https://doi.org/10.48550/arXiv.2006.07739
https://doi.org/10.48550/arXiv.2006.07739
https://doi.org/10.1145/3419111.3421281
https://doi.org/10.1145/3419111.3421281
https://doi.org/doi/10.5555/3023549.3023589
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00056
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00056
https://doi.org/doi/10.5555/3358807.3358845
https://doi.org/10.1016/j.physrep.2013.08.002
https://doi.org/10.1145/3476483
https://doi.org/10.1145/3476483
https://doi.org/doi/10.5555/3454287.3455008
https://doi.org/doi/10.5555/3454287.3455008
https://doi.org/10.1145/3373376.3378505
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1109/HPCA51647.2021.00057
https://doi.org/10.48550/arXiv.2101.06840
https://doi.org/doi/10.5555/3195638.3195660
https://doi.org/doi/10.5555/3195638.3195660
https://doi.org/10.48550/arXiv.1402.1128
https://doi.org/10.48550/arXiv.1402.1128
https://doi.org/10.48550/arXiv.1703.06103
https://doi.org/10.48550/arXiv.1703.06103
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.48550/arXiv.1902.09130

Betty: Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning

Management for Training Deep Neural Networks. In Proceedings of the 23rd ACM
SIGPLAN symposium on principles and practice of parallel programming. 41-53.

https://doi.org/10.1145/3178487.3178491
[40

arXiv:1909.01315 (2019). https://doi.org/10.48550/arXiv.1909.01315
[41

are Graph Neural Networks? arXiv preprint arXiv:1810.00826 (2018).
//doi.org/10.48550/arXiv.1810.00826

[42] Hongxia Yang. 2019. Aligraph: A comprehensive graph neural network platform.
In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining. 3165-3166. https://doi.org/10.14778/3352063.3352127

Lizhi Zhang, Zhiquan Lai, Yu Tang, Dongsheng Li, Feng Liu, and Xiaochun
Luo. 2021. PCGraph: Accelerating GNN Inference on Large Graphs via Parti-
tion Caching. In 2021 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Com-
munications, Social Computing & Networking (ISPA/BDCloud/SocialCom/Sus-
tainCom). IEEE, 279-287. https://doi.org/10.1109/ISPA-BDCloud-Social Com-

[43

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep Graph Library: A Graph-
centric, Highly-performant Package for Graph Neural Networks. arXiv preprint

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
https:

[44

[45

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

SustainCom52081.2021.00048

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. Distdgl: distributed graph neural
network training for billion-scale graphs. In 2020 IEEE/ACM 10th Workshop on
Irregular Applications: Architectures and Algorithms (IA3). IEEE, 36-44. https:
//doi.org/10.1109/IA351965.2020.00011

Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, Qidong Su, Min-
jie Wang, Chao Ma, and George Karypis. 2021. Distributed hybrid CPU and
GPU training for graph neural networks on billion-scale graphs. arXiv preprint
arXiv:2112.15345 (2021). https://doi.org/10.48550/arXiv.2112.15345

Ao Zhou, Jianlei Yang, Yeqi Gao, Tong Qiao, Yingjie Qi, Xiaoyi Wang, Yunli Chen,
Pengcheng Dai, Weisheng Zhao, and Chunming Hu. 2021. Optimizing memory
efficiency of graph neural networks on edge computing platforms. arXiv preprint
arXiv:2104.03058 (2021). https://doi.org/10.1109/RTAS52030.2021.00048

Received 2022-07-07; accepted 2022-09-22

https://doi.org/10.1145/3178487.3178491
https://doi.org/10.48550/arXiv.1909.01315
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.14778/3352063.3352127
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00048
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00048
https://doi.org/10.1109/IA351965.2020.00011
https://doi.org/10.1109/IA351965.2020.00011
https://doi.org/10.48550/arXiv.2112.15345
https://doi.org/10.1109/RTAS52030.2021.00048

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 GNN Preliminaries
	2.2 GNN Framework
	2.3 Removing Memory Capacity Wall for DNN Training

	3 GNN Workload Analysis
	3.1 Memory Capacity Bottleneck
	3.2 Memory Consumption Analysis
	3.3 Reducing Batch Size to Remove Memory Capacity Bottleneck

	4 Design
	4.1 Overview
	4.2 Batch-Level Partitioning
	4.3 Redundancy Reduction
	4.4 Reducing Maximal Memory Footprint

	5 Implementation
	6 Evaluation
	6.1 Reduction of Peak Memory Consumption
	6.2 Training Accuracy and Convergence
	6.3 Training Time
	6.4 Computation Efficiency
	6.5 Evaluation of Removing Node Redundancy
	6.6 Time and Memory reduction comparing with mini-batch
	6.7 Evaluation of Memory Estimation Error

	7 Conclusions
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Summary
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

