
Auto-HPCnet: An Automatic Framework to Build Neural
Network-based Surrogate for High-Performance Computing

Applications
Wenqian Dong

Florida International University and
University of California, Merced

Miami, Florida, USA
wdong@fiu.edu

Gokcen Kestor
Pacific Northwest National Laboratory

Richland, Washington, USA
gokcen.kestor@pnnl.gov

Dong Li
University of California, Merced

Merced, California, USA
dli35@ucmerced.edu

ABSTRACT
High-performance computing communities are increasingly adopt-
ing Neural Networks (NN) as surrogate models in their applications
to generate scientific insights. Replacing an execution phase in the
application with NN models can bring significant performance im-
provement. However, there is a lack of tools that can help domain
scientists automatically apply NN-based surrogate models to HPC
applications. We introduce a framework, named Auto-HPCnet, to
democratize the usage of NN-based surrogates. Auto-HPCnet is
the first end-to-end framework that makes past proposals for the
NN-based surrogate model practical and disciplined. Auto-HPCnet
introduces a workflow to address unique challenges when apply-
ing the approximation, such as feature acquisition and meeting the
application-specific constraint on the quality of final computation
outcome. We show that Auto-HPCnet can leverage NN for a set of
HPC applications and achieve 5.50 speedup on average (up to 16.8
speedup and with data preparation cost included) while meeting the
application-specific constraint on the final computation quality.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; Neural net-
works; Model development and analysis.

ACM Reference Format:
Wenqian Dong, Gokcen Kestor, and Dong Li. 2023. Auto-HPCnet: An Au-
tomatic Framework to Build Neural Network-based Surrogate for High-
Performance Computing Applications. In Proceedings of the 32nd Interna-
tional Symposium on High-Performance Parallel and Distributed Computing
(HPDC ’23), June 16–23, 2023, Orlando, FL, USA. ACM, New York, NY,
USA, 14 pages.

1 INTRODUCTION
Many scientific simulations are complex and often used as a tool to
obtain accurate and high-fidelity information about physical systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC ’23, June 16–23, 2023, Orlando, FL, USA.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0155-9/23/06. . . $15.00

However, those simulations often involve physics-based, closed-
formed expression that can be evaluated in a finite number of stan-
dard operations. Those operations, which may come from a numer-
ical solvers, can be time-consuming and difficult to be ported to
emerging hardware (e.g., GPU-like accelerators).

The neural network-based surrogate model can address the above
problem and recently shows its power in a wide range of HPC
applications (e.g., earth systems [1], climate science [2, 3], turbu-
lence modeling [4–6], computational physics [7], cyberphysical
systems [8], material discovery [9–11], quantum chemistry [12, 13],
biological sciences [14–16], and hydrology [17, 18]). The neural
network-based surrogate model replaces a numerical solver or an
execution phase (e.g., PCG [19] and FFT [20]) in the application
with a neural network (NN) model. The NN model uses the same
input/output as the solver or the execution phase, but brings large per-
formance improvement to the application without violating numeri-
cal simulation correctness and stableness [19–22]. Using NN-based
surrogate models, domain scientists are able to port the application to
GPU (or other accelerators) that run NN workloads efficiently, even
though the original application does not have any accelerator-based
implementation. Even better, the NN-based surrogate models can be
optimized by deterministic choices, such as the number of layers in
NN and neuron size, to balance model prediction accuracy and cost.

Although using NN-based surrogate models to accelerate sci-
entific simulations is promising, there is a lack of efforts that can
automate the process of applying the NN-based surrogate models
to scientific simulations (HPC applications). In practice, once the
domain scientist selects a numerical solver in an HPC application to
be accelerated by NN techniques, she has to manually (1) find ap-
propriate input/output features of the to-be-replaced code region, (2)
inject various input instances to the code region and collect the appli-
cation’s responding results (to be used as the ground truth to train the
NN-based surrogate model), (3) determine the type of the NN model,
(4) determine the NN topology (e.g., #layers and #neurons), and (5)
apply the NN-based surrogate model to the target application and
test the model performance. The above process is labor-intensive,
and could be repeated multiple times before the NN-based surrogate
model is finalized. As a result, there is a large gap between domain
scientists and the usage of the NN-based surrogate model.

In this paper, we introduce Auto-HPCnet, to democratize the
usage of NN-based surrogate models in HPC applications. Auto-
HPCnet is the first end-to-end framework that makes past proposals
for building NN-based surrogate models practical and disciplined.

HPDC ’23, June 16–23, 2023, Orlando, FL, USA. Wenqian Dong, Gokcen Kestor, & Dong Li

Scientific

Applications

(Fortran|C|C++
|Python)

Trace Generation

Input/Output
Identification

Compiler-based

Extractor

Training Samples

2D Neural Architecture Search

B
a

y
esia

n
 O

p
tim

iza
tio

n

(s.t.
in

feren
ce co

st a
n

d

q
u

a
lity

 d
eg

ra
d

a
tio

n
)

Input Dimension Tuning

Customized
Autoencoding

Model Morphism
(e.g., #layers, #hidden dim)

Model Topology Search

#Input Dim Model Perf

Feature Reduction

Format Adaption for
ML framework

Customized Autoencoder

Quality Degradation
Analysis Surrogate

model GPU

Scientific Applications
(An example code in Listing 1)

In-memory Data Store

Inference Server
(An example code in Listing 2)

Request

Invoke Inference results

Response

Offline Surrogate Model Construction Online Surrogate Inference

Sample Collection

Figure 1: AutoHPCnet’s workflow

Auto-HPCnet is based on our observations on multiple challenges
of applying NN-based surrogate models in practice.

First, identifying and collecting the input/output features of
the NN-based surrogate model is difficult. In a surrogate model,
we must keep the same inputs/outputs as those of the to-be-replaced
code region. The input variables (input features) are read inside
the code region to update other variables; the output variables are
updated in the code region and used after the code region. However,
traditional NN-based surrogate models require domain scientists to
provide highly relevant or well-designed input/output features, based
on their extensive domain knowledge. Also, using the knowledge
to identify features can introduce redundant input features, which
makes the NN model heavy, or lose important output features, which
leads to the crash or failure of the application.

Second, removing redundancy elements (e.g., zero elements)
in sparse input variables of the NN model to construct an effi-
cient but accurate NN model is a challenge. In HPC applications,
we observe that input variables are usually sparse matrices stored
in the format of Coordinate list (COO), Compressed Sparse Row
(CSR), or Compressed Row Storage (CRS). However, despite being
state-of-the-art DNN frameworks, PyTorch and TensorFlow have
limited support for NN model training on sparse inputs, specifically
when it comes to techniques like backpropagation. The existing
DNN frameworks do not provide gradient descent functions to pro-
cess the sparse matrices with common formats like CSR. Because of
the lack of support for sparse matrices, it is inevitable to introduce
transformations between the sparse format (COO, CSR, or CRS) and
the dense format (a full matrix padding with zero elements). Such
a transformation includes unrolling and re-construction processes,
which introduces computation inefficiency. Also, the dense format
causes storage inefficiency. For example, in NPB conjugate gradient
application [23], the size of a single sparse matrix can increase 14×
after re-construction.

Third, the feature reduction and selection of NN model topol-
ogy are tightly coupled, and how to coordinate the two processes
to minimize execution time and maximize the accuracy of the
NN model is a challenge. The NN model topology refers to the
number of network layers, the type of each layer (e.g., fully con-
nected, convolution, deconvolution, or recurrent), and the number of
neurons in each layer. Both the number of features and NN model
topology impact model execution time and accuracy. The number of
features determines the topology of the first layer in the NN model
and impacts the design of the following layers; on the other hand, the

topology selection of the NN model reflects feature eligibility. The
existing Neural Architecture Search (NAS) methods [24–26] do not
consider such interaction between the number of features and NN
topology. Also, most of them consume text, audio, and images as
model input, and have difficulty consuming data structures in HPC
applications as input.

Fourth, how to enable the automatic construction of NN-based
surrogate models and allow the user to efficiently explore the
usage of surrogate models in a given HPC application is a chal-
lenge. This challenge includes how to build the whole workflow of
finding NN models and making the workflow easy to use; this chal-
lenge also includes how to maximize the performance benefit while
minimizing the user efforts, and how to integrate the automation into
the user’s decision-making process of using the NN-based surrogate
models.

To address the above problems, we propose, Auto-HPCnet, a
framework to construct NN-based surrogate models for HPC appli-
cations. Fig. 1 depicts Auto-HPCnet. (1) To address the first problem
on the identification of input/output variables of the code region to
use the NN model, Auto-HPCnet introduces a set of LLVM-based
tools (labeled as Compiler-based Extractor in Fig. 1). Those tools
instrument load and store instructions to trace memory read/write
operations and enable the generation of a tree-based data dependency
graph based on dynamic profiling; the tools also automatically ana-
lyze the graph to identify input/output and generate training samples
based on the identified inputs/outputs.
(2) To address the second problem on the large sparse matrix of the
NN model, Auto-HPCnet introduces an autoencoder-based feature
reduction, i.e., Customized Autoencoder in Fig. 1. This mechanism
provides painless support for the sparse matrix. During the offline
training, the autoencoder adopts a gradient checkpoint technique
to address the GPU memory limitation, which stores snapshots of
the autoencoder parameters at the forward time to save memory
space. During the online usage, the autoencoder uses a “TensorFlow
embedding API” to directly take sparse matrices as input without
unrolling effort.
(3) To address the third problem of coordinating feature reduction
and selection of NN model topology, Auto-HPCnet introduces a 2D
neural architecture search. This strategy is automated. At the high
level of this search process (input dimension tuning), we use the
Bayesian optimization to decide the number of features; at the low
level (the model topology search), we use another Bayesian optimiza-
tion to decide the NN topology using an existing AutoML framework

Auto-HPCnet HPDC ’23, June 16–23, 2023, Orlando, FL, USA.

(particularly Autokeras [24]). The low level of the search is based
on the decision of the high level. The two levels work iteratively and
coordinately to consider the impact of both feature reduction and
NN topology. Furthermore, we consider both execution time and
correctness of using the NN-based surrogate model during the 2D
neural architecture search. We introduce a user-given threshold as an
application-specific metric and incorporate the metric into the search
of the NN model, which ensures the correctness of the application’s
final output.
(4) Putting together a set of tools and strategies, Auto-HPCnet builds
a workflow that relieves the domain scientist from labor-intensive
work to apply NN-based surrogate models to HPC applications. The
paper makes the following contributions.

• We introduce a framework that enables an automatic construction
and use of NN-based surrogate models in HPC applications.

• We introduce a workflow and a set of techniques in Auto-HPCnet
to address unique challenges when applying the NN-based surro-
gate method to HPC applications.

• We demonstrate the effectiveness of Auto-HPCnet by applying
it to a set of HPC applications. Our experiments show that with
Auto-HPCnet, the applications can achieve 5.50× speedup on aver-
age (up to 16.8× and with data preparation cost included) without
loss in the final computation quality by replacing execution phases
with NN-based models. We show that in terms of speedup, Auto-
HPCnet can generate NN models outperforming those models
generated by the state-of-the-art methodologies including a com-
petitive AutoML framework (Autokeras), a manual NN construc-
tion tool (ACCEPT), and a computation-approximation strategy
(i.e., the loop perforation).

2 BACKGROUND AND MOTIVATION
2.1 Characteristics of HPC Code Regions
In this paper, we investigate the use of neural network-based sur-
rogates as a means of approximating specific code regions within
HPC applications. The selection of the code region to be replaced is
left to the discretion of the user, and can range from a computation
loop, a set of functions, to the entire application. In this section, we
provide some insights on which/why HPC applications can benefit
from NN-based surrogates.

Many HPC applications contain computation-intensive code
with inevitable data dependencies, which can hinder parallel
performance. For instance, many HPC applications in fields such as
mathematics, physics, chemistry, and other natural sciences require
the solution of large systems of linear equations. The solving proce-
dure for these systems is often the dominant contributor to runtime,
but as the systems are often sparse, it is not practical to invert them.
Practitioners therefore often rely on iterative algorithms to converge
to a useful solution, which can be time-consuming. Moreover, these
iterative algorithms, such as the Preconditioned Conjugate Gradients
(PCG) method, are closed-form optimization solvers and are difficult
to parallelize efficiently on general-purpose platforms like CPUs and
GPUs [27, 28].

Algorithm 1 is an example of the PCG method used in fluid
simulation, and it dominates the runtime of the application. The
algorithm has a Read-After-Write (RAW) data dependency at Line
9 (𝑟𝑖 is computed using the updated value of 𝑥𝑖 from the previous

Auto-HPCnet HPDC ’23, June 16–23, 2023, Orlando, FL, USA.

space. During the online usage, the autoencoder uses a “TensorFlow
embedding API” to directly take sparse matrices as input without
unrolling effort.
(3) To address the third problem of coordinating feature reduction
and selection of NN model topology, Auto-HPCnet introduces a 2D
neural architecture search. This strategy is automated. At the high
level of this search process (input dimension tuning), we use the
Bayesian optimization to decide the number of features; at the low
level (the model topology search), we use another Bayesian optimiza-
tion to decide the NN topology using an existing AutoML framework
(particularly Autokeras [24]). The low level of the search is based
on the decision of the high level. The two levels work iteratively and
coordinately to consider the impact of both feature reduction and
NN topology. Furthermore, we consider both execution time and
correctness of using the NN-based surrogate model during the 2D
neural architecture search. We introduce a user-given threshold as an
application-specific metric and incorporate the metric into the search
of the NN model, which ensures the correctness of the application’s
final output.
(4) Putting together a set of tools and strategies, Auto-HPCnet builds
a workflow that relieves the domain scientist from labor-intensive
work to apply NN-based surrogate models to HPC applications. The
paper makes the following contributions.

• We introduce a framework that enables an automatic construction
and use of NN-based surrogate models in HPC applications.
• We introduce a workflow and a set of techniques in Auto-HPCnet

to address unique challenges when applying the NN-based surro-
gate method to HPC applications.
• We demonstrate the effectiveness of Auto-HPCnet by applying

it to a set of HPC applications. Our experiments show that with
Auto-HPCnet, the applications can achieve 5.50× speedup on aver-
age (up to 16.8× and with data preparation cost included) without
loss in the final computation quality by replacing execution phases
with NN-based models. We show that in terms of speedup, Auto-
HPCnet can generate NN models outperforming those models
generated by the state-of-the-art methodologies including a com-
petitive AutoML framework (Autokeras), a manual NN construc-
tion tool (ACCEPT), and a computation-approximation strategy
(i.e., the loop perforation).

2 BACKGROUND AND MOTIVATION
2.1 Characteristics of HPC Code Regions
In this paper, we investigate the use of neural network-based sur-
rogates as a means of approximating specific code regions within
HPC applications. The selection of the code region to be replaced is
left to the discretion of the user, and can range from a computation
loop, a set of functions, to the entire application. In this section, we
provide some insights on which/why HPC applications can benefit
from NN-based surrogates.

Many HPC applications contain computation-intensive code
with inevitable data dependencies, which can hinder parallel
performance. For instance, many HPC applications in fields such as
mathematics, physics, chemistry, and other natural sciences require
the solution of large systems of linear equations. The solving proce-
dure for these systems is often the dominant contributor to runtime,
but as the systems are often sparse, it is not practical to invert them.

Practitioners therefore often rely on iterative algorithms to converge
to a useful solution, which can be time-consuming. Moreover, these
iterative algorithms, such as the Preconditioned Conjugate Gradients
(PCG) method, are closed-form optimization solvers and are difficult
to parallelize efficiently on general-purpose platforms like CPUs and
GPUs [27, 28].

Algorithm 1 Algorithm of PCG solver in fluid simulation

1: Initialize 𝑥0, 𝑟0 = 𝑏 −𝐴𝑥0, 𝑝0 = 𝑟0
2: for 𝑛 ← 1 to 𝑁 do

3: // compute the preconditioner-vector product 𝐴𝑝𝑖
4: 𝐴𝑝𝑖 = 𝐴 ∗ 𝑝𝑖
5: 𝑎𝑙𝑝ℎ𝑎 = (𝑟𝑖−1 ∗ 𝑟𝑖−1)/𝑝𝑖 ∗𝐴𝑝𝑖
6: // update the solution
7: 𝑥𝑖 = 𝑥𝑖−1 + 𝑎𝑙𝑝ℎ𝑎 ∗ 𝑝𝑖
8: // update the residual
9: 𝑟𝑖 = 𝑟𝑖−1 − 𝑎𝑙𝑝ℎ𝑎 ∗𝐴𝑝𝑖

10: 𝑏𝑒𝑡𝑎 = (𝑟𝑖 ∗ 𝑟𝑖)/(𝑟𝑖 − 1 ∗ 𝑟𝑖−1)
11: 𝑝𝑖 = 𝑟𝑖 + 𝑏𝑒𝑡𝑎 ∗ 𝑝𝑖−1
12: if ∥ 𝑟𝑖 ∥<tolerance:

13: break
14: end for
15: return 𝑥

Algorithm 1 is an example of the PCG method used in fluid
simulation, and it dominates the runtime of the application. The
algorithm has a Read-After-Write (RAW) data dependency at Line
9 (𝑟𝑖 is computed using the updated value of 𝑥𝑖 from the previous
iteration) and Line 11 (𝑝𝑖 is computed using the updated value of 𝑟𝑖
from the previous iteration). This type of dependency can lead to a
series of performance problems when attempting to parallelize the
code on GPUs, such as how to leverage massive parallelism, how
to coalesce memory transactions, and how to avoid memory-bank
conflicts.

NN models can serve as an alternative to computation-intensive
code regions in HPC applications with data dependencies. NN mod-
els can be easily parallelized on emerging hardware like GPUs, due
to their ability to leverage massive parallelism, coalesce memory
transactions, and avoid memory-bank conflicts. Furthermore, NN
models can also be implemented on other emerging hardware such
as FPGAs and Sambanova, further increasing the potential for perfor-
mance benefits and acceleration in HPC applications. This versatility
in hardware implementation further motivates practitioners to use
NN models as a tool for acceleration in these types of applications.

HPC applications can tolerate approximation. HPC applica-
tions can tolerate computation inaccuracy caused by approximation.
This has been demonstrated in existing literature, such as [29–33].
In many cases, the accuracy of the final result is not as crucial as
the speed at which it is obtained. For example, in fluid simulations,
the goal may be to obtain a qualitative understanding of the fluid
behavior rather than an exact solution. In such cases, the use of
approximate methods, such as NN-based surrogates, can be an effec-
tive way to accelerate the computation while still providing useful
results.

One example of this is the use of NN models to surrogate the
PCG method in fluid simulations[19, 34]. The PCG method is highly

iteration) and Line 11 (𝑝𝑖 is computed using the updated value of 𝑟𝑖
from the previous iteration). This type of dependency can lead to a
series of performance problems when attempting to parallelize the
code on GPUs, such as how to leverage massive parallelism, how
to coalesce memory transactions, and how to avoid memory-bank
conflicts.

NN models can serve as an alternative to computation-intensive
code regions in HPC applications with data dependencies. NN mod-
els can be easily parallelized on emerging hardware like GPUs, due
to their ability to leverage massive parallelism, coalesce memory
transactions, and avoid memory-bank conflicts. Furthermore, NN
models can also be implemented on other emerging hardware such
as FPGAs and Sambanova, further increasing the potential for perfor-
mance benefits and acceleration in HPC applications. This versatility
in hardware implementation further motivates practitioners to use
NN models as a tool for acceleration in these types of applications.

HPC applications can tolerate approximation. HPC applica-
tions can tolerate computation inaccuracy caused by approximation.
This has been demonstrated in existing literature, such as [29–33].
In many cases, the accuracy of the final result is not as crucial as
the speed at which it is obtained. For example, in fluid simulations,
the goal may be to obtain a qualitative understanding of the fluid
behavior rather than an exact solution. In such cases, the use of
approximate methods, such as NN-based surrogates, can be an effec-
tive way to accelerate the computation while still providing useful
results.

One example of this is the use of NN models to surrogate the
PCG method in fluid simulations[19, 34]. The PCG method is highly
computation-intensive, especially when the computation problems
are large and sparse. By using an NN-based surrogate, it is possible
to approximate the PCG method and reduce the computation time,
while still obtaining accurate results. This is particularly beneficial
when the simulation is performed on emerging hardware, such as
GPUs, which can take advantage of the parallelism of the NN-based
surrogates to achieve faster computation.

Also, many HPC applications have a threshold to determine when
the final application outcome is acceptable or when the simulation
should be terminated. In fluid simulation, the convergence of the

HPDC ’23, June 16–23, 2023, Orlando, FL, USA. Wenqian Dong, Gokcen Kestor, & Dong Li

Power Grid Simulation

void main (){
double Pd[], Qd[];
...
MIPS_solver(Va,Vb);
...
Va,Vm,Pg,Qg…;

}

void MIPS_solver(double *Pd, *Qd){
...
P(Cg,Pg) = Pd + P(Ybus,Va,Vm);
...
G(Va,Vm,Pg,Qg)=0;
...

}

A code region to be replaced

① Input/Output Candidates
Input:Pd,Qd,Lam,theta; Output:Va,Vm,Pg,Qg;

④ Code replacement

③ Topology Selection and Training

Pd
Qd

Va
Vm
Pg
Qg

Pd,Qd,lam,theta Va,Vm,Pg,Qg QoA

(0,1,1,0)
…

(1,1,0,0)

(18,22,…,112,0)
…

(17,22,…,102,6)

Fail
…

Pass

② Sensitivity Analysis for Feature Selection

Surrogate Model Construction

Figure 2: An example of applying the surrogate model.

solution obtained by the PCG method may be deemed as accept-
able even if the residual is not exactly zero. The threshold-based
approach also exists in molecular dynamics [35], numerical weather
prediction [36], and computational electromagnetics [22], etc. This
threshold-based approach allows HPC applications to accept the
NN-based surrogate model.

2.2 Traditional v.s. NN Approximation
In the field of numerical code optimization, traditional approxima-
tion techniques such as loop perforation, tiling, and interpolation
have been widely utilized. Loop perforation, as described in litera-
ture such as [37, 38], involves removing or skipping certain iterations
of a loop in order to reduce the number of operations that need to be
performed. Tiling, as outlined in [39], breaks a large computation
into smaller, more manageable chunks known as tiles, which can
then be processed independently, resulting in greater parallelism and
improved cache utilization. Interpolation, as presented in [40], is
a technique for estimating the value of a function at a point where
the function is not explicitly defined, utilizing known data points, or
sample points, to infer the value of the function at other points.

Despite the widespread utilization of these traditional approxi-
mation techniques, they do possess certain limitations. Firstly, their
applicability is often restricted to specific types of problems or code,
resulting in a lack of generality. Secondly, these techniques typically
rely on simple mathematical functions to approximate the behav-
ior of the original code, which can result in a significant loss of
accuracy. Lastly, the parameter tuning of these approximation tech-
niques requires expert knowledge, which can make them difficult
for non-experts to utilize.

In contrast, NN-based approximation methods (i.e., NN surro-
gates) have been proposed as a potential solution to these limitations.
NNs possess the ability to approximate complex functions with high
accuracy, as they are able to learn underlying patterns in the data and
generalize well to new examples. Also, NNs can handle non-linear
relationships and adapt to changes in the input data. Additionally,
neural networks can be trained on a wide variety of tasks and gen-
eralized to new tasks with similar characteristics, resulting in ease of
integration into existing codebases and accessibility to a wide range
of users. Furthermore, the use of pre-trained models and libraries
such as Tensorflow or Pytorch make NN surrogate methods easy to
use even for those without expertise.

2.3 Traditional Workflow of Surrogate Model
Construction

Fig. 2 shows an example of surrogate model construction, which
includes four steps:

(1) The user chooses a code region for replacement and manually
examines it to identify the input and output variables of the
code region. In the power-grid simulation, the “MIPS solver” is
identified as the most time-consuming part and replaced with
a surrogate model. The manual identification of input and out-
put variables is error-prone, especially when the number of
input/output variables is large.

(2) The user conducts a sensitivity analysis to remove redundant
features to build an efficient but accurate approximation model.
A large amount of the input usually requires more computation
units (e.g., neurons and layers) to maintain the performance of
prediction accuracy. To mitigate the overhead of NN models,
scientists [22] usually adopt feature selection to reduce the space
of input variables and remove the implicate redundancy.

(3) The user manually constructs a surrogate model to replace a
code region. The surrogate construction is a process of selecting
a network topology that balances accuracy and cost (e.g., execu-
tion time, Flops). A larger, more complex surrogate model has
the potential to offer better model accuracy but is likely to be
slower during inference than a smaller model.

(4) After the surrogate model is well-trained, the user needs to
either integrate the NN model into the application using cross-
compiling, or take the NN model as an offline calculator. This
is because, the codebases of the replaced numerical solvers are
typically written in Fortran/C/C++ and run on HPC platforms
(HPC) via OpenMP and/or MPI parallelization, while the emerg-
ing ML and data analytics libraries of NN-based surrogate model
are typically written in Python.

The current state-of-the-art approaches for HPC applications
perform these steps manually [19–22, 34, 41, 42], which is labor-
intensive and motivates us to create a framework to automate this
process.

3 DATA ACQUISITION
Auto-HPCnet first identifies the input/output features and collects
training samples based on identified features.

3.1 Compiler-based Feature Extraction
Given a code region selected by the user, Auto-HPCnet classifies
variables within the code region as input variables, output variables,
and internal variables. Input variables are declared outside of the
code region and referenced in the code region. Output variables
are written in the code region and read after the code region. Other
variables that the code region writes to or reads from are internal vari-
ables. Given a target code region, Auto-HPCnet uses the following
steps to acquire input and output variables.
Step1: Trace generation. Auto-HPCnet integrates an LLVM tool,
LLVM-Tracer [43] which is an LLVM instrumentation pass to gener-
ate a dynamic LLVM instruction trace. This trace stores metadata for
each instruction, such as the instruction type, names of registers, and
operand values. Fig. 3 shows an example to depict trace generation.

Auto-HPCnet HPDC ’23, June 16–23, 2023, Orlando, FL, USA.

(a) HPC Application
(b) Dynamic Trace

Void main (){
int *a, *b, *c;
...
triad(a, b, c, 3);
...

}

void traid(int *a, int *b, int *c, int s){
...
loop: for(i=0; i<NUM; i++){

c[i] = a[i] + s*b[i];
}

...
}

code region to replace

“add”

“store”

%%%% LABEL MAP STRAT %%%%
Main/init
Traid/loop
…
0,6,traid,entry:0,0,30,0
1,64,0x1d91590,1,a,
r,32,680150156,1,0,
…
0,6,traid,entry:0,add,11,3
2,64,680150156,1,0,
1,32,652793477,1,mul,
r,32,1332943633,1,add,
…
0,6,traid,entry:0,0,31,0
2,64,0x1d915d0,1,c,
1,32,1332943633,1,add,

load

triad_reg_a

(id:0x1d91590)

triad_reg_b

(id:0x1d915b0)

triad_reg_s

(id:3)

triad_reg_0
(id:680150156)

triad_reg_1
(id:1649253591)

triad_reg_mul
(id:652793477)

triad_reg_add
(id:1332943633)

triad_reg_c
(id:0x1d915d0)

load

multiply

store

add

(c) Dynamic Data Dependency Graph (DDDG)

Source code

Label map

LLVM IR

LLVM pass

Machine code

Trace file

“load”

Figure 3: An example of acquiring input and output variables.

Fig. 3(b) shows the trace for an example code. Auto-HPCnet extends
LLVM-Tracer to reduce the trace size to simplify the identification
process of input/output variables. In particular, during the trace gen-
eration, Auto-HPCnet recognizes loop structures in the code region.
If a loop has no control flow divergence across iterations of the loop
and accessed (array) variables across iterations remain the same,
then Auto-HPCnet does not generate the whole trace for the loop.
Instead, only the trace for one iteration is generated.
Step2: Identification of input and output variables. We construct
a dynamic data dependency graph (DDDG) from the instruction
trace based on the existing method [44]. In DDDG, vertices are the
values of variables obtained from registers or memory; Edges are
LLVM instructions (or operations) transforming input values into
output values of variables. With DDDG, the root nodes represent
inputs, and the leaf nodes represent outputs. Only taking the outputs
from the DDDG is not sufficient. There may exist some intermediate
variables used for the following code region. Hence, Auto-HPCnet
uses a combination of liveness analysis [45] and use-def chain [46]
to examine other output features.

We extend the construction of DDDG in [44] to fit the needs of
the surrogate model from two perspectives. First, we group variables
for effective feature reduction. In particular, the number of input
variables recognized by DDDG can be large. Some of those variables
can come from the same array; The large number of input variables
can come from multiple arrays. During the feature reduction phase,
some individual variables used as individual input features can be se-
lected together for reduction, even though they come from different
arrays. Using those variables as individual input features loses the
array semantics, which leads to either ineffective feature reduction or
lower accuracy in the surrogate model. Hence, during the identifica-
tion of input variables, if some variables come from the same array,
then the array (not individual variables) is used as the input feature
of the surrogate model. Second, we parallelize the construction of
DDDG to shorten the construction time and make it user-friendly. In
particular, instead of processing instructions one by one, we process
a group of instructions by multiple threads at the same time, which
allows us to explore thread-level parallelism to accelerate instruction
analysis when there is less dependence between instructions within
the group.

Step3: Generating Training Samples. Training a surrogate model
needs many training samples to ensure the model is sufficiently
trained. A training sample is a pair of input features and output
features, where the input and output features come from the values
of the input and output variables of the target code region respec-
tively. In cases that the user cannot find enough input problems to
generate training samples, Auto-HPCnet allows the user to introduce
perturbation into the values of input variables. The perturbation fol-
lows a specific distribution, such as the Gaussian distribution, i.e,
𝑋 ′ ∼ N(𝜇, 𝜎2) , where X’ is the randomized new sample given a
predefined mean 𝜇 and variance 𝜎 . The distribution can be chosen
by the user based on the application domain knowledge.

3.2 Dynamic Analysis v.s. Static Analysis
The NN-based surrogate has a common assumption that the iden-
tification of input/output variables (or features) is invariant across
different executions of the code region. Based on this assumption,
a dynamic execution trace can be used to identify input/output for
a specific NN model for approximation. If the execution path di-
vergence leads to different input/output, we should use a different
NN model. In other words, an NN model can only be used to ap-
proximate the code segment with certain input/output (following
certain distributions that lead to the same execution path), but not all
input/output.

Static analysis has the risk of introducing redundant features
(some input/output variables identified by static analysis may not be
referenced in a specific execution), which leads to larger NN models
and loss of performance benefit. Dynamic analysis can avoid this
problem, but the NN model generated based on dynamic analysis
can only work for certain inputs following a certain distribution.
In this paper, we choose dynamic analysis over static analysis to
maximize performance benefits.

4 INPUT ANALYSIS
We depict how Auto-HPCnet uses autoencoder with customized
designs to reduce the dimensionality of sparse input matrix in this
section.

HPDC ’23, June 16–23, 2023, Orlando, FL, USA. Wenqian Dong, Gokcen Kestor, & Dong Li

Input Matrix (COO) Dense Representation

Unfold
Encoder Decoder

Encoder
weights

TensorFlow
Embedding

API

Encoder
matrix (COO)

Reduced Features (dense)

Input

Offline Autoencoder Training Online Feature ReductionSparse Input Dense Output

Input Matrix (COO)

Customized Autoencoding:
1. Ease use in DNN frameworks like TensorFlow, PyTorch;
2. Ease tuning of the dimension size in feature reduction;
3. Eliminate the unfolding overhead of input sparse matrix at runtime;

Figure 4: The workflow of applying Autoencoder in Auto-HPCnet

4.1 Autoencoders for Feature Reduction
Autoencoders aims to use a deep learning architecture to capture key
representational information by mapping the high-dimensional data
into a low-dimensional space [47]. Unlike traditional feature extrac-
tion technologies, Autoencoder provides an unsupervised method to
do feature reduction without requiring priori knowledge on applica-
tion domains.

An autoencoder consists of an encoder and a decoder. ❶ Encoder.
The encoder typically has an hourglass-shaped architecture in which
the high-dimensional data is compressed into a low-dimensional la-
tent space that preserves semantic relationships. The encoder takes a
whole matrix as input for feature reduction. ❷ Decoder. The decoder
uses a horn-shaped network to reconstruct the reduced features back
to the original representation (raw inputs). The weights of the autoen-
coder (both encoder and decoder) are tuned together to minimize
a loss function, which typically penalizes deviations between the
input of encoder and the output of decoder. Once the autoencoder is
trained, the encoder is used to reduce features discussed in Section 5.

4.2 Customized Design for Sparse Input
Fig. 4 depicts the workflow of applying the autoencoder. In Autoen-
coder, we adopt the following designs to address problems when
dealing with sparse inputs.

First, during offline training, we adopt a gradient checkpoint tech-
nique [48] to address the GPU memory limitation. In particular,
since the existing DNN frameworks have limited support for DNN
training on sparse matrix formats, if we unroll those sparse inputs to
dense representation during the autoencoder training, the memory
consumption to store the dense representation becomes a bottleneck.
To address this problem, we adopt the gradient checkpoint tech-
nique [48], which stores snapshots of Autoencoder parameters at a
forward time and recomputes those parameters at a backward time.
The gradient checkpoint technique trades the computational cost
(recalculation time) for GPU memory usage (parameter storage).

Second, at online feature reduction, we provide an API for sparse
matrix formats without any decompression effort. After Autoencoder
is trained and no optimization is applied at online usage, the user
still has to take the input matrix with dense format (which requires
decompression). Here, we apply a “TensorFlow embedding API".
This API conducts matrix-multiplication in the format of sparse rep-
resentation (e.g., CSR) and saves the multiplication result into the

dense format. Autoencoder takes this API to implement the matrix-
multiplication function at the first layer of Autoencoder, which helps
the Autoencoder directly take the sparse matrix as an input with-
out decompression. By doing so, we provide painless support for
sparse matrices in the HPC application by eliminating both the tem-
poral cost (format transformation of decompression) and spatial cost
(memory usage of storing the dense representation) in the feature
reduction process.

Third, we develop a metric to quantify the quality degradation in
real-time and the user can define a lower bound of quality constraint
to guide the encoding process. In traditional methods like K-means
and PCA, it is hard to quantitatively measure the quality degradation
before and after the feature reduction, because the size of the output
matrix is not the same as the size of the input matrix. Here, we take
the advantage that the autoencoder can reconstruct an output matrix
(which has the same size as the input matrix) to do an element-by-
element comparison. We propose a metric to evaluate the difference
between the original input and the reconstructed matrix (i.e., the
decoder output).

𝜎𝑦 =
1
𝑁

𝑁∑︁
𝑖=1

{
0 if |𝑦𝑖 − 𝑥𝑖 | ≤ 𝜇 |𝑥𝑖 |
1 otherwise

(1)

We denote the matrix 𝜎𝑦 , defined by comparing each element
𝑦𝑖 in the reconstructed matrix to its corresponding value 𝑥𝑖 in the
original sparse matrix and calculate the proportion of those elements
that are at least in a feasible range away from 𝑥 . The user determines
a scaling factor 𝜇 based on the application domain requirement.
Computing the similarity 𝜎𝑦 is lightweight and can be done on-the-
fly during the autoencoder training. Based on the metric, the user
can configure the lower bound (shown in Table 1) for different tasks.

4.3 Workflow of Applying Autoencoding
The workflow of autoencoder (shown in Fig. 4) has two parts, (1)
offline training happened during the Bayesian optimization and
(2) online usage when the HPC application is running. The offline
training happens in high-level Bayesian optimization. The high-level
Bayesian optimization is a loop structure (discussed in detail in
Section 5.2).

In each iteration of the loop, Auto-HPCnet trains a new autoen-
coder. Across iterations, different autoencoders generate different
numbers of features (the number of features is determined by the

Auto-HPCnet HPDC ’23, June 16–23, 2023, Orlando, FL, USA.

low-level Bayesian optimization and the Gaussian process in the
high-level Bayesian optimization). After an autoencoder is trained in
an iteration of the high-level Bayesian optimization, the encoder is
then used in the low-level Bayesian optimization for encoder-model
inference to generate reduced features for the NN architecture search.
After the hierarchical Bayesian optimization is done, the autoencoder
trained in the last iteration of the high-level Bayesian optimization
is used for online usage.

5 2D NEURAL ARCHITECTURE SEARCH
Auto-HPCnet uses a two-dimensional neural architecture search to
jointly decide NN architecture (i.e., NN topology) and the number of
features. In this section, we first formulate our optimization problem.
Then, we discuss algorithm details for the Bayesian optimization.

5.1 Search Space
We describe the formulation of the 2D neural architecture search
as follows: given an input dataset and bound on the output error,
find the best surrogate model that (i) meet the error bound and
(ii) minimize the cost. This can be formulated as the following
constrained optimization problem.
Problem Formulation. Given:

• 𝐾 : a set of tunable input dimension, and
• 𝜃 : a set of tunable surrogate topology parameters.

Find the best 𝐾 ′, 𝜃 ′ such that
• 𝑓𝑐 (𝐾 ′, 𝜃 ′) is minimized
• 𝑓𝑒 (𝐾 ′, 𝜃 ′) ≤ 𝜖.
• 𝑇 (𝑓) is minimized
• 𝑆𝐸 (𝑓) ≤ 𝑆𝐸𝑜𝑏 𝑗 .

where 𝜃 ′ includes #kernel sizes, #channel, #pooling size, #unpool-
ing size, and #residual connection of each layer. We involve three
functions here.
• Output: Let 𝑓 (𝐾 ′, 𝜃 ′) represent the function of the NN-based

surrogate model to generate output.
• Quality degradation: Let 𝑓𝑒 (𝐾 ′, 𝜃 ′) be the magnitude of the final

computational quality degradation of the application.
• Cost: Let 𝑓𝑐 (𝐾 ′, 𝜃 ′) be the cost of computing the output at runtime.

This can be the running time, energy or other execution metric to
be optimized.

A solution to the optimization problem is a point that lies within the
feasible region 𝑓𝑒 (𝐾 ′, 𝜃 ′) ≤ 𝜖 and minimizes the objective function
𝑓𝑐 (𝐾 ′, 𝜃 ′).

5.2 Hierarchical Bayesian Optimization
The Bayesian optimization [49] has been used in architecture param-
eter tuning for machine learning models [50], in which Bayesian
optimization searches among different combinations of architecture
parameters. Many Bayesian optimization processes use a Gaussian
process model to model the objective function 𝑓 and an acquisition
function to decide where to do the next evaluation. The traditional
Bayesian optimization is an iterative process consisting of three
steps: update, generation, and evaluation; (1) Update: train a Gauss-
ian process model with a combination of an optimization vector and
performance (in the case of NN architecture search, the performance
is the NN model cost 𝑓𝑐 and error 𝑓𝑒); (2) Generation: generate a

Auto-HPCnet HPDC ’23, June 16–23, 2023, Orlando, FL, USA.

Input Matrix (COO) Dense Representation

Unfold
Encoder Decoder

Encoder
weights

TensorFlow
Embedding

API

Encoder
matrix (COO)

Reduced Feature (dense)

Input

Offline Autoencoder Training Online Feature ReductionSparse Input Dense Output

Input Matrix (COO)

Customized Autoencoding:
1. Ease use in DNN frameworks like TensorFlow, PyTorch;
2. Ease tuning of the dimension size in feature reduction;
3. Eliminate the unfolding overhead of input sparse matrix at runtime;

Figure 4: The workflow of applying Autoencoder in Auto-HPCnet

Problem Formulation. Given:

• 𝐾 : a set of tunable input dimension, and
• 𝜃 : a set of tunable surrogate topology parameters.

Find the best 𝐾 ′, 𝜃 ′ such that

• 𝑓𝑐 (𝐾 ′, 𝜃 ′) is minimized
• 𝑓𝑒 (𝐾 ′, 𝜃 ′) ≤ 𝜖.
• 𝑇 (𝑓) is minimized
• 𝑆𝐸 (𝑓) ≤ 𝑆𝐸𝑜𝑏 𝑗 .

where 𝜃 ′ includes #kernel sizes, #channel, #pooling size, #unpool-
ing size, and #residual connection of each layer. We involve three
functions here.
• Output: Let 𝑓 (𝐾 ′, 𝜃 ′) represent the function of the NN-based

surrogate model to generate output.
• Quality degradation: Let 𝑓𝑒 (𝐾 ′, 𝜃 ′) be the magnitude of the final

computational quality degradation of the application.
• Cost: Let 𝑓𝑐 (𝐾 ′, 𝜃 ′) be the cost of computing the output at runtime.

This can be the running time, energy or other execution metric to
be optimized.

A solution to the optimization problem is a point that lies within the
feasible region 𝑓𝑒 (𝐾 ′, 𝜃 ′) ≤ 𝜖 and minimizes the objective function
𝑓𝑐 (𝐾 ′, 𝜃 ′).

5.2 Hierarchical Bayesian Optimization
The Bayesian optimization [49] has been used in architecture param-
eter tuning for machine learning models [50], in which Bayesian
optimization searches among different combinations of architecture
parameters. Many Bayesian optimization processes use a Gaussian
process model to model the objective function 𝑓 and an acquisition
function to decide where to do the next evaluation. The traditional
Bayesian optimization is an iterative process consisting of three
steps: update, generation, and evaluation; (1) Update: train a Gauss-
ian process model with a combination of an optimization vector and
performance (in the case of NN architecture search, the performance
is the NN model cost 𝑓𝑐 and error 𝑓𝑒); (2) Generation: generate a
new combination to observe by optimizing an acquisition function;
and (3) Evaluation: apply the new combination to the optimization
target (in the case of NN architecture search, this means we use the
optimization vector to train an NN model) and measure performance.

Algorithm. The optimization vector includes two types of param-
eters: (1) the feature reduction knobs 𝐾 and (2) the NN architecture

Algorithm 2 Hierarchical Bayesian optimization

Require: Input dataset 𝐷; Acceptable quality degradation 𝑓𝑒 ;
1: Given search space: 𝜃 = {𝜃1, .., 𝜃𝑛} ∪ 𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑚};
2: do // Outer Loop
3: 𝑘𝑖 = initRandom();
4: 𝐷 (𝑘𝑖) = FeatureReduction(𝑘𝑖);

5: do // Inner Loop:
6: 𝜃𝑖 = initModel(𝐷 (𝑘𝑖));
7: 𝑓𝑒 , 𝑓𝑐 = problem.evaluate(𝜃𝑖);
8: model = GaussianProcess();
9: model.update();

10: while run out of searching time.
11: Return the performance of best NN model 𝑓 ′ in terms of
𝑓 ′𝑐 and 𝑓 ′𝑒 .

12: model = GaussianProcess(𝑛 , 𝑓 ′);
13: model.update();
14: while 𝑓𝑐∗ is minimized and 𝑓𝑒∗ < 𝜖.
15: return the optimal input size 𝑖∗ and topology parameters 𝑘∗.

parameters 𝜃 . In the Gaussian process used in the Bayesian opti-
mization, the optimization vector has to be vectorized in a Euclidean
space because the Bayesian optimization must measure the distance
between different optimization vectors. Because of the difference in
physical properties, arithmetically adding the two types of param-
eters loses the parameter semantics, which leads to a suboptimal
selection of parameters. To address the above problem, we introduce
a two-level optimization strategy, which separates the optimization
processes for the two types of parameters, but coordinates the two
separate processes for optimal selection of those parameters.

Algorithm 2 depicts the strategy in hierarchical Bayesian opti-
mization. There is a two-level loop in the algorithm. The high-level
loop (Lines 2-13) searches for the optimal setting 𝐾𝑖 of input dimen-
sion. The low-level loop (Lines 5-10) searches the best architecture
parameters 𝜃𝑖 of surrogate model. These two loops can interact with
each other: the high-level loop generates an input sample with the
dimension of 𝐾𝑛 , which is then applied in the low-level loop during
the architecture parameter search (Line 6); the low-level loop returns
the performance (𝑓𝑐 and 𝑓𝑒) of the best model to the high-level loop
(Line 11). Then the high-level loop makes a response based on an

new combination to observe by optimizing an acquisition function;
and (3) Evaluation: apply the new combination to the optimization
target (in the case of NN architecture search, this means we use the
optimization vector to train an NN model) and measure performance.

Algorithm. The optimization vector includes two types of param-
eters: (1) the feature reduction knobs 𝐾 and (2) the NN architecture
parameters 𝜃 . In the Gaussian process used in the Bayesian opti-
mization, the optimization vector has to be vectorized in a Euclidean
space because the Bayesian optimization must measure the distance
between different optimization vectors. Because of the difference in
physical properties, arithmetically adding the two types of param-
eters loses the parameter semantics, which leads to a suboptimal
selection of parameters. To address the above problem, we introduce
a two-level optimization strategy, which separates the optimization
processes for the two types of parameters, but coordinates the two
separate processes for optimal selection of those parameters.

Algorithm 2 depicts the strategy in our hierarchical Bayesian
optimization. There is a two-level loop in the algorithm. The high-
level loop (Lines 2-13) searches for the optimal setting 𝐾𝑖 of the
input dimension. The low-level loop (Lines 5-10) searches the best
architecture parameters 𝜃𝑖 of the surrogate model. These two loops
can interact with each other: the high-level loop generates an input
sample with the dimension of 𝐾𝑛 , which is then applied in the
low-level loop during the architecture parameter search (Line 6);
the low-level loop returns the performance (𝑓𝑐 and 𝑓𝑒) of the best
model to the high-level loop (Line 11). Then the high-level loop
makes a response based on an acquisition function to determine the
next promising search point (i.e., 𝑘𝑛+1) and trains a corresponding
autoencoder.

In the high-level loop, we apply the customized autoencoder
(in Section 4.2) to conduct the feature reduction. In the low-level
loop, we apply Autokeras [26] for model architecture search. In
each iteration of the search (in either low-level loop or high-level
loop), we apply the regular Bayesian optimization, which iteratively
searches for the optimal by the three steps: update, generation, and
evaluation. The whole search process is terminated, if the required

HPDC ’23, June 16–23, 2023, Orlando, FL, USA. Wenqian Dong, Gokcen Kestor, & Dong Li
HPDC ’23, June 16–23, 2023, Orlando, FL, USA. Wenqian Dong, Gokcen Kestor, & Dong Li

Table 1: Configurations in AutoHPCnet.

Se
ar

ch
-le

ve
l

–searchType
(1) “autokeras" (start with the Autokera’s default topology)
(2) “userModel" (start with a user-given topology)
(3) “fullInput" (no feature reduction applied)

–bayesianInit Initial samples for bayesian algorithm
–encodingLoss Acceptable encoding loss
–qualityLoss Acceptable quality loss

M
od

el
-le

ve
l –initModel Surrogate model type (default=MLP)

–preprocessing Training data preprocessing
–numEpoch Number of epochs to train
–trainRatio Split dataset into training and validation
–batchSize Batch size
–lr Learning rate

acquisition function to determine the next promising search point
(i.e., 𝑘𝑛+1) and trains a corresponding autoencoder.

In the high-level loop, we apply the customized autoencoder
(in Section 4.2) to conduct the feature reduction. In the low-level
loop, we apply Autokeras [26] for model architecture search. In
each iteration of the search (in either low-level loop or high-level
loop), we apply the regular Bayesian optimization, which iteratively
searches for the optimal by the three steps: update, generation, and
evaluation. The whole search process is terminated, if the required
performance 𝑓𝑒 and 𝑓𝑐 is achieved or a continuing search does not
lead to enough improvement of the performance.

6 IMPLEMENTATION
We discuss the implementation details in this section.

6.1 Interaction with Users
To allow the user to annotate a code region for approximation with
a surrogate model without hassle, Auto-HPCnet introduces two
directives to mark the boundary of the code region. The annotation
controls the LLVM instrumentation for trace generation, which in
turn controls the usage of the surrogate model. After the annotation
and building the application with LLVM, the user is expected to run
a script to trigger the following workflow: (1) running the application
to generate the LLVM instruction trace, (2) analyzing the trace to
identify input and output variables in Auto-HPCnet, and (3) uses
a script to run the application 𝑁 times to collect training samples
(at each time, the script triggers a perturbation of input variables to
collect the output of the code region).

After collecting training samples, AutoHPCnet employs the 2D
neural architecture search (incorporating the customized Autoen-
coder). As shown in Table 1, Auto-HPCnet gives two sets of con-
figurations to accommodate the needs of different users. The first
set, named as search-level, allows the user to easily configure the
parameters of Bayesian optimization algorithm. The initial model
architecture (i.e., “searchType”) can be specified based on the user’s
knowledge to accelerate the search process. Also, the user is able to
specify the initial sample size and the objectives of the Bayesian op-
timization (i.e., the acceptable encoding loss and acceptable quality
loss). The initial samples are used to generate a Gaussian process
model for exploring the best solution in Bayesian optimization. The
second level, named model-level, is used to tune the hyperparameters
(e.g., batch size and learning rate) for the surrogate model training.

from autoHPCnet import Client
from smartsim.database import Orchestrator
import other packages …

create and start a database
orc = Orchestrator(port=REDIS_PORT)
exp.generate(orc)
exp.start(orc, block=False)

get input from database
sparse_tensor = client.get_tensor(input_feature)

feature reduction and format transformation
compact_tensor = client.autoencoder(sparse_tensor)

load a pretrained model from file
client.set_model_from_file("AI-CFD-net", "./saved_net.pt",
"TORCH", "GPU")

Run model and retrieve outputs
client.run_model("AI-CFD-net", inputs=compact_tensor,
outputs=output_tensor)

Listing 2: Example of invoking surrogate model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include “autoHPCnet_client.h”

// Initialize a Client object
autoHPCnet::Client client(false);
// Put the input features on the database
client.put_tensor(in_key, autoHPCnet);
// Run model already in the database
client.run_model(“AI-CFD-net”, {in_key}, {out_key});

// Get the result of the model
client.unpack_tensor(out_key, autoHPCnet);

Listing 1: Example of HPC simulation for surrogate request
1
2
3
4
5
6
7
8
9
10
11

from autoHPCnet import Client
from smartsim.database import Orchestrator
import other packages …

create and start a database
orc = Orchestrator(port=REDIS_PORT)
exp.generate(orc)
exp.start(orc, block=False)

get input from database
sparse_tensor = client.get_tensor(input_feature)

feature reduction and format transformation
compact_tensor = client.autoencoder(sparse_tensor)

load a pretrained model from file
client.set_model_from_file("AI-CFD-net", "./saved_net.pt",
"TORCH", "GPU")

Run model and retrieve outputs
client.run_model("AI-CFD-net", inputs=compact_tensor,
outputs=output_tensor)

Listing 2: Example of invoking surrogate model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include “autoHPCnet_client.h”

// Initialize a Client object
autoHPCnet::Client client(false);
// Put the input features on the database
client.put_tensor(in_key, autoHPCnet);
// Run model already in the database
client.run_model(“AI-CFD-net”, {in_key}, {out_key});

// Get the result of the model
client.unpack_tensor(out_key, autoHPCnet);

Listing 1: Example of HPC simulation for surrogate request
1
2
3
4
5
6
7
8
9
10
11

Also, the user can search for a specific type of neural network archi-
tectures (e.g., multi-layer perceptron or CNN).

Besides the above, Auto-HPCnet has a checkpoint mechanism
that allows the user to stop and restore the model architecture search.
Auto-HPCnet also allows the user to easily save and share the Au-
toencoder and the surrogate model across applications.

6.2 Quality-Oriented Optimizations
We summarize the implementation details in Auto-HPCnet with the
awareness of the final computational outcome quality in this section.
Such awareness separates us from the existing AutoML tools like
Google AutoML [25] and Autokeras [24].

Error-bounded Feature Reduction in AutoEncoder. To meet
the constraint on quality degradation in the HPC application, the
feature reduction, which is used to optimize the surrogate model in
our work (Section 4.2), must consider the impact of the feature re-
duction on the final computation quality. Auto-HPCnet implements
the API ”𝐴𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 .𝑒𝑣𝑙 (#𝑖𝑛𝑝𝑢𝑡𝑠, #𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛)”. This API mea-
sure the quality degradation before (#𝑖𝑛𝑝𝑢𝑡𝑠) and after (#outputs)
the feature reduction, using the metric defined in Eqn 1.

Auto-HPCnet also has the innovation of coupling the feature
reduction and surrogate model construction through the 2D neural
architecture search (Section 5).

performance 𝑓𝑒 and 𝑓𝑐 is achieved or a continuing search does not
lead to enough improvement of the performance.

6 IMPLEMENTATION
We discuss the implementation details in this section.

6.1 Interaction with Users
To allow the user to annotate a code region for approximation with
a surrogate model without hassle, Auto-HPCnet introduces two
directives to mark the boundary of the code region. The annotation
controls the LLVM instrumentation for trace generation, which in
turn controls the usage of the surrogate model. After the annotation
and building the application with LLVM, the user is expected to run
a script to trigger the following workflow: (1) running the application
to generate the LLVM instruction trace, (2) analyzing the trace to
identify input and output variables in Auto-HPCnet, and (3) uses
a script to run the application 𝑁 times to collect training samples
(at each time, the script triggers a perturbation of input variables to
collect the output of the code region).

After collecting training samples, AutoHPCnet employs the 2D
neural architecture search (incorporating the customized Autoen-
coder). As shown in Table 1, Auto-HPCnet gives two sets of con-
figurations to accommodate the needs of different users. The first
set, named as search-level, allows the user to easily configure the
parameters of Bayesian optimization algorithm. The initial model
architecture (i.e., “searchType”) can be specified based on the user’s
knowledge to accelerate the search process. Also, the user is able to
specify the initial sample size and the objectives of the Bayesian op-
timization (i.e., the acceptable encoding loss and acceptable quality
loss). The initial samples are used to generate a Gaussian process
model for exploring the best solution in Bayesian optimization. The
second level, named model-level, is used to tune the hyperparameters
(e.g., batch size and learning rate) for the surrogate model training.
Also, the user can search for a specific type of neural network archi-
tectures (e.g., multi-layer perceptron or CNN).

Besides the above, Auto-HPCnet has a checkpoint mechanism
that allows the user to stop and restore the model architecture search.
Auto-HPCnet also allows the user to easily save and share the Au-
toencoder and the surrogate model across applications.

6.2 Quality-Oriented Optimizations
We summarize the implementation details in Auto-HPCnet with the
awareness of the final computational outcome quality in this section.

from autoHPCnet import Client
from smartsim.database import Orchestrator
import other packages …

create and start a database
orc = Orchestrator(port=REDIS_PORT)
exp.generate(orc)
exp.start(orc, block=False)

get input from database
sparse_tensor = client.get_tensor(input_feature)

feature reduction and format transformation
compact_tensor = client.autoencoder(sparse_tensor)

load a pretrained model from file
client.set_model_from_file("AI-CFD-net", "./saved_net.pt",
"TORCH", "GPU")

Run model and retrieve outputs
client.run_model("AI-CFD-net", inputs=compact_tensor,
outputs=output_tensor)

Listing 2: Example of invoking surrogate model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include “autoHPCnet_client.h”

// Initialize a Client object
autoHPCnet::Client client(false);
// Put the input features on the database
client.put_tensor(in_key, autoHPCnet);
// Run model already in the database
client.run_model(“AI-CFD-net”, {in_key}, {out_key});

// Get the result of the model
client.unpack_tensor(out_key, autoHPCnet);

Listing 1: Example of HPC simulation for surrogate request
1
2
3
4
5
6
7
8
9
10
11

from autoHPCnet import Client
from smartsim.database import Orchestrator
import other packages …

create and start a database
orc = Orchestrator(port=REDIS_PORT)
exp.generate(orc)
exp.start(orc, block=False)

get input from database
sparse_tensor = client.get_tensor(input_feature)

feature reduction and format transformation
compact_tensor = client.autoencoder(sparse_tensor)

load a pretrained model from file
client.set_model_from_file("AI-CFD-net", "./saved_net.pt",
"TORCH", "GPU")

Run model and retrieve outputs
client.run_model("AI-CFD-net", inputs=compact_tensor,
outputs=output_tensor)

Listing 2: Example of invoking surrogate model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include “autoHPCnet_client.h”

// Initialize a Client object
autoHPCnet::Client client(false);
// Put the input features on the database
client.put_tensor(in_key, autoHPCnet);
// Run model already in the database
client.run_model(“AI-CFD-net”, {in_key}, {out_key});

// Get the result of the model
client.unpack_tensor(out_key, autoHPCnet);

Listing 1: Example of HPC simulation for surrogate request
1
2
3
4
5
6
7
8
9
10
11

Such awareness separates us from the existing AutoML tools like
Google AutoML [25] and Autokeras [24].

Error-bounded Feature Reduction in AutoEncoder. To meet
the constraint on quality degradation in the HPC application, the
feature reduction, which is used to optimize the surrogate model in
our work (Section 4.2), must consider the impact of the feature re-
duction on the final computation quality. Auto-HPCnet implements
the API ”𝐴𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 .𝑒𝑣𝑙 (#𝑖𝑛𝑝𝑢𝑡𝑠, #𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛)”. This API mea-
sure the quality degradation before (#𝑖𝑛𝑝𝑢𝑡𝑠) and after (#outputs)
the feature reduction, using the metric defined in Eqn 1.

Auto-HPCnet also has the innovation of coupling the feature
reduction and surrogate model construction through the 2D neural
architecture search (Section 5).

6.3 Online Inference Invocation
To allow the user to easily integrate the surrogate model into an
application, Auto-HPCnet provides two libraries: (1) a lightweight
library working as a request client and compiled into the application
to request the surrogate inference, and (2) a server client library
to conduct NN inferences on GPU. Auto-HPCnet use SmartSim
Orchestrator [51] to set up a in-memory storage to enable data
sharing between the HPC application written in Fortran, C, C++, or
Python, and NN models written with TensorFlow, Keras, or Pytorch.

Auto-HPCnet and SmartSim Orchestrator are coupled to work
together. When launched through Orchestrator, applications using

Auto-HPCnet HPDC ’23, June 16–23, 2023, Orlando, FL, USA.Auto-HPCnet HPDC ’23, June 16–23, 2023, Orlando, FL, USA.

to request the surrogate inference, and (2) a server client library
to conduct NN inferences on GPU. Auto-HPCnet use SmartSim
Orchestrator [51] to set up a in-memory storage to enable data
sharing between the HPC application written in Fortran, C, C++, or
Python, and NN models written with TensorFlow, Keras, or Pytorch.

Auto-HPCnet and SmartSim Orchestrator are coupled to work
together. When launched through Orchestrator, applications using
the Auto-HPCnet clients are directly connected to any Orchestrator
launched in the same experiment.

This is because AutoHPCnet client adopts a Redis module (i.e.,
RedisAI [52]), provides the NN runtimes, creating a library agnostic
middleware between the HPC application and NN libraries. Because
of this middleware, the user of AutoHPCnet can smoothly switch
between the NN framework and HPC application. This method
greatly reduces the deployment complexity and overhead of adding
the surrogate model in the HPC application.
Making Inference Call in Auto-HPCnet. Listing 1 shows an ex-
ample of requesting NN inferences based on Auto-HPCnet client
in a C-based application. The client first sends the input tensors to
the inference server (Line 5) and then makes an inference call to the
server. Using the above approach simplifies implementations: the
user only needs to change a few lines of code in the application.
SmartSim Implementation of Inference Call. Listing 2 shows how
to spin up a database with SmartSim Orchestrator and invoke a CNN
model using the Auto-HPCnet client. In Listing 2, the “exp.start(orc,
block=Flase)” (Line 7) uses the SmartSim library to launch a in-
memory data storage. The server receives the inference request and
fetches the input data from the storage (Line 11). Then, the server
loads the pre-trained autoencoder (Line 14) and surrogate model
(Line 17) to make an inference on GPU (Line 21). Despite writing
in Python, we execute all surrogate models in C runtime.

7 EVALUATION
Platform. We conduct all experiments on an NVIDIA DGX-1 cluster
with 8 nodes, and each node is equipped with two Intel Xeon E5-
2698 v4 CPUs (40 cores in total running at 2.20GHz) and eight
NVIDIA TESLA V100 (Volta) GPUs. We use CUDA 10.1/cuDNN
7.0 [53] and Tensorflow 2.3 [54] for model training and inference.
Applications. Table 2 lists applications we evaluate. We compre-
hensively cover three types of applications, which have been widely
studied in HPC. Type-I includes numerical solvers that are often
the most time-consuming in HPC applications. Type-II includes a
set of general applications from the PARSEC parallel benchmark
suite [55]. Those applications are evaluated in previous efforts [56–
58] for approximate computing. Type-III is the representative of
large-scale HPC applications. Type-III comes from the Exascale
Computing Project (ECP) Proxy Applications Suite 4.0 [59].
Quality of Interest (QoI). To evaluate the final computation quality
of the application, we assume that the user provides application-
specific QoI that can be used to quantify the difference between the
solution of the surrogate model and the exact solution. Table 2 lists
the QoI of each application. The QoI differs among applications.

Table 2: Applications for Evaluation.

Type Application: replaced function Description Quality of Interest (QoI)

I
CG:𝐶𝐺_𝑠𝑜𝑙𝑣𝑒𝑟 Conjugate Gradient Solution of linear equations
FFT:𝐹𝐹𝑇_𝑠𝑜𝑙𝑣𝑒𝑟 Fast Fourier Transform Output sequence of FFT
MG:𝑀𝐺_𝑠𝑜𝑙𝑣𝑒𝑟 Multi-Grid method The final residual of the solver

II

Blackscholes:𝐵𝑙𝑘𝑆𝑐ℎ𝑙𝑠𝐸𝑞𝐸𝑢𝑟𝑜𝑁𝑜𝐷𝑖𝑣 Investment pricing The computed price
Canneal:𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 VLSI routing Routing cost
fluidanimation:𝑁𝑆_𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 Fluid dynamics Particle distance
streamcluster:𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 Online clustering Cluster center distance
X264:𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 Video encoding Structure similarity

III
miniQMC:𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 Quantum Monte Carlo Particle energy
AMG:𝑃𝐶𝐺_𝑠𝑜𝑙𝑣𝑒𝑟 Solver of linear systems Solution of linear systems
Laghos: 𝑆𝑜𝑙𝑣𝑒𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 Compressible gas dynamics Velocity Divergence

7.1 Auto-HPCnet Effectiveness
We use two metrics to evaluate Auto-HPCnet effectiveness: speedup
and prediction hit rate. The speedup is used to evaluate the per-
formance of Auto-HPCnet, and the prediction hit rate is used to
evaluate the quality of the surrogate models generated by Auto-
HPCnet. Equation 2 defines the speedup. We report the speedup of
the whole application (instead of only the NN-replaced code region).

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙_𝑠𝑜𝑙𝑣𝑒𝑟

𝑇 ′
𝑁𝑁_𝑖𝑛𝑓 𝑒𝑟 +𝑇

′
𝐷𝑎𝑡𝑎_𝑙𝑜𝑎𝑑 +𝑇𝑂𝑡ℎ𝑒𝑟_𝑝𝑎𝑟𝑡

(2)

where 𝑇𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙_𝑠𝑜𝑙𝑣𝑒𝑟 represents the execution time of the appli-
cation using the original code (e.g., a traditional numerical solver).
𝑇 ′
𝑁𝑁_𝑖𝑛𝑓 𝑒𝑟 is the inference time of the surrogate model generated by

Auto-HPCnet and 𝑇 ′
𝐷𝑎𝑡𝑎_𝑙𝑜𝑎𝑑 is the data communication overhead

for loading the NN model input to GPU. 𝑇𝑂𝑡ℎ𝑒𝑟_𝑝𝑎𝑟𝑡 refers to the
execution time of the rest part (the code regions without applying
the NN surrogate model).

Equation 3 defines the prediction hit rate (i.e., 𝐻𝑖𝑡𝑅𝑎𝑡𝑒), which
refers to the ratio of the number of input problems that can reach
the quality requirement with the NN surrogate models, to the total
number of input problems (𝑁):

𝐻𝑖𝑡𝑅𝑎𝑡𝑒 =
1
𝑁

𝑁∑︁
𝑖=1
(1, if |𝑉 ′𝑖 −𝑉𝑖 | ≤ 𝜇 |𝑉𝑖 |) (3)

Where 𝑉 is the user-specified QoI, 𝑉 ′
𝑖

is the calculated QoI after
the surrogate model is applied to the application with the 𝑖th input
problem, and𝑉𝑖 is the calculated QoI without applying the surrogate
model to the application with the 𝑖th input problem. The difference
between𝑉 ′

𝑖
and𝑉𝑖 should be smaller than 𝜇 |𝑉𝑖 | in order to claim that

applying the surrogate model to the application with the 𝑖th input
problem generates a high-quality application outcome that meets the
user’s quality requirement.∑𝑁

𝑖=1 (1, if |𝑉 ′
𝑖
−𝑉𝑖 | ≤ 𝜇 |𝑉𝑖 |) in Equation 3 counts the total num-

ber of input problems that can meet the user’s quality requirement
after applying the surrogate model. 𝜇 is a parameter set by the user
(see Section 5). In our evaluation, 𝜇 is set as 10%, which is aligned
with the existing efforts [56, 57, 60] for neural network-based com-
putation approximation.

Using the two metrics, we evaluate Auto-HPCnet with 11 appli-
cations. Each application use 2,000 input problems for evaluation.
Fig. 5 shows the results.

Performance. There is 1.89× - 16.8× speedup with a harmonic
mean of 5.50× across all three types of application, compared with
the application performance on CPU (using all 40 cores). Among

the Auto-HPCnet clients are directly connected to any Orchestrator
launched in the same experiment.

This is because AutoHPCnet client adopts a Redis module (i.e.,
RedisAI [52]), provides the NN runtimes, creating a library agnostic
middleware between the HPC application and NN libraries. Because
of this middleware, the user of AutoHPCnet can smoothly switch
between the NN framework and HPC application. This method
greatly reduces the deployment complexity and overhead of adding
the surrogate model in the HPC application.
Making Inference Call in Auto-HPCnet. Listing 1 shows an ex-
ample of requesting NN inferences based on Auto-HPCnet client
in a C-based application. The client first sends the input tensors to
the inference server (Line 5) and then makes an inference call to the
server. Using the above approach simplifies implementations: the
user only needs to change a few lines of code in the application.
SmartSim Implementation of Inference Call. Listing 2 shows how
to spin up a database with SmartSim Orchestrator and invoke a CNN
model using the Auto-HPCnet client. In Listing 2, the “exp.start(orc,
block=Flase)” (Line 8) uses the SmartSim library to launch a in-
memory data storage. The server receives the inference request and
fetches the input data from the storage (Line 11). Then, the server
loads the pre-trained autoencoder (Line 14) and surrogate model
(Line 17) to make an inference on GPU (Line 21). Despite writing
in Python, we execute all surrogate models in C runtime.

7 EVALUATION
Platform. We conduct all experiments on an NVIDIA DGX-1 cluster
with 8 nodes, and each node is equipped with two Intel Xeon E5-
2698 v4 CPUs (40 cores in total running at 2.20GHz) and eight
NVIDIA TESLA V100 (Volta) GPUs. We use CUDA 10.1/cuDNN
7.0 [53] and Tensorflow 2.3 [54] for model training and inference.
Applications. Table 2 lists applications we evaluate. We compre-
hensively cover three types of applications, which have been widely
studied in HPC. Type-I includes numerical solvers that are often
the most time-consuming in HPC applications. Type-II includes a
set of general applications from the PARSEC parallel benchmark
suite [55]. Those applications are evaluated in previous efforts [56–
58] for approximate computing. Type-III is the representative of
large-scale HPC applications. Type-III comes from the Exascale
Computing Project (ECP) Proxy Applications Suite 4.0 [59].
Quality of Interest (QoI). To evaluate the final computation quality
of the application, we assume that the user provides application-
specific QoI that can be used to quantify the difference between the
solution of the surrogate model and the exact solution. Table 2 lists
the QoI of each application. The QoI differs among applications.

7.1 Auto-HPCnet Effectiveness
We use two metrics to evaluate Auto-HPCnet effectiveness: speedup
and prediction hit rate. The speedup is used to evaluate the per-
formance of Auto-HPCnet, and the prediction hit rate is used to
evaluate the quality of the surrogate models generated by Auto-
HPCnet. Equation 2 defines the speedup. We report the speedup of
the whole application (instead of only the NN-replaced code region).

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙_𝑠𝑜𝑙𝑣𝑒𝑟

𝑇 ′
𝑁𝑁_𝑖𝑛𝑓 𝑒𝑟 +𝑇

′
𝐷𝑎𝑡𝑎_𝑙𝑜𝑎𝑑 +𝑇𝑂𝑡ℎ𝑒𝑟_𝑝𝑎𝑟𝑡

(2)

where 𝑇𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙_𝑠𝑜𝑙𝑣𝑒𝑟 represents the execution time of the appli-
cation using the original code (e.g., a traditional numerical solver).
𝑇 ′
𝑁𝑁_𝑖𝑛𝑓 𝑒𝑟 is the inference time of the surrogate model generated by

Auto-HPCnet and 𝑇 ′
𝐷𝑎𝑡𝑎_𝑙𝑜𝑎𝑑 is the data communication overhead

for loading the NN model input to GPU. 𝑇𝑂𝑡ℎ𝑒𝑟_𝑝𝑎𝑟𝑡 refers to the
execution time of the rest part (the code regions without applying
the NN surrogate model).

Equation 3 defines the prediction hit rate (i.e., 𝐻𝑖𝑡𝑅𝑎𝑡𝑒), which
refers to the ratio of the number of input problems that can reach
the quality requirement with the NN surrogate models, to the total
number of input problems (𝑁):

𝐻𝑖𝑡𝑅𝑎𝑡𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

(1, if |𝑉 ′
𝑖 −𝑉𝑖 | ≤ 𝜇 |𝑉𝑖 |) (3)

Where 𝑉 is the user-specified QoI, 𝑉 ′
𝑖

is the calculated QoI after
the surrogate model is applied to the application with the 𝑖th input
problem, and𝑉𝑖 is the calculated QoI without applying the surrogate
model to the application with the 𝑖th input problem. The difference
between𝑉 ′

𝑖
and𝑉𝑖 should be smaller than 𝜇 |𝑉𝑖 | in order to claim that

applying the surrogate model to the application with the 𝑖th input
problem generates a high-quality application outcome that meets the
user’s quality requirement.∑𝑁

𝑖=1 (1, if |𝑉 ′
𝑖
−𝑉𝑖 | ≤ 𝜇 |𝑉𝑖 |) in Equation 3 counts the total num-

ber of input problems that can meet the user’s quality requirement
after applying the surrogate model. 𝜇 is a parameter set by the user
(see Section 5). In our evaluation, 𝜇 is set as 10%, which is aligned
with the existing efforts [56, 57, 60] for neural network-based com-
putation approximation.

Using the two metrics, we evaluate Auto-HPCnet with 11 appli-
cations. Each application use 2,000 input problems for evaluation.
Fig. 5 shows the results.

Performance. There is 1.89× - 16.8× speedup with a harmonic
mean of 5.50× across all three types of application, compared with
the application performance on CPU (using all 40 cores). Among
all applications, Blackscholes has the largest speedup. The large
speedup comes from the fact that the surrogate model removes
all control flows in the original code, and Auto-HPCnet is able
to offload BlkSchlsEqEuroNoDiv (the most computation-intensive
part) to GPU.

To further study the performance, we compare the performance
of using the original code on GPU and using the surrogate models
generated by Auto-HPCnet on GPU. Table 3 shows the results for
AMG, a production code that can run on either CPU or GPU. To run
AMG on GPU, we use AMGX [61]. We observe that Auto-HPCnet
leads to 4.14× better performance than AMGX. To look into why the
surrogate model on GPU performs better, we measure the number

HPDC ’23, June 16–23, 2023, Orlando, FL, USA. Wenqian Dong, Gokcen Kestor, & Dong Li

C
G

F
F

T

M
G

B
la

ck
.

C
an

ne
al

flu
id

.

st
re

am
.

X
26

4

m
in

iQ
M

C

A
M

G

La
gh

os
 0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
or

m
. S

pe
ed

up
 (

x)

20

40

60

80

100

120

H
it

R
at

e
(%

)

Speedup HitRate7.39x 16.8x 10.89x

Figure 5: Speedup and prediction HitRate in Auto-HPCnet.

HPDC ’23, June 16–23, 2023, Orlando, FL, USA. Wenqian Dong, Gokcen Kestor, & Dong Li

C
G

F
F

T

M
G

B
la

ck
.

C
an

ne
al

flu
id

.

st
re

am
.

X
26

4

m
in

iQ
M

C

A
M

G

La
gh

os
 0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
or

m
. S

pe
ed

up
 (

x)

20

40

60

80

100

120

H
it

R
at

e
(%

)

Speedup HitRate7.39x 16.8x 10.89x

Figure 5: Speedup and prediction HitRate in Auto-HPCnet.

Table 3: Compare the performance of Auto-HPCnet on GPU
with the performance of the original code on GPU. The results
are for AMG.

Methods CPU-only Original code on GPU Auto-HPCnet on GPU

Floating-Point Operations 30.66G 72.82G 21.97G
L2 level cache-miss rate 37.47% 26.31% 17.81%
Mem Bandwidth (MB/s) 3523.15 7518.85 6735.54

Wall clock time (seconds) 2.47 2.11 0.51

all applications, Blackscholes has the largest speedup. The large
speedup comes from the fact that the surrogate model removes
all control flows in the original code, and Auto-HPCnet is able
to offload BlkSchlsEqEuroNoDiv (the most computation-intensive
part) to GPU.

To further study the performance, we compare the performance
of using the original code on GPU and using the surrogate models
generated by Auto-HPCnet on GPU. Table 3 shows the results for
AMG, a production code that can run on either CPU or GPU. To run
AMG on GPU, we use AMGX [61]. We observe that Auto-HPCnet
leads to 4.14× better performance than AMGX. To look into why the
surrogate model on GPU performs better, we measure the number
of Floating-Point (FP) operations, last-level cache miss rate, and
(global) memory bandwidth consumption, shown in Table 3. With
the surrogate model, the number of FP operations and last-level
cache miss rate are reduced by 69.83% and 52.47% respectively.
Such reductions come from the fact that the surrogate model on
GPU, as an NN model, is highly optimized by the GPU vendor and
able to run highly efficiently on GPU. For other applications, the
number of FP operations and L2 level cache-miss rate are reduced
by an average of 42.7% and 35.1% respectively. The main reasons
for this observation are the reduction of model size and excellent
data locality of matrix multiplication in neural network inference.

Quality. Fig. 5 also reports 𝐻𝑖𝑡𝑅𝑎𝑡𝑒. We observe that Auto-
HPCnet leads to high 𝐻𝑖𝑡𝑅𝑎𝑡𝑒: 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 for MG, Canneal, stream-
cluster and AMG is 93%, 93%, 98% and 94% respectively; for the
other seven applications, 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 is 100%. Note that for an appli-
cation where 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 is not 100%, when running a specific input
problem using the surrogate model leads to the final output failing
to meet the quality requirement, the application has to restart and
use the original code.

7.2 Comparison with Existing Work
In essence, Auto-HPCnet applies NN-based approximation to ac-
celerate applications. We compare Auto-HPCnet with the following
works for approximate computing.

• ACCEPT [56] is a tool to apply NN-based approximation to ap-
plications. ACCEPT relies on the user to manually identify the
replaced code region and generate NN models without consider-
ing the impact of NN models on the final computation outcome
quality.
• Loop perforation is a technique that selectively skips loop itera-

tions to accelerate applications without causing significant quality
degradation. Recently, loop perforation has been applied to HPC
applications successfully [62]. We apply loop perforation to the 11
applications according to the recent work HPAC [62]. In particular,
we use HPAC to decide how frequently the loop iterations can be
skipped without causing significant quality degradation.
• Autokeras [26] is a tool that automatically generates NN mod-

els given training datasets. It has been reported [63] that Autok-
eras shows similar performance as other commercial AutoML
frameworks such as Google’s AutoML, H2O-AutoML, and Auto-
sklearn. Autokeras cannot be used for NN-based approximation.
We compare Auto-HPCnet with Autokeras in terms of the NN
model effectiveness of accelerating applications.

Note that we only apply ACCEPT to Type-II applications, but not
Type-I and Type-III applications, because ACCEPT heavily relies on
the user to specify the NN model topology. For those applications in
Type-II, ACCEPT defines their NN model topology, but not for other
types of applications. To enable fair comparison, ACCEPT, loop
perforation, and Autokeras, and Auto-HPCnet are used to accelerate
the same code regions depicted in Table 2. During the evaluation, we
ensure that the final computation quality meets the pre-determined
requirement (i.e., 10%)

Fig. 6 shows the application performance speedup after applying
the above work and Auto-HPCnet. The speedup is calculated with
respect to the execution time of the exact execution (i.e., the origi-
nal execution), using Equation 2. Fig. 6 shows that Auto-HPCnet
consistently performs better in all applications than the other work.
Auto-HPCnet is able to find simple but effective NN architectures
for small applications (Type-II) and also find more complicated NN
architectures for larger applications (Type-III).

ACCEPT and the loop perforation method perform well on a few
applications (i.e., Blackschole with ACCEPT, and fluidanimation
and X264 with the loop perforation) with more than 2x speedup.
ACCEPT and the loop perforation perform poorly on other applica-
tions with less than 2x speedup, because of the following reason: (1)
ACCEPT heavily relies on the user to specify NN models, which
limits its feasibility to explore a wide range of NN models. (2) The
loop perforation limits its performance improvement because its
approximation granularity is only at the loop’s iteration level.

Autokeras achieves 12.8x and 10.89x speedup on Blackschole and
fluidsimulation respectively, which is impressive. However, Autok-
eras cannot lead to better performance than Auto-HPCnet because of
the following reasons. (1) Autokeras does not use feature reduction
and does not consider model inference time, hence the NN model
produced by Autokeras can have long inference time; and (2) Autok-
eras has problems handling sparse matrices with many zero elements,

of Floating-Point (FP) operations, last-level cache miss rate, and
(global) memory bandwidth consumption, shown in Table 3. With
the surrogate model, the number of FP operations and last-level
cache miss rate are reduced by 69.83% and 52.47% respectively.
Such reductions come from the fact that the surrogate model on
GPU, as an NN model, is highly optimized by the GPU vendor and
able to run highly efficiently on GPU. For other applications, the
number of FP operations and L2 level cache-miss rate are reduced
by an average of 42.7% and 35.1% respectively. The main reasons
for this observation are the reduction of model size and excellent
data locality of matrix multiplication in neural network inference.

Quality. Fig. 5 also reports 𝐻𝑖𝑡𝑅𝑎𝑡𝑒. We observe that Auto-
HPCnet leads to high 𝐻𝑖𝑡𝑅𝑎𝑡𝑒: 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 for MG, Canneal, stream-
cluster and AMG is 93%, 93%, 98% and 94% respectively; for the
other seven applications, 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 is 100%. Note that for an appli-
cation where 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 is not 100%, when running a specific input
problem using the surrogate model leads to the final output failing
to meet the quality requirement, the application has to restart and
use the original code.

7.2 Comparison with Existing Work
In essence, Auto-HPCnet applies NN-based approximation to ac-
celerate applications. We compare Auto-HPCnet with the following
works for approximate computing.
• ACCEPT [56] is a tool to apply NN-based approximation to ap-

plications. ACCEPT relies on the user to manually identify the
replaced code region and generate NN models without consider-
ing the impact of NN models on the final computation outcome
quality.

• Loop perforation is a technique that selectively skips loop itera-
tions to accelerate applications without causing significant quality
degradation. Recently, loop perforation has been applied to HPC
applications successfully [62]. We apply loop perforation to the 11

applications according to the recent work HPAC [62]. In particular,
we use HPAC to decide how frequently the loop iterations can be
skipped without causing significant quality degradation.

• Autokeras [26] is a tool that automatically generates NN mod-
els given training datasets. It has been reported [63] that Autok-
eras shows similar performance as other commercial AutoML
frameworks such as Google’s AutoML, H2O-AutoML, and Auto-
sklearn. Autokeras cannot be used for NN-based approximation.
We compare Auto-HPCnet with Autokeras in terms of the NN
model effectiveness of accelerating applications.

Note that we only apply ACCEPT to Type-II applications, but not
Type-I and Type-III applications, because ACCEPT heavily relies on
the user to specify the NN model topology. For those applications in
Type-II, ACCEPT defines their NN model topology, but not for other
types of applications. To enable fair comparison, ACCEPT, loop
perforation, Autokeras, and Auto-HPCnet are used to accelerate the
same code regions depicted in Table 2. During the evaluation, we
ensure that the final computation quality meets the pre-determined
requirement (i.e., 10%)

Fig. 6 shows the application performance speedup after applying
the above work and Auto-HPCnet. The speedup is calculated with
respect to the execution time of the exact execution (i.e., the origi-
nal execution), using Equation 2. Fig. 6 shows that Auto-HPCnet
consistently performs better in all applications than the other work.
Auto-HPCnet is able to find simple but effective NN architectures
for small applications (Type-II) and also find more complicated NN
architectures for larger applications (Type-III).

ACCEPT and the loop perforation method perform well on a few
applications (i.e., Blackschole with ACCEPT, and fluidanimation
and X264 with the loop perforation) with more than 2x speedup.
ACCEPT and the loop perforation perform poorly on other applica-
tions with less than 2x speedup, because of the following reason: (1)
ACCEPT heavily relies on the user to specify NN models, which
limits its feasibility to explore a wide range of NN models. (2) The
loop perforation limits its performance improvement because its
approximation granularity is only at the loop’s iteration level.

Autokeras achieves 12.8x and 10.89x speedup on Blackschole and
fluidsimulation respectively, which is impressive. However, Autok-
eras cannot lead to better performance than Auto-HPCnet because of
the following reasons. (1) Autokeras does not use feature reduction
and does not consider model inference time, hence the NN model
produced by Autokeras can have long inference time; and (2) Autok-
eras has problems handling sparse matrices with many zero elements,
because those zero elements will cause a gradient overflow problem
during the NN model training. In fact, Fig. 6 shows that using mod-
els generated by Autokeras, there is even dramatically slowdown in
those applications whose inputs are high-dimensional sparse matri-
ces (e.g., CG, FFT, MG, miniQMC and AMG). Auto-HPCnet does
not have the above problems.

Effectiveness of Bayesian Optimization. Auto-HPCnet uses the
Bayesian optimization to choose an NN model to replace the original
code. The Bayesian optimization in Auto-HPCnet has three steps,
i.e., update, generation, and evaluation. We compare the Bayesian
Optimization with a traditional approach, grid search [26], which
simply makes a complete search over a given subset of the topologies

Auto-HPCnet HPDC ’23, June 16–23, 2023, Orlando, FL, USA.

CG FFT MG
0
1
2
3
4
5
6
7
8

N
or

m
. S

pe
ed

up
 (

x)

Blacj. Canneal fluid. stream. X264
0
2
4
6
8

10
12
14
16
18

Exact execution Prior neural acceleration Loop perforation Autokeras AutoHPCnet

miniQMC AMG Laghos
0

1

2

3

4

5

Figure 6: Performance comparison of other representative methods

space of neural network search. We use the default setting of grid
search in AutoKeras.

We count the number of search steps per time unit (i.e., one
hour) to reach the same model quality, as an indicator of search
efficiency. For Type-I, II, and III applications, the average number of
search steps per hour using the Bayesian optimization is 3.3, 6.5, and
2.1 respectively, while using the grid search, it is 1.6, 3.2, and 1.9
respectively. The Bayesian optimization has higher search efficiency,
especially for Type-I and Type-II applications, because the quality-
aware algorithm adopted by Bayesian optimization can effectively
guide the search in the right direction compared with the grid search.

7.3 Overhead Analysis
Auto-HPCnet includes offline and online phases. We quantify the
time spent on the two phases to analyze the feasibility.

Offline time. The offline phase of Auto-HPCnet includes the trace
generation, the Bayesian optimization, and Autoencoder training.
The execution time of the offline phase differs from one application
to another. In our evaluation, the trace generation, Bayesian opti-
mization, and Autoencoder training take 24-59 minutes, 6-13 hours,
and 1.4-2.2 hours respectively. Note that the overhead of the offline
phase in Auto-HPCnet, like other NN-based approximations, can
be amortized, because the offline phase happens only once, and the
NN-based approximation is expected to happen many times with
performance benefit.

Online time. The online time includes (1) fetching input data to
GPU memory, (2) encoding input data to low-dimensional features,
(3) loading a pre-trained surrogate model from a file, and (4) running
the surrogate model and retrieving the model output for the applica-
tion. (1), (2), (3) and (4) take 21.2%, 10.1%, 1.6% and 67.1% of the
whole online time on average. The online time is reported in Fig. 5
and Fig. 6.

8 OTHER RELATED WORK
Scientific Machine Learning. Scientific machine learning [64–73]
aims at using machine learning methods to solve scientific and en-
gineering problems. There are many successful cases in scientific
machine learning, such as using machine learning to reproduce
molecular energy surfaces [74] and simulate infrared spectra for
molecular dynamics [75–77]. In [74], researchers use a DNN to ap-
proximate Discrete Fourier Transform (DFT) for Quantum chemistry
(QC) simulation acceleration. Different from the existing efforts, our
work does not assume any prior knowledge on application domains.

Approximate Computing. Approximate computing can be lever-
aged to shorten execution or save energy by trading computation ac-
curacy. The computation approximation usually happens at a coarse
granularity (e.g., the whole application or multiple functions). Ap-
proximate computing has been explored in many fields, including
hardware accelerators [78–81], compiler optimization [30, 37, 82,
83], programming language designs [84–87], and runtime system
designs [88–93]. Approximate computing has also been applied to
many applications, such as streaming applications [29, 94, 95]. The
use of surrogate models for computation, like existing efforts in
approximate computing [56, 57, 60, 96, 97], does not guarantee that
the application outcome is valid for all input problems. If the appli-
cation outcome is not valid, the application may restart using the
original code region [22, 96]. Auto-HPCnet makes best efforts to im-
prove the accuracy of the surrogate model while guaranteeing valid
application final output. Therefore, the human effort to ensure the
validness of application outcomes during the practice of NN-based
surrogates is reduced.

9 CONCLUSIONS
Using the surrogate models to replace computation in HPC applica-
tions is promising, but is difficult to be applied in practice, because
of a series of challenges on feature acquisition, feature reduction,
and NN model construction. Relying on the domain scientist to
manually use those steps to apply the surrogate models is time-
consuming, and fundamentally prevents the popularity of using this
promising method to accelerate the performance of HPC applica-
tions. This paper aims to address the above problem and introduces
an end-to-end framework (named Auto-HPCnet) that democratizes
the usage of NN-based approximation in HPC applications. The
design of Auto-HPCnet is driven by the observations on the major
challenges of applying the surrogate models in practice. Built upon
a novel hierarchical Bayesian optimization, customized autoencoder
for sparse matrix and NN model construction, and compiler-assisted
feature acquisition, Auto-HPCnet can effectively ease and acceler-
ate the exploring process of applying the surrogate models to HPC
applications.

ACKNOWLEDGEMENT
The research described in this paper was supported through DOE Of-
fice of Advanced Scientific Computing Research as a part of the Cen-
ter for Artificial Intelligence focused Architectures and Algorithms

HPDC ’23, June 16–23, 2023, Orlando, FL, USA. Wenqian Dong, Gokcen Kestor, & Dong Li

(ARIAA) under project 74756 Co-design of Reconfigurable Acceler-
ators for Sparse, Irregular Computations Underlying Machine Learn-
ing and Graph Analysis. Pacific Northwest National Laboratory is a
multiprogram national laboratory operated by Battelle for the U.S.
Department of Energy under contract DE-AC05-76RL01830. This
work was supported in part by Oracle Cloud credits and related
resources provided by the Oracle for Research program. This work
was also partially supported by U.S. National Science Foundation
(OAC 2104116) and the Chameleon Cloud.

REFERENCES
[1] Markus Reichstein, Gustau Camps-Valls, Bjorn Stevens, Martin Jung, Joachim

Denzler, Nuno Carvalhais, et al. Deep learning and process understanding for
data-driven earth system science. Nature, 566(7743):195–204, 2019.

[2] Vladimir M Krasnopolsky and Michael S Fox-Rabinovitz. Complex hybrid models
combining deterministic and machine learning components for numerical climate
modeling and weather prediction. Neural Networks, 19(2):122–134, 2006.

[3] Paul A O’Gorman and John G Dwyer. Using machine learning to parameterize
moist convection: Potential for modeling of climate, climate change, and extreme
events. Journal of Advances in Modeling Earth Systems, 10(10):2548–2563, 2018.

[4] Arvind T Mohan and Datta V Gaitonde. A deep learning based approach to
reduced order modeling for turbulent flow control using lstm neural networks.
arXiv preprint arXiv:1804.09269, 2018.

[5] Dunhui Xiao, CE Heaney, L Mottet, F Fang, W Lin, IM Navon, Y Guo, OK Matar,
AG Robins, and CC Pain. A reduced order model for turbulent flows in the urban
environment using machine learning. Building and Environment, 148:323–337,
2019.

[6] Mathis Bode, Michael Gauding, Zeyu Lian, Dominik Denker, Marco Davidovic,
Konstantin Kleinheinz, Jenia Jitsev, and Heinz Pitsch. Using physics-informed
enhanced super-resolution generative adversarial networks for subfilter modeling
in turbulent reactive flows. Proceedings of the Combustion Institute, 38(2):2617–
2625, 2021.

[7] Akinori Tanaka, Akio Tomiya, and Kōji Hashimoto. Deep Learning and Physics.
Springer, 2021.

[8] Rahul Rai and Chandan K Sahu. Driven by data or derived through physics? a
review of hybrid physics guided machine learning techniques with cyber-physical
system (cps) focus. IEEE Access, 8:71050–71073, 2020.

[9] Paul Raccuglia, Katherine C Elbert, Philip DF Adler, Casey Falk, Malia B Wenny,
Aurelio Mollo, Matthias Zeller, Sorelle A Friedler, Joshua Schrier, and Alexander J
Norquist. Machine-learning-assisted materials discovery using failed experiments.
Nature, 533(7601):73–76, 2016.

[10] Gabriel R Schleder, Antonio CM Padilha, Carlos Mera Acosta, Marcio Costa, and
Adalberto Fazzio. From dft to machine learning: recent approaches to materials
science–a review. Journal of Physics: Materials, 2(3):032001, 2019.

[11] Ruijin Cang, Hechao Li, Hope Yao, Yang Jiao, and Yi Ren. Improving direct
physical properties prediction of heterogeneous materials from imaging data
via convolutional neural network and a morphology-aware generative model.
Computational Materials Science, 150:212–221, 2018.

[12] Peter Sadowski, David Fooshee, Niranjan Subrahmanya, and Pierre Baldi. Syn-
ergies between quantum mechanics and machine learning in reaction prediction.
Journal of chemical information and modeling, 56(11):2125–2128, 2016.

[13] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan
Chmiela, Alexandre Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-
filter convolutional neural network for modeling quantum interactions. Advances
in neural information processing systems, 30, 2017.

[14] Suraj Pawar, Omer San, Burak Aksoylu, Adil Rasheed, and Trond Kvamsdal.
Physics guided machine learning using simplified theories. Physics of Fluids,
33(1):011701, 2021.

[15] Alireza Yazdani, Lu Lu, Maziar Raissi, and George Em Karniadakis. Systems
biology informed deep learning for inferring parameters and hidden dynamics.
PLoS computational biology, 16(11):e1007575, 2020.

[16] Mark Alber, Adrian Buganza Tepole, William R Cannon, Suvranu De, Salvador
Dura-Bernal, Krishna Garikipati, George Karniadakis, William W Lytton, Paris
Perdikaris, Linda Petzold, et al. Integrating machine learning and multiscale mod-
eling—perspectives, challenges, and opportunities in the biological, biomedical,
and behavioral sciences. NPJ digital medicine, 2(1):1–11, 2019.

[17] Charuleka Varadharajan, Vipin Kumar, Jared Willard, Jacob Zwart, Jeff Sadler,
Helen Weierbach, Talita Perciano, Juliane Mueller, Valerie Hendrix, and Danielle
Christianson. Using machine learning to develop a predictive understanding of
the impacts of extreme water cycle perturbations on river water quality. Technical
report, Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States);
Univ . . . , 2021.

[18] Tianfang Xu and Albert J Valocchi. Data-driven methods to improve baseflow
prediction of a regional groundwater model. Computers & Geosciences, 85:124–
136, 2015.

[19] Wenqian Dong, Jie Liu, Zhen Xie, and Dong Li. Adaptive neural network-based
approximation to accelerate eulerian fluid simulation. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–22, 2019.

[20] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator
for parametric partial differential equations. arXiv preprint arXiv:2010.08895,
2020.

[21] Denghui Lu, Han Wang, Mohan Chen, Lin Lin, Roberto Car, E Weinan, Weile Jia,
and Linfeng Zhang. 86 pflops deep potential molecular dynamics simulation of
100 million atoms with ab initio accuracy. Computer Physics Communications,
259:107624, 2021.

[22] Wenqian Dong, Zhen Xie, Gokcen Kestor, and Dong Li. Smart-pgsim: Using
neural network to accelerate ac-opf power grid simulation. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’20. IEEE Press, 2020.

[23] Dalvan Griebler, Junior Loff, Gabriele Mencagli, Marco Danelutto, and Luiz Gus-
tavo Fernandes. Efficient nas benchmark kernels with c++ parallel programming.
In 2018 26th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), pages 733–740. IEEE, 2018.

[24] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural archi-
tecture search system. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1946–1956, 2019.

[25] Ekaba Bisong. Google automl: Cloud vision. In Building Machine Learning
and Deep Learning Models on Google Cloud Platform, pages 581–598. Springer,
2019.

[26] Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng Jin, Luca
Invernizzi, et al. Keras tuner. Retrieved May, 21:2020, 2019.

[27] Rudi Helfenstein and Jonas Koko. Parallel preconditioned conjugate gradient algo-
rithm on gpu. Journal of Computational and Applied Mathematics, 236(15):3584–
3590, 2012.

[28] Aiichiro Nakano. Parallel multilevel preconditioned conjugate-gradient approach
to variable-charge molecular dynamics. Computer Physics Communications,
104(1-3):59–69, 1997.

[29] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke.
Paraprox: Pattern-Based Approximation for Data Parallel Applications. In Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
2014.

[30] Woongki Baek and Trishul M Chilimbi. Green: a framework for supporting
energy-conscious programming using controlled approximation. In ACM Sigplan
Notices, volume 45, pages 198–209. ACM, 2010.

[31] Marc De Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: An
architectural framework for software recovery of hardware faults. ACM SIGARCH
Computer Architecture News, 38(3):497–508, 2010.

[32] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architec-
ture support for disciplined approximate programming. In Proceedings of the
seventeenth international conference on Architectural Support for Programming
Languages and Operating Systems, pages 301–312, 2012.

[33] Stefano Cherubina Giovanni Agostaa Imane Lasrib, Erven Rohoub, and Olivier
Sentieysb. Implications of reduced-precision computations in hpc: Performance,
energy and error. Parallel Computing is Everywhere, 32:297, 2018.

[34] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin.
Accelerating eulerian fluid simulation with convolutional networks. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages 3424–
3433. JMLR. org, 2017.

[35] Kurt Binder, Jürgen Horbach, Walter Kob, Wolfgang Paul, and Fathollah Varnik.
Molecular dynamics simulations. Journal of Physics: Condensed Matter,
16(5):S429, 2004.

[36] Andrew C Lorenc. Analysis methods for numerical weather prediction. Quarterly
Journal of the Royal Meteorological Society, 112(474):1177–1194, 1986.

[37] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.
Managing performance vs. accuracy trade-offs with loop perforation. In Proceed-
ings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pages 124–134, 2011.

[38] Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal, and Martin
Rinard. Using code perforation to improve performance, reduce energy consump-
tion, and respond to failures. 2009.

[39] Branko Grünbaum and Geoffrey Colin Shephard. Tilings and patterns. Courier
Dover Publications, 1987.

[40] Philip J Davis. Interpolation and approximation. Courier Corporation, 1975.
[41] Frank Noé, Gianni De Fabritiis, and Cecilia Clementi. Machine learning for

protein folding and dynamics. Current opinion in structural biology, 60:77–84,
2020.

[42] Chiyu Max Jiang, Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik
Kashinath, Mustafa Mustafa, Hamdi A Tchelepi, Philip Marcus, Anima Anandku-
mar, et al. Meshfreeflownet: A physics-constrained deep continuous space-time
super-resolution framework. arXiv preprint arXiv:2005.01463, 2020.

Auto-HPCnet HPDC ’23, June 16–23, 2023, Orlando, FL, USA.

[43] Simone Campanoni, Giovanni Agosta, Stefano Crespi Reghizzi, and Andrea
Di Biagio. A highly flexible, parallel virtual machine: design and experience of
ildjit. Software: Practice and Experience, 40(2):177–207, 2010.

[44] L. Guo, D. Li, I. Laguna, and M. Schulz. FlipTracker: Understanding Natural Error
Resilience in HPC Applications. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis, 2018.

[45] Mark Probst, Andreas Krall, and Bernhard Scholz. Register liveness analysis for
optimizing dynamic binary translation. In Ninth Working Conference on Reverse
Engineering, 2002. Proceedings., pages 35–44. IEEE, 2002.

[46] Mary Jean Harrold and Mary Lou Soffa. Efficient computation of interprocedural
definition-use chains. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(2):175–204, 1994.

[47] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT press Cambridge, 2016.

[48] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets
with sublinear memory cost. arXiv preprint arXiv:1604.06174, 2016.

[49] Martin Pelikan, David E Goldberg, Erick Cantú-Paz, et al. Boa: The bayesian op-
timization algorithm. In Proceedings of the genetic and evolutionary computation
conference GECCO-99, volume 1, pages 525–532. Citeseer, 1999.

[50] Ian Dewancker, Michael McCourt, and Scott Clark. Bayesian optimization for
machine learning: A practical guidebook. arXiv preprint arXiv:1612.04858, 2016.

[51] Sam Partee, Matthew Ellis, Alessandro Rigazzi, Scott Bachman, Gustavo Marques,
Andrew Shao, and Benjamin Robbins. Using machine learning at scale in hpc
simulations with smartsim: An application to ocean climate modeling. arXiv
preprint arXiv:2104.09355, 2021.

[52] Raj Patel. Data+ education. redis is a cache or more? Technical report, EasyChair,
2021.

[53] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep
learning. arXiv preprint arXiv:1410.0759, 2014.

[54] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16), pages
265–283, 2016.

[55] Christian Bienia. Benchmarking modern multiprocessors. Princeton University,
2011.

[56] Adrian Sampson, André Baixo, Benjamin Ransford, Thierry Moreau, Joshua Yip,
Luis Ceze, and Mark Oskin. Accept: A programmer-guided compiler framework
for practical approximate computing. University of Washington Technical Report
UW-CSE-15-01, 1(2), 2015.

[57] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural
acceleration for general-purpose approximate programs. In 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 449–460. IEEE,
2012.

[58] Divya Mahajan, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, and Hadi
Esmaeilzadeh. Towards statistical guarantees in controlling quality tradeoffs
for approximate acceleration. ACM SIGARCH Computer Architecture News,
44(3):66–77, 2016.

[59] Paul Messina. The exascale computing project. Computing in Science & Engi-
neering, 19(3):63–67, 2017.

[60] Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Esmaeilzadeh,
Luis Ceze, and Mark Oskin. Snnap: Approximate computing on programmable
socs via neural acceleration. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pages 603–614. IEEE, 2015.

[61] SIAM Journal on Scientific Computing. Amgx: A library for gpu accelerated
algebraic multigrid and preconditioned iterative methods. Notices of the AMS,
37.5:S602–S626, 2015.

[62] Konstantinos Parasyris, Giorgis Georgakoudis, Harshitha Menon, James Diff-
enderfer, Ignacio Laguna, Daniel Osei-Kuffuor, and Markus Schordan. Hpac:
evaluating approximate computing techniques on hpc openmp applications. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–14, 2021.

[63] Anh Truong, Austin Walters, Jeremy Goodsitt, Keegan Hines, C Bayan Bruss, and
Reza Farivar. Towards automated machine learning: Evaluation and comparison
of automl approaches and tools. In 2019 IEEE 31st international conference on
tools with artificial intelligence (ICTAI), pages 1471–1479. IEEE, 2019.

[64] Uri Shaham, Alexander Cloninger, and Ronald R Coifman. Provable approxima-
tion properties for deep neural networks. Applied and Computational Harmonic
Analysis, 44(3):537–557, 2018.

[65] Sungmoon Jung and Jamshid Ghaboussi. Neural network constitutive model for
rate-dependent materials. Computers & Structures, 84(15-16):955–963, 2006.

[66] Baris Sen and Suresh Menon. Representation of chemical kinetics by artificial
neural networks for large eddy simulations. In 43rd Aiaa/Asme/Sae/Asee Joint
Propulsion Conference & Exhibit, page 5635, 2007.

[67] Erik Marchi, Fabio Vesperini, Florian Eyben, Stefano Squartini, and Björn Schuller.
A novel approach for automatic acoustic novelty detection using a denoising
autoencoder with bidirectional lstm neural networks. In Proceedings 40th IEEE

International Conference on Acoustics, Speech, and Signal Processing, ICASSP
2015, pages 5–pages, 2015.

[68] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged turbu-
lence modelling using deep neural networks with embedded invariance. Journal
of Fluid Mechanics, 807:155–166, 2016.

[69] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem
with artificial neural networks. Science, 355(6325):602–606, 2017.

[70] Yunjie Liu, Evan Racah, Joaquin Correa, Amir Khosrowshahi, David Lavers,
Kenneth Kunkel, Michael Wehner, William Collins, et al. Application of deep
convolutional neural networks for detecting extreme weather in climate datasets.
arXiv preprint arXiv:1605.01156, 2016.

[71] Guanghui Liang and K Chandrashekhara. Neural network based constitutive
model for elastomeric foams. Engineering structures, 30(7):2002–2011, 2008.

[72] Yuelin Shen, K Chandrashekhara, WF Breig, and LR Oliver. Finite element
analysis of v-ribbed belts using neural network based hyperelastic material model.
International Journal of Non-Linear Mechanics, 40(6):875–890, 2005.

[73] Zhen Xie, Wenqian Dong, Jiawen Liu, Hang Liu, and Dong Li. Tahoe: tree
structure-aware high performance inference engine for decision tree ensemble on
gpu. In Proceedings of the Sixteenth European Conference on Computer Systems,
pages 426–440, 2021.

[74] J. S. Smith, O. Isayev, and A. E. Roitberg. Ani-1: an extensible neural network
potential with dft accuracy at force field computational cost. 2017.

[75] Michael Gastegger, Jörg Behlerb, and Philipp Marquetand. Machine Learning
Molecular Dynamics for the Simulation of Infrared Spectra . Chemical Science,
pages 6695–7270, 2017.

[76] Wenqian Dong, Letian Kang, Zhe Quan, Kenli Li, Keqin Li, Ziyu Hao, and Xiang-
Hui Xie. Implementing molecular dynamics simulation on sunway taihulight
system. In 2016 IEEE 18th international conference on high performance comput-
ing and communications; IEEE 14th international conference on smart city; IEEE
2nd international conference on data science and systems (HPCC/SmartCity/DSS),
pages 443–450. IEEE, 2016.

[77] Wenqian Dong, Kenli Li, Letian Kang, Zhe Quan, and Keqin Li. Implementing
molecular dynamics simulation on the sunway taihulight system with hetero-
geneous many-core processors. Concurrency and Computation: Practice and
Experience, 30(16):e4468, 2018.

[78] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture
support for disciplined approximate programming. In ASPLOS, 2012.

[79] J. Han and M. Orshansky. Approximate computing: An emerging paradigm for
energy-efficient design. In ETS, 2013.

[80] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate
storage in solid-state memories. In ACM TOCS, 2014.

[81] Zeshi Liu, Zhen Xie, Wenqian Dong, Mengting Yuan, Haihang You, and Dong Li.
A heterogeneous processing-in-memory approach to accelerate quantum chemistry
simulation. Parallel Computing, 116:103017, 2023.

[82] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Rinard. Quality
of service profiling. In ICSE, 2010.

[83] Adrian Sampson, Andre Baixo, Benjamin Ransford, Thierry Moreau, Joshua Yip,
Luis Ceze, and Mark Oskin. Accept: A programmer-guided compiler framework
for practical approximate computing. University of Washington Technical Report
UW-CSE-15-01, 2015.

[84] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T. Chakradhar.
Scalable effort hardware design: Exploiting algorithmic resilience for energy
efficiency. In Design Automation Conference, 2010.

[85] Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations that
discard tasks. In PInternational Conference on Supercomputing, 2006.

[86] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Scott
Mahlke. Sage: Self-tuning approximation for graphics engines. In Microarchi-
tecture (MICRO), 2013 46th Annual IEEE/ACM International Symposium on,
2013.

[87] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general
low-power computation. In PLDI, 2011.

[88] Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks. Helix-up:
Relaxing program semantics to unleash parallelization. In IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, 2015.

[89] Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D. Nguyen. Ap-
proxhadoop: Bringing approximations to mapreduce frameworks. In ASPLOS,
2015.

[90] Shuangyan Yang, Minjia Zhang, Wenqian Dong, and Dong Li. Betty: Enabling
large-scale gnn training with batch-level graph partitioning. 2023.

[91] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin Rinard. Dynamic knobs for responsive power-aware comput-
ing. In ASPLOS, 2011.

[92] Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong Li. Fauce: Fast and accurate
deep ensembles with uncertainty for cardinality estimation. Proceedings of the
VLDB Endowment, 14(11):1950–1963, 2021.

[93] Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li. Md-hm:
memoization-based molecular dynamics simulations on big memory system. In

HPDC ’23, June 16–23, 2023, Orlando, FL, USA. Wenqian Dong, Gokcen Kestor, & Dong Li

Proceedings of the ACM International Conference on Supercomputing, pages
215–226, 2021.

[94] Daya S Khudia, Babak Zamirai, Mehrzad Samadi, and Scott Mahlke. Rumba:
An online quality management system for approximate computing. In Computer
Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International Symposium on,
2015.

[95] Dhanya R. Krishnan, Do Le Quoc, Pramod Bhatotia, Christof Fetzer, and Rodrigo
Rodrigues. Incapprox: A data analytics system for incremental approximate

computing. In WWW, 2016.
[96] Xin Sui, Andrew Lenharth, Donald S Fussell, and Keshav Pingali. Proactive

control of approximate programs. ACM SIGPLAN Notices, 51(4):607–621, 2016.
[97] Michael A Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke, Jason Mars,

and Lingjia Tang. Input responsiveness: using canary inputs to dynamically
steer approximation. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 161–176, 2016.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Characteristics of HPC Code Regions
	2.2 Traditional v.s. NN Approximation
	2.3 Traditional Workflow of Surrogate Model Construction

	3 Data Acquisition
	3.1 Compiler-based Feature Extraction
	3.2 Dynamic Analysis v.s. Static Analysis

	4 Input analysis
	4.1 Autoencoders for Feature Reduction
	4.2 Customized Design for Sparse Input
	4.3 Workflow of Applying Autoencoding

	5 2D Neural Architecture Search
	5.1 Search Space
	5.2 Hierarchical Bayesian Optimization

	6 Implementation
	6.1 Interaction with Users
	6.2 Quality-Oriented Optimizations
	6.3 Online Inference Invocation

	7 Evaluation
	7.1 Auto-HPCnet Effectiveness
	7.2 Comparison with Existing Work
	7.3 Overhead Analysis

	8 Other Related Work
	9 Conclusions
	References

