
Merchandiser: Data Placement on Heterogeneous
Memory for Task-Parallel HPC Applications with

Load-Balance Awareness
Zhen Xie

zhen.xie@anl.gov
University of California, Merced
Argonne National Laboratory

Jie Liu
jliu279@ucmerced.edu

University of California, Merced

Jiajia Li
jiajia.li@ncsu.edu

North Carolina State University

Dong Li
dli35@ucmerced.edu

University of California, Merced

Abstract
The emergence of heterogeneous memory (HM) provides
a cost-effective and high-performance solution to memory-
consumingHPC applications. Deciding the placement of data
objects on HM is critical for high performance. We reveal
a performance problem related to data placement on HM.
The problem is manifested as load imbalance among tasks
in task-parallel HPC applications. The root of the problem
comes from being unaware of parallel-task semantics and
an incorrect assumption that bringing frequently accessed
pages to fast memory always leads to better performance.
To address this problem, we introduce a load balance-aware
page management system, named Merchandiser. Merchan-
diser introduces task semantics during memory profiling,
rather than being application-agnostic. Using the limited
task semantics, Merchandiser effectively sets up coordina-
tion among tasks on the usage of HM to finish all tasks fast
instead of only considering any individual task. Merchan-
diser is highly automated to enable high usability. Evaluating
with memory-consuming HPC applications, we show that
Merchandiser reduces load imbalance and leads to an aver-
age of 17.1% and 15.4% (up to 26.0% and 23.2%) performance
improvement, compared with a hardware-based solution and
an industry-quality software-based solution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0015-6/23/02. . . $15.00
https://doi.org/10.1145/3572848.3577497

CCS Concepts: • Computer systems organization →
Heterogeneous (hybrid) systems; • Theory of compu-
tation → Parallel computing models; • Hardware →
Non-volatile memory.

Keywords: Data Placement, Heterogeneous Memory, Paral-
lel Computing, Load Balance

ACM Reference Format:
Zhen Xie, Jie Liu, Jiajia Li, and Dong Li. 2023. Merchandiser: Data
Placement on Heterogeneous Memory for Task-Parallel HPC Appli-
cations with Load-Balance Awareness. In The 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Program-
ming (PPoPP ’23), February 25-March 1, 2023, Montreal, QC, Canada.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3572848.
3577497

1 Introduction
Many high-performance computing (HPC) applications are
becoming memory-consuming. For example, the density ma-
trix renormalization group (DMRG) [6, 77], a numerical al-
gorithm to obtain the low-energy physics of quantum many-
body systems, can consume 1.271 TB memory in a single
machine when solving the Hubbard 2D model at the scale of
320 × 320 [21, 46]. To meet memory requirements of those
applications, the big memory system is emerging. An ex-
ample of such a system is the Amazon EC2 High Memory
Instance built upon eight NUMA nodes and providing up to
12 TB memory [31]. The big memory system is often hetero-
geneous, which means multiple memory components with
different latency and bandwidth form the main memory.
HM raises a data placement problem. Because of small

capacity of fast memory and relatively worse performance
of slow memory, memory pages have to be allocated and
migrated between fast and slow memories, such that most
of memory accesses can happen in fast memory for high
performance. It has been shown that some HPC applications
can suffer from up to 5.7× performance loss (compared with
using a fast memory-only solution) with suboptimal data
placement on HM [61, 63, 67, 84].

https://doi.org/10.1145/3572848.3577497
https://doi.org/10.1145/3572848.3577497
https://doi.org/10.1145/3572848.3577497


PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Zhen Xie, Jie Liu, Jiajia Li, and Dong Li

Many solutions [19, 25, 33, 34, 41, 54, 84, 86] to address
the data placement problem on HM uses a profiling-guided
optimization (PGO) approach. These solutions identify fre-
quently accessed memory pages (“hot pages”) by periodically
sampling memory pages and tracking memory accesses to
them. Hot pages are then migrated to fast memory for bet-
ter performance. These solutions are application-agnostic,
meaning that they do not need application knowledge or
change applications. Success of these solutions is based on
an implicit assumption that placing hot pages in fast memory
always leads to better performance. However, we find that it
is not true for many task-parallel HPC applications.

Task-parallel programs are common inHPC. A task-parallel
program can be MPI-based, and each MPI process performs a
task. It can be OpenMP-based, and each OpenMP thread per-
forms a task. There is synchronization among tasks where
tasks must reach the synchronization point before they move
on to the rest of computation. Because of synchronization
among tasks, finishing all tasks fast instead of finish individ-
ual tasks fast is a key for high performance.
The PGO on HM cannot work well for task-parallel ap-

plications. They lack a view of “finishing all tasks fast” for
high performance. Theymigrate and place hot pages into fast
memory, but do not consider which task accesses those mem-
ory pages. As a result, the existing efforts could introduce
load imbalance: a task unnecessarily reaches the synchro-
nization point earlier than the others and waits for other
tasks to finish, because many pages of this task are resident
in fast memory, leading to its shorter execution time.
To reveal the load imbalance problem on HM, we study

five HPC applications on an Optane-based HM. This HM
consists of 192GB DRAM and 1.5TB Optane [32]. We study
two representative solutions: an industry-quality, software
solution (Intel MemoryOptimizer [16]) and a hardware solu-
tion (Memory Mode of Optane). We have two observations
(see Figure 5 in the evaluation section for details).
• Compared with running on homogeneous memory, run-
ning onHM increases performance difference among tasks:
on average, the performance difference among tasks is in-
creased by 17% and 16% (when MemoryOptimizer and
Memory Mode are used respectively), which indicates
more load imbalance after using MemoryOptimizer and
Memory Mode on HM.
• Performance improvement is minimal after using Mem-
oryOptimizer and Memory Mode. The performance im-
provement is only 4.32% and 3.71% respectively (compared
with using Optane only), because the overall performance
is hindered by the slowest task.
There are two fundamental reasons accounting for the

above performance problem. First, the PGO solutions (such as
MemoryOptimizer) are not aware of task parallelism. There
is a lack of coordination among tasks to share the limited
fast memory space. That space is allocated to tasks based on
opportunistic detection of hot pages from tasks, not based

on performance analysis on potential performance benefit of
using fast memory for tasks. It may unfairly place too many
pages from one task into fast memory, causing load imbal-
ance. Second, the PGO solutions use random page sampling-
based memory profiling. Random sampling is effective to
avoid large overhead of profiling all memory pages in a big
memory system. However, it may collect many memory ac-
cesses from one task, which leads to too many pages of that
task migrating to fast memory, causing load imbalance.
We introduce a load balance-aware data placement sys-

tem for HM, named Merchandiser, to address the problem.
Merchandiser introduces task semantics during memory pro-
filing. This means Merchandiser associates memory accesses
with tasks during profiling, instead of being application-
agnostic. Using limited task semantics, Merchandiser effec-
tively sets up coordination among tasks on the usage of HM.
Furthermore, Merchandiser uses historical, fine-grained pro-
filing results of the task to guide data placement for the
subsequent executions of the same task with new inputs.

However, to realize Merchandiser we face two challenges.
First, the input problem to a task during program execution
can vary, and the historical profiling results collected from
one input cannot be directly used to predict performance for
another input, because of the difference in the number of
memory accesses. Second, how to partition the fast memory
space among tasks is challenging. Unless all tasks have the
same memory access patterns and data object sizes, evenly
sharing fast memory among tasks cannot work. We must
decide for each task with a new input, which objects should
be placed in fast memory without priori knowledge on the
number of memory accesses to the objects. We must also
predict execution time of tasks after migration, such that the
effectiveness of load balance can be quantified and estimated.

To address the first challenge on handling new input prob-
lems, Merchandiser classifies data objects in terms of their
memory access patterns, based on which Merchandiser ana-
lytically derives the number of main memory accesses for a
new input problem. The memory access patterns are mostly
invariant across input problems for a given task inmanyHPC
applications, providing a reliable indication on the number
of memory accesses. We also recognize the difference in the
impacts of memory access patterns, and estimate the number
of memory accesses differently for different patterns.
Based on the estimated memory accesses, Merchandiser

introduces performance modeling to predict execution time
of the task when a certain portion of memory accesses hap-
pens in fast memory while the remaining memory accesses
happen in slow memory. The novelty of our performance
modeling lies in the modeling of performance correlation
between different data placements of the task. In particular,
the performance modeling take the performance of a data
placement as input, and then predicts the performance of
another data placement. The performance modeling sets up
a correlation between the two above performances based on



Merchandiser: Data Placement on HM for Task-Parallel HPC Applications PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

task characteristics. The task characteristics are represented
and quantified using a few performance events collected
from only one execution of a specific data placement.

To address the second challenge on deciding which pages
should be migrated to fast memory for parallel tasks, we
introduce a greedy heuristic algorithm to decide how to
allocate the fast memory space among tasks to maximize
performance benefit of all tasks (not an individual task). The
algorithm varies the portion of fast-memory accesses based
on the performance modeling to find a load-balance solution.

In summary, we make the following contributions.

• We identify a new performance problem on HM.
• We introduce task semantics during profiling to enable
accurate performance prediction on any data placement,
and a greedy heuristic algorithm to guide the exploration
of various data placements on HM.
• Merchandiser uses an automated workflow with high us-
ability. It largely reduces load imbalance and leads to an
average of 17.1% and 15.4% (up to 26.0% and 23.2%) perfor-
mance improvement, compared with a hardware-based so-
lution (Memory Mode in Optane) and an industry-quality
software-based solution (MemoryOptimizer [16]) respec-
tively on Optane-based HM.

2 Background
Heterogeneous memory (HM).We use Intel Optane Per-
sistent Memory (PM) and DRAM as an example of HM in
our study. With the emergence of other technologies (such
as CXL [11] and high bandwidth memory), HM is becoming
a trend. There is performance difference between PM and
DRAM. In Optane PM 100 series, the memory latency of
sequential and random read on PM is 2.08× and 3.77× longer
than on DRAM; the peak memory bandwidth of read and
write on PM is 3.87× and 4.74× lower than on DRAM [36, 64].

PM module can be configured as App Direct Mode or
Memory Mode. With App Direct Mode, software explicitly
controls the placement of memory pages on PM and DRAM.
WithMemoryMode, DRAMworks as a direct-mapped, write-
back cache to PM, and is managed by hardware. Merchan-
diser is a software solution, hence it uses App Direct Mode.
Merchandiser performs better than Memory Mode.

Data placement onHM. The existing solutions [2, 15, 33,
34, 41, 60] manipulate page table entries (PTE) for memory
profiling to detect hot pages. They repeatedly scan PTEs
or intercept page protection faults to check if a specific bit
in PTE is changed by hardware. If yes, a memory access is
recorded and the bit is reset for future profiling. Using this
method can accurately capture memory accesses. However it
is slow (taking a couple of seconds to profile hundreds of GB
memory), and cannot capture varying workload behaviors.
To avoid long profiling time, it is natural to sample pages in
the address space for profiling. However, in-discriminating
page sampling of all tasks can lead to load imbalance.

(a) MPI-based App. (DMRG)
1 Partition Hamiltonian into blocks
2 Each MPI rank get a block
3 Block has its input data (H, PSI)
4 for sweep in sweeps:
5 S1: Construct problem
6 S2: Solve Davidson function
7 S3: Apply SVD to update (H, PSI)
8 Exchange boundary and sync.

(b) OpenMP-based App. (SpGEMM)
1 for (A*B) in an application:
2 Partition A into bins by rows
3 Each bin has its size and NNZ
4 #pragma omp parallel
5 {T1: Compute NNZ of C
6 Sync point 1
7 T2: Compute values of C
8 Sync point 2}

Figure 1. Two examples of task-parallel HPC applications.
(NNZ = number of non-zero elements)

Task-parallel HPC applications.We study task-parallel
HPC applications [22]. In such an application, multiple tasks
run in parallel, and are commonly based on MPI or OpenMP.
In an MPI-based application, each MPI process works on a
task, and in an OpenMP-based application, each OpenMP
thread in a parallel region works on a task There are syn-
chronizations among tasks. Also, a task can be repeatedly
executed, and each execution may use different inputs. We
refer to each execution of a task as a task instance.
Figure 1.a gives an example of MPI-based task-parallel

application, DMRG [6, 21, 77]. In DMRG, a Hamiltonian ma-
trix is first partitioned into multiple blocks, each assigned to
an MPI process (Lines 1-3). Then each MPI process runs a
computation loop, running the DMRG algorithm iteratively
using the assigned block (𝐻 ) and matrix product states (𝑃𝑆𝐼 )
as input (Lines 5-7). An iteration of the loop is regarded as
a task instance. Hence the task in an MPI process is repeat-
edly executed. Task instances use the same 𝐻 but different
𝑃𝑆𝐼 as input. At the end of each iteration, there is a global
synchronization among MPI processes.

Figure 1.b gives an example of OpenMP-based task-parallel
application, SpGEMM (𝐶 = 𝐴 ∗ 𝐵) in Ginkgo [5]. In this ex-
ample, a main loop runs many SpGEMM (𝐶 = 𝐴 ∗𝐵). In each
iteration of the main loop, 𝐴 is first partitioned into bins by
rows, and then there is an OpenMP parallel region where
each thread accesses 𝐵 and a bin of 𝐴 to produce a part of 𝐶 .
In an iteration of the loop, a thread works on a task instance,
and in the next iteration this thread works on another but
with different 𝐴 and 𝐵. At the end of the OpenMP region,
there is an implicit synchronization among threads.

We assume that for a given task, the algorithm or memory
access patterns do not change across task instances. For
example, in Figure 1.a, in an MPI process, no matter how
𝑃𝑆𝐼 (the input data) is changed, the algorithm and memory
access patterns in Lines 5-7 remain the same. However, if
there is a change in the algorithm or memory access patterns
across task instances, then those task instances should be
classified into different tasks.

3 Overview
Merchandiser, sketched in Figure 2, uses performance model-
ing to guide data placement in HM. The performance model-
ing uses task information as input, which includes execution



PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Zhen Xie, Jie Liu, Jiajia Li, and Dong Li

Task 1 Task 2 Task N... 
Parallel-tasks Applications

B
as

e 
In

pu
t

D
at

a 
M

ig
ra

tio
n

Runtime Data Migration

Performance Prediction

Analytical 
Models

Input-Aware Memory Access Quantification

Workload 
Characteristics

Access Pattern 
Classification

Memory Access 
Estimation

Static 
Analysis

Using New Inputs

Synchronization

Heuristic  Algorithm
Data Placement 

Decisions

Performance Modeling

Sampling-based
Hot Pages DetectionPerformance

Prediction

Figure 2. An overview of Merchandiser.
time of basic blocks in the task program and runtime perfor-
mance events critical to decide the performance sensitivity of
the task to data placement. The task information is collected
in the first instance of the task using an input problem (called
the base input), and used by the performance modeling to
predict the performance of the same task for a new input
under various data placement on HM. The performance mod-
eling is integrated into a runtime system to decide if data
migration can introduce load imbalance among tasks.
To accurately predict the execution time of a task with

a new input, our performance modeling first estimates the
number of memory accesses to data objects with the new
input (see Section 4). Merchandiser performs analysis on
memory access patterns at the data object level through
static analysis; then the estimation is made according to data
object sizes, the number of memory accesses collected from
the base input, and memory access patterns.
The performance modeling predicts execution time of a

task with a new input under various data placement on HM.
The prediction uses the estimated number of memory ac-
cesses, workload characteristics, and prediction of execution
time on homogeneous memories (i.e., PM or DRAM only)
(see Section 5). The workload characteristics are selected
from performance events based on quantification of each
event’s contribution to prediction accuracy. The prediction
of execution time on homogeneous memories is established
on static analysis on input-independent basic blocks and
offline profiling.

Merchandiser has a runtime system using the performance
modeling to decide if data migration should happen or not
with load-balance awareness (see Section 6). Before task
execution, the runtime first employs a heuristic algorithm
to decide how many fast memory accesses should happen
for each task based on the performance modeling. Then,
utilizing memory profiling mechanisms in existing solutions,
Merchandiser determines if the pages corresponding to each
task should be migrated from slow memory to fast memory.

4 Input-Aware Memory Access
Quantification

Estimating memory accesses to data objects for a new in-
put problem is challenging. Without using extensive and
costly memory profiling, how to capture the caching effect
on main memory accesses and how to make the estimation

without tightly coupling with architecture details to enable
high usability are challenging.
Our solution is highlighted with two fundamental inno-

vations: (1) using limited memory profiling with the base
input to direct the estimation, which is useful to simplify the
estimation method and improve usability; (2) distinguish-
ing memory access patterns, which is useful to capture the
caching effect and improve estimation quality.

Our estimationmethod has three steps: (1) using a user API
to specify data objects formanagement onHM, (2) classifying
memory access patterns of those objects in the task, and (3)
estimating the memory access count.

User API. In a task-parallel HPC application, most mem-
ory accesses happen to several major data objects. For ex-
ample, 𝐻 and 𝑃𝑆𝐼 in Figure 1.a (DMRG), and 𝐴, 𝐵 and 𝐶 in
Figure 1.b (SpGEMM). Merchandiser is in charge of place-
ment of data objects specified by the user through an API.
We assume that the data object sizes are known right before
task execution during runtime (e.g., Line 3 in Figure 1.a and
Line 3 in Figure 1.b). This assumption is generally true in
many HPC applications [4, 44, 57, 75, 79–81].
Merchandiser expects the user to use the following API

to specify data objects for management:
void *LB_HM_config(void* objects, int* sizes)

where *objects points to a list of user-specified data objects
to bemanaged for profiling andmigration, and *sizes points
to a list of their sizes (e.g., the length of PSI array for DMRG).
The data object sizes can be variables, and their values are
known right before task execution. The API is placed in
the program right before task execution. In the example of
DMRG and SpGEMM, the API is placed right before Line
5 and Line 4 in Figure 1.a and Figure 1.b respectively. Note
that the user does not need any information on which data
objects cause load imbalance when using the API. Any data
object can be passed to the API.

Classification ofmemory access patterns.We perform
object-level memory access pattern analysis on data objects
specified by the user, and classify memory accesses into four
patterns. The patterns are depicted with the following code
(as the body of a loop), where 𝑖 is a loop induction variable:

• Stream: A[i] = B[i] + C[i]
• Strided: A[i*stride] = B[i*stride]
• Stencil: A[i] = A[i−1] + A[i+1]
• Random: A[i] = B[C[i]]

The stream pattern is manifested as stepping through any
array in a loop where the index is determined by a loop in-
duction. This pattern also includes the delta pattern (e.g., A[i]
= A[i] + d), reduction (e.g., x = x + A[i]), and transpose (e.g.,
A[i][j] = B[j][i]). The strided pattern is a more general case
of the stream pattern, where the stride is a constant known
from application knowledge. The stencil pattern involves
accessing an array sequentially with a dependency between
iterations of the loop, such as 7-point stencil used in Jacobi



Merchandiser: Data Placement on HM for Task-Parallel HPC Applications PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

Table 1. Access patterns detected in five applications
Applications SpGEMM WarpX BFS DMRG NWChem-TC
Access
Patterns

Stream
Random

Strided
Stencil

Stream
Random

Stream
Strided

Stream
Random

and Gauss-Seidel kernels [38]. The random pattern includes
pointer chase, gather (such as B in A[i] = B[C[i]]) and scatter
(such as A in A[B[i]] = C[i]) using indirect addressing.

We use Spindle [83] to identify these patterns. Spindle
is an LLVM-based static analysis tool. It identifies memory
access patterns at the data object level by extracting struc-
tural information relevant to memory access instructions. In
our evaluation (see Tables 1 and 2), these patterns exist in
major data objects accounting for at least 98% of memory
consumption of the applications.

Estimation of memory access count. Given a task, we
measure the number of memory accesses at the data object
level during the first execution of the task (using the base
input). Then, we estimate the number of memory accesses
for subsequent executions of the same task with new inputs,
based on the measurement of memory accesses.
To profile (measure) with the base input, we use the fol-

lowing method. Merchandiser profiles memory accesses in
DRAM and PM using different methods to avoid large profil-
ing overhead. In PM, Merchandiser uses the profiling method
in MemoryOptimizer to identify hot pages, because that pro-
filing method constrains the number of memory pages for
profiling to make the profiling overhead small. In DRAM,
Merchandiser uses the profiling method in Thermostat [3].
This profiling method chooses one 4 KB page out of each
2MB page to profile, and scales the number of memory ac-
cesses in the 4 KB page to represent the number of memory
accesses to the 2M page. This profiling method is more accu-
rate and can be used to identify cold pages to eliminate out
of DRAM. It causes less than 1% decrease in memory access
performance when profiling tens of GB of DRAM [3], but
causes large profiling overhead for profiling hundreds of GB
or TB scales, which prevents it to be applied to PMwith large
capacity. Both of the profiling methods manipulate PTEs to
detect memory accesses, as discussed in Section 2.
To estimate the memory access count for a new input,

we use the following method. We assume that the measured
number ofmemory accesses to a data object is prof _mem_acc
and the data object size is 𝑆base . We also assume that the num-
ber of memory accesses to be estimated for the new input
is esti_mem_acc and the data object size is 𝑆new . We have
Equation 1.

esti_mem_acc =
𝑆new

𝑆base × 𝛼
× prof _mem_acc (1)

The term 𝑆new
𝑆base

captures the change of data object size from the
base input to the new input. esti_mem_acc is in proportion
to that change (i.e., the ratio of the new size to the base
size). Furthermore, this proportion should factor in the fact
that the memory access pattern may have input-dependent

behavior and hit a variable number of cache lines, causing
distinct memory access counts. This fact is captured by 𝛼 , a
parameter aiming to quantify the memory-access differences
across inputs by considering the caching effect.
Calculation of 𝛼 is challenging. We rely on the classifi-

cation of memory access patterns and runtime refinement
to make it possible. For the stream and strided patterns, 𝛼
is calculated by considering stride length and data type. For
example, assuming that the cache line size is 64 bytes and
the data type is integer (4 bytes), and assuming that 𝑆𝑛𝑒𝑤 and
𝑆𝑏𝑎𝑠𝑒 are 192 bytes and 128 bytes respectively, then for the
streaming pattern, 𝑆𝑛𝑒𝑤 will cause 3 memory accesses, and
𝑆𝑏𝑎𝑠𝑒 will cause 2 memory accesses (i.e., 𝑝𝑟𝑜𝑐_𝑚𝑒𝑚_𝑎𝑐𝑐 = 2).
Hence, 𝑎𝑙𝑝ℎ𝑎 = 1. For the stream and strided patterns, if 𝑆𝑛𝑒𝑤
or 𝑆𝑏𝑎𝑠𝑒 is not divisible by the cache line size, it is rounded to
a slightly larger, divisible size. We enumerate various stride
lengths and data types, and then calculate corresponding 𝛼
offline. These values of 𝛼 are used in Equation 1 at runtime
once 𝑆𝑛𝑒𝑤 and 𝑆𝑏𝑎𝑠𝑒 are known.

For the stencil pattern,𝛼 is calculated according towhether
the pattern is input-independent or not. The popular input-
independent stencils, such as 5/7/9-point stencils, update
elements of data objects solely based upon loop induction
variables. For these stencils, 𝛼 is measured offline. In particu-
lar, we run a microbenchmark practicing the stencil pattern
on a data object in a loop, and then measure how many
main memory accesses are caused by the stencil code using
performance counters. We also count how many memory
accesses happen at the program level. Then 𝛼 is the ratio of
the program-level measurement to the counter-based mea-
surement. If the stencil is input-dependent, which means
the stencil is changed across inputs, then we set 𝛼 to 1 and
rely on a refinement process to improve 𝛼 during task execu-
tions with new inputs. The random pattern takes the same
refinement approach due to its input-dependent feature.

Runtime refinement of 𝛼 is an iterative process over task
instances based on Equation 1 (𝛼 is initialized as 1). Given a
data object with input-dependent stencil or random pattern,
the number of memory accesses to the data object is mea-
sured by using performance counters in the sampling mode
(e.g., Precise Event-Based Sampling from Intel or Instruction-
based Sampling fromAMD). This mode allows us to associate
memory accesses with specific memory addresses through
which we connect with the data object. This performance
counter-based measurement happens whenever the task in-
stance is executed.With themeasuredmemory access counts,
𝛼 is continuously updated along with the execution of task
instances, and used to estimate the number of memory ac-
cesses for the next task instance.
Handling unknown patterns. Although the four pat-

terns widely exist in HPC applications, if a data object in a
task has an unknown memory access pattern, that access
pattern is treated as random, and 𝛼 relies on the refinement
process to improve estimation accuracy.



PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Zhen Xie, Jie Liu, Jiajia Li, and Dong Li

5 Performance Modeling
Modeling application performance under various data place-
ment on HM is non-trivial, because memory accesses are
distributed to DRAM and PM, and modeling the impact of
such a distribution depends on both workload characteristics
and memory performance.

To address themodeling challenge, our performancemodel
introduces two fundamental innovations: (1) bound the per-
formance prediction by the best and worst performances.
The two performances are collected on DRAM only and
PM only respectively, and implicitly capture the impact of
memory architecture on performance (e.g., memory level
parallelism); (2) build upon our estimation of memory counts
(Section 4) to scale the two performance bounds based on
workload characterization. Such performance scaling driven
by workload characterization simplifies our efforts to model
memory access patterns but significantly improves usability.
Our performance modeling takes the following informa-

tion as input: (1) the total number of memory accesses with
the new input (𝑒𝑠𝑡𝑖_𝑚𝑒𝑚_𝑎𝑐𝑐). This number is an accumula-
tion of estimated numbers of memory accesses across all data
objects. (2) The predicted execution time of the task with
the new input on DRAM only (𝑇𝑛𝑒𝑤_𝑑𝑟𝑎𝑚_𝑜𝑛𝑙𝑦) and PM only
(𝑇𝑛𝑒𝑤_𝑝𝑚_𝑜𝑛𝑙𝑦) (see Section 5.2). The performance modeling
predicts the execution time of the task on the new input
with some pages migrated to DRAM. We use 𝑑𝑟𝑎𝑚_𝑎𝑐𝑐 to
represent the number of DRAM accesses when running the
new input, and the predicted execution time for the new
input is 𝑇𝑛𝑒𝑤_ℎ𝑦𝑏𝑟𝑖𝑑 .

Our performance modeling is based on the following ratio-
nale: (1)𝑇𝑛𝑒𝑤_ℎ𝑦𝑏𝑟𝑖𝑑 should be bounded between𝑇𝑛𝑒𝑤_𝑝𝑚_𝑜𝑛𝑙𝑦
and 𝑇𝑛𝑒𝑤_𝑑𝑟𝑎𝑚_𝑜𝑛𝑙𝑦 ; (2) for an individual task, more DRAM
accesses lead to better performance. Equation 2 predicts
𝑇𝑛𝑒𝑤_ℎ𝑦𝑏𝑟𝑖𝑑 and reflects the above rationale.

𝑇𝑛𝑒𝑤_ℎ𝑦𝑏𝑟𝑖𝑑 = (2)
𝑇𝑛𝑒𝑤_𝑝𝑚_𝑜𝑛𝑙𝑦 × (1 − 𝑟𝑑𝑟𝑎𝑚_𝑎𝑐𝑐 )×
𝑓 (𝑃𝑀𝐶𝑠, 𝑟𝑑𝑟𝑎𝑚_𝑎𝑐𝑐 ) +𝑇𝑛𝑒𝑤_𝑑𝑟𝑎𝑚_𝑜𝑛𝑙𝑦 × 𝑟𝑑𝑟𝑎𝑚_𝑎𝑐𝑐

In Equation 2, PMCs are Performance Monitor Counters;
𝑟dram_acc =

dram_acc
esti_mem_acc . The term (1 − 𝑟dram_acc) reflects the

rationale (2) and models the correlation between𝑇new_pm_only
and𝑇new_hybrid . When all memory accesses happen in DRAM
(i.e., dram_acc = esti_mem_acc) or PM (i.e., dram_acc = 0), the
performance becomes 𝑇new_dram_only or 𝑇new_pm_only .

Note that the term (1 − 𝑟dram_acc) alone is not sufficient to
capture the correlation between 𝑇new_hybrid and 𝑇new_pm_only .
When more memory accesses happen in DRAM, the im-
proved performance does not have a simple linear relation-
ship to the number of DRAM accesses. When more memory
accesses happen in DRAM, the instruction pipelining is able
to run faster, which impacts both memory parallelism and
instruction scheduling order. To verify the above conclusion,
we run tensor contraction sequences of NWChem (referred

Input Processing Index Search Accumulation Writeback Output Sorting Entire Task
0.00

0.25

0.50

0.75

1.00

Be
tte

r
N

or
m

al
iz

ed
 E

xe
c. 

Ti
m

e

Five execution phases in NWChem-TC

  Ratio of DRAM accesses to total number of memory accesses = 0%    Ratio = 50%    Ratio = 100%

Figure 3. Performance variance when we change the ratio
of DRAM accesses to the total number of memory accesses.

as NWChem-TC), an ab initio computational chemistry soft-
ware package, with a representative input problem listed in
Table 2. We measure the performance of all the five execu-
tion phases of NWChem-TC and change the ratio of DRAM
accesses to the total number of memory accesses. Figure 3
shows the performance normalized to that of using PM only.
When a half of the total memory accesses is moved from
PM to DRAM, the execution time of Writeback and Input
Process (two execution phases in NWChem-TC) is reduced
by 47.5% and 26.2% respectively.

Tomodel the correlation between𝑇new_hybrid and𝑇new_pm_only
better, we introduce a correlation function 𝑓 (·) in Equation
2. We discuss how 𝑓 (·) is built in Section 5.1, and how to esti-
mate execution time on homogeneousmemory (i.e.,𝑇new_dram_only
and 𝑇new_pm_only) in Section 5.2.

5.1 Construction of Correlation Function
We build the correlation function based on the principle that
the correlation function should include workload character-
istics that indicate how sensitive the application is to data
placement on HM. The correlation function takes workload
characteristics and the ratio of DRAM accesses to the total
number of main memory accesses (𝑟dram_acc) as input.
The correlation function in Merchandiser is a statistical

model. We do not use analytical modeling because of the
following reasons. First, analytical modeling has difficulty to
capture the overlap between memory accesses and computa-
tion. Such an overlap impacts the performance sensitivity of
the application to memory latency and bandwidth, and hence
should be modeled. Although existing efforts use analytical
modeling to model the overlap [24, 28, 30, 78], they are built
upon detailed architecture information (e.g., data distribution
between memory banks) and strong supports from compil-
ers (e.g., quantifying instruction level parallelism), which
limits their feasibility. Second, the complexity of analytical
modeling can cause large runtime overhead.
We study statistical models listed in Table 3 in Section 7.

We use all performance events collectable from performance
counters as the workload characteristics. These events are
used as the model input (attributes). Then we train the mod-
els with calculated target values of 𝑓 (·). We choose the Gradi-
ent Boosted Regressor (GBR) as the final correlation function,
because it leads to the highest modeling accuracy among the
statistical models we studied. In the following, we discuss
how we train the models and generate training data.



Merchandiser: Data Placement on HM for Task-Parallel HPC Applications PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

Training data generation. Our training data includes
thousands of training samples. Each training sample is a pair
consisting of task characteristics (PMCs in Equation 2) and a
specific 𝑟dram_acc , and a calculated value of 𝑓 (·).
To generate a training sample, the target value of 𝑓 (·) is

calculated according to Equation 2 by running a code sample.
Particularly, we run a code sample on PM only and DRAM
only with the same random input, and measure performance
(used as 𝑇𝑛𝑒𝑤_𝑝𝑚_𝑜𝑛𝑙𝑦 and 𝑇𝑛𝑒𝑤_𝑑𝑟𝑎𝑚_𝑜𝑛𝑙𝑦 in Equation 2). We
change the allocation of data objects on DRAM to gener-
ate 10 different data placements. Each data placement is
applied to the code sample with the same input, and we
measure 𝑟𝑑𝑟𝑎𝑚_𝑎𝑐𝑐 and 𝑇𝑛𝑒𝑤_ℎ𝑦𝑏𝑟𝑖𝑑 . Substituting 𝑇new_pm_only ,
𝑇new_dram_only , 𝑇new_hybrid , and 𝑟dram_acc by the measured val-
ues in Equation 2, we get the value of 𝑓 (·).

To generate code samples, we use CERE [10]. CERE is an
LLVM-based compiler tool that can automatically extract
code regions (a.k.a., loops) out of a program. We use the NAS
parallel benchmarks [7] and SPEC 2006 FP benchmarks [26]
to extract 281 code regions as code samples.

Each training sample must include PMCs as representative
of workload characteristics. Collecting PMCs and generating
the training sample use the same code, but different inputs.
The reason we use different inputs is that in the performance
model (Equation 2), the workload characteristics is collected
using the base input, but the predicted performance is for a
new input different from the base input. We name the input
used for collecting PMCs, seed input.

Selection of workload characteristics. When selecting
statistical models, we use all collectable hardware events as
the workload characteristics, which ensure that the model
selection is not impacted by the selection of workload charac-
teristics. Once a model is selected as the correlation function,
we reduce those hardware events as the workload character-
istics, because of the following reasons. First, some of those
events are conflicting and cannot be collected as the same
time. This means we have to run the tasks multiple times
to collect all of those events, which limits the usability of
our performance modeling. Second, using all of events to
construct the model can cause larger runtime overhead and
demand more training data for high modeling accuracy.
We use the following method to select hardware events.

We first train the model using all events (or features), and
then removes a hardware event which is the least impor-
tant to the model accuracy. We quantify the importance of
hardware events using a metric, the Gini importance [52],
because of its strong differentiability. After removing a hard-
ware event, we re-train the model and then remove the least
important feature again. We continue the process until the
model accuracy after removing the least important features
is worse than the second best model.

We choose 8 events to represent workload characteristics:
LLC_MPKI, IPC, PRF_Miss, MEM_WCY, L2_LD_Miss, BR_MSP, VEC_INS,
and L3_LD_Miss (listed in a decreasing order of importance).

LLC_MPKI, IPC, and PRF_Miss are the most important events.
LLC_MPKI represents the last level cache misses per kilo in-
structions, which indicates how often the task fetches data
from memory; IPC is the average number of instructions
executed per clock cycle, which indicates whether the task
is compute or memory bound; PRF_Miss is the ratio of data
prefetches that causemisses to total number of data prefetches,
indicatingwhether data prefetching is successful andwhether
memory access patterns are highly irregular. In general, the
three events are highly discriminatory and can indicate the
sensitivity of application performance to data placement,
hence can be used to build a robust model.
5.2 Performance Prediction on Homogeneous

Memory
Many efforts predict execution time of an application with
various inputs [29, 47, 55, 56, 65, 73, 76]. They are based on
the assumption that there is no change of workload char-
acteristics (e.g., memory access patterns and control flow)
across inputs. We use the same assumption, and use the
work [55] to predict 𝑇𝑛𝑒𝑤_𝑝𝑚_𝑜𝑛𝑙𝑦 and 𝑇𝑛𝑒𝑤_𝑑𝑟𝑎𝑚_𝑜𝑛𝑙𝑦 .

We use the method in [55] to identify input-independent
basic blocks and measure their execution times offline on PM
and DRAM. Beyond the work [55], at runtime, Merchandiser
counts how many times each basic block in a task is exe-
cuted using the base input. Then, Merchandiser computes
the similarity between the base input and new input, based
on the sizes of input data objects. In particular, given an in-
put including one or multiple data objects, we build a vector
and each element of the vector represents the size of an in-
put data object. We quantify the similarity between the base
input and new input by calculating the cosine similarity [17]
of the two vectors. We use the value of cosine similarity to
scale the number of times the basic block is executed using
the base input. The scaling result is an estimation of the
number of times the basic block is executed using the new
input. Our method does not cause large runtime overhead,
because it only needs to calculate cosine similarity to predict
𝑇𝑛𝑒𝑤_𝑝𝑚_𝑜𝑛𝑙𝑦 and 𝑇𝑛𝑒𝑤_𝑑𝑟𝑎𝑚_𝑜𝑛𝑙𝑦 for a new (unseen) input
problem.

5.3 Putting All Together
In summary, the following workflow happens automatically
for the user.
Offline model construction and code analysis.
1. Offline construction of the scaling function𝒇 (·). This

includes generating training dataset using code samples
and collecting features of the code samples (i.e., workload
characteristics) using some seed inputs. The construction
of 𝑓 (·) happens only once.

2. Preparation for online prediction of 𝑇𝑛𝑒𝑤_𝑑𝑟𝑎𝑚_𝑜𝑛𝑙𝑦
and 𝑇𝑛𝑒𝑤_𝑝𝑚_𝑜𝑛𝑙𝑦 . This includes measuring the execution
time of basic blocks on DRAM and PM. For an application,
this step happens only once.



PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Zhen Xie, Jie Liu, Jiajia Li, and Dong Li

3. Offline application code analysis. This is based on
compiler analysis, including getting input-independent
basic blocks, getting memory access patterns for online
estimation of total number of memory accesses (see Sec-
tion 4). For an application, the offline code analysis happens
only once.

4. Offline calculation of 𝜶 for input-independent sten-
cil or random access patterns.

Online profiling and performance prediction.
1. Online collection of task information using the base

input. This includes collecting workload characteristics
of the task using the 8 performance events and counting
how many times basic blocks are executed using the base
input.

2. Online performance prediction for the task with a
new input. This happens right before task execution,
and includes: (a) estimating the number of memory ac-
cesses to data objects; (b) predicting 𝑇𝑛𝑒𝑤_𝑝𝑚_𝑜𝑛𝑙𝑦 and
𝑇𝑛𝑒𝑤_𝑑𝑟𝑎𝑚_𝑜𝑛𝑙𝑦 . The runtime system uses the performance
modeling to predict task performance with the new in-
puts.

User feasibility. Merchandiser takes user feasibility into
consideration. All steps are automated. Offline steps 1 and 4
are constructed only once and can be used for any application.
Offline steps 2-3 happen only once for a given application.
Online steps 1-2 are application- and input-dependent, but
are automated. The user only needs to insert the API into
the application without changing application code.
Extensibility. Merchandiser can be easily extended to

other HM systems. Three steps are needed: (1) the training
data is collected to reflect the performance sensitivity of the
application to different memories; (2) the scaling function
is re-constructed (13 minutes in this work) and the most
critical performance events are selected; (3) measure the
performance of basic blocks in new memory systems.

Limitation Merchandiser requires the application source
code, because it expects the user to insert an API and compile
the code with Spindle for static analysis to identify memory
access patterns. Requiring the application source code is a
limitation of Merchandiser. When the source code is not
available, we can use a dynamic binary instrumentation tool
(e.g., [37, 53]) to insert the API, intercept memory allocation,
and generate instruction traces. Then, we use a tool (e.g.,
[58, 59]) to identify memory access patterns of the traces.

6 Load Balance-Aware Data Migration
Data migration is based on the performance modeling with
the awareness of load balance.
Usage of performance modeling. Using the perfor-

mance modeling, we decide how many memory accesses
in each task should be on DRAM to enable load balance and
high performance. The decision process can be formulated
as a knapsack problem, if we regard the DRAM capacity as
the limit of knapsack weight, each page as an item in the

knapsack, the performance benefit after placing the item
(a page) on DRAM as the item value, and the page size as
the item weight. Since the knapsack problem is NP-hard,
deciding how many memory accesses in each task should
be on DRAM is NP-hard. We introduce a greedy heuristic
algorithm to address the problem.
The basic idea of the algorithm is as follows. Tasks take

many rounds to gradually increase DRAM accesses (by page
migration) and improve performance until the DRAM space
is exhausted. In each round, the task with the longest exe-
cution time increases its DRAM accesses until it is shorter
than the second longest task.
We depict the algorithm in detail in Algorithm 1. The

algorithm takes as input the information needed for the
performance modeling, and outputs the number of DRAM
accesses for each task. The algorithm tracks DRAM allo-
cation to each task and initializes it with 0 (Line 6). After
initialization (Lines 7 and 8), the algorithm iteratively finds
the longest task (Line 10) and the second longest task (Line
11), and improves the performance of the longest task by
increasing its DRAM accesses (Lines 14). For the longest task,
the algorithm iteratively increases its DRAM accesses (Lines
13-16). In each iteration, the number of DRAM accesses is
increased by 5% (Line 14), and then the algorithm uses the
performance modeling to predict the performance (Line 15).
The increase of DRAM accesses stops when the predicted
performance is no longer than the execution time of the sec-
ond longest task (Line 16). The increase of DRAM accesses of
a task is implemented by migrating its pages to DRAM. The
algorithm assumes that the memory accesses are evenly dis-
tributed to memory pages of the task, and when the DRAM
accesses are increased by 5%, the number of DRAM pages is
also increased by 5% (Lines 18). Based on the above assump-
tion, the algorithm tracks DRAM allocation to make sure the
total number of memory pages migrated to DRAM does not
violate the DRAM capacity (Line 19).

Page migration. We extend the page migration strategy
in the existing solution (particularlyMemoryOptimizer) with
the awareness of load balance. The existing solution uses
sampling-based memory profiling, identifies the most ac-
cessed PM pages in a time interval, and then migrates them
to DRAM. Merchandiser extends the existing solution by
checking whether the tasks that access the to-be-migrated
pages have reached the goal of DRAM accesses decided by
Algorithm 1, before page migration happens. If yes, then the
corresponding pages will not be migrated.

DRAM space management.When page migration from
PM to DRAM is about to happen but DRAM does not space,
the least frequently accessed pages in DRAM are migrated
to PM. Merchandiser determines these pages based on the
profiling method discussed in Section 4.



Merchandiser: Data Placement on HM for Task-Parallel HPC Applications PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

Algorithm 1 Runtime algorithm for Data Migration
1: Input: Execution time of each task using PM-only configuration {𝐷_1, . . . , 𝐷_𝑛}
2: Input: Measured hardware events of each task using PM-only configuration
{PCs_1, . . . , PCs_𝑛}

3: Input: Total accesses of each task {Total_Acc_1, . . . , Total_Acc_𝑛}
4: Input: Total DRAM capacity DC.
5: Input: Performance modelModel.
6: DRAM allocation used for each task {DC_1, . . . ,DC_𝑛} ← {0, . . . , 0}
7: DRAM accesses required {DRAM_Acc_1, . . . ,DRAM_Acc_𝑛} ← {0, . . . , 0}
8: New exec. time {𝐷′_1, . . . , 𝐷′_𝑛} ← {𝐷_1, . . . , 𝐷_𝑛}
9: Repeat:
10: Task 𝑖← Tasks with the longest execution time found from {𝐷′_1, . . . , 𝐷′_𝑛}
11: 𝑆𝑒𝑐𝑜𝑛𝑑_𝑇 ← The second longest execution time from {𝐷′_1, . . . , 𝐷′_𝑛}
12: Temporary accesses DRAM_Acc ← DRAM_Acc_𝑖
13: Repeat:
14: DRAM_Acc ← DRAM_Acc + 5% ∗ Total_Acc_𝑖
15: Predict improvements 𝐷′_𝑖 ← Model (𝐷_𝑖, PCs_𝑖,DRAM_Acc)
16: Until: 𝐷′_𝑖 ≤ Second_T
17: DRAM_Acc_𝑖 ← DRAM_Acc
18: DC_𝑖 ← MAP_TO_PAGES (DRAM_Acc_𝑖)
19: Until:

∑
𝑖=1,...,𝑛 DC_𝑖 less than DC

20: Return: {DRAM_Acc_1, . . . ,DRAM_Acc_𝑛}

7 Evaluation
Platform and Libraries We evaluate Merchandiser on a
two-socket server with two Intel Xeon Gold 6252N 24-core
processors running Linux 5.17.0. Each socket has 12 DIMM
slots: six for 16-GB DDR4 DRAM modules, and six for 128-
GB Optane PMM. In total, the system has 192 GB DRAM
and 1.5 TB PM. We use Memkind [9] to manage the page
placement and migration on HM.
Applications and inputs. We use five task-parallel HPC
applications listed in Table 2. SpGEMM [5] and BFS [12] are
derived from high-performance math libraries. WarpX [44,
80] is a production code for plasma simulation. DMRG [6,
77] comes from Itensor [21] and simulates quantum many-
body systems. NWChem-TC [79] is the tensor contraction
component in NWChem [40].
Implementation and Comparison. The modifications to
the applications are small (less than 10 lines in each applica-
tions). We compare Merchandiser with four solutions:

• A hardware-based solution: Memory Mode.
• A software-based solution: Intel MemOptimizer [16].
• Sparta [50] (the only application-specific solution for sparse
tensors or matrices on HM) for SpGEMM.
• WarpX-PM [68] for WarpX.

Table 2. Applications and their inputs. LOC = Lines of code.
Application LOC Problem and Input Size Memory

Consumption Configuration

SpGEMM (General
Sparse Matrix-Matrix

Multiplication)
2.21𝑒3

𝐴 ∗𝐴𝑇 using matrix
GAP-kron with 4.22E+9

nonzero elements
429.3 GB MPI processes: 1

OpenMP threads: 12

WarpX
(ECP-WarpX) 6.78𝑒4

Beam–plasma simulation
with the scale of
1024*1024*2048

1.056 TB MPI processes: 1
OpenMP threads: 24

BFS
(Breadth-first search) 1.95𝑒3

com-Orkut with
3.07E+6 vertices
and 1.17E+8 edges

731.9 GB MPI processes: 1
OpenMP threads: 12

DMRG (density-matrix
renormalization group) 8.79𝑒4 Hubbard 2D model with

Nx = 320 and Ny = 320 1.271 TB MPI processes: 6
OpenMP threads: 2

NWChem-TC
(Tensor Contraction) 7.36𝑒5 Cytosine tensor with

dims of 400*400*58*58 308.1 GB MPI processes: 1
OpenMP threads: 24

SpGEMM WarpX BFS DMRG NWChem-TC
0.8

1.0

1.2

1.4

Be
tte

r
Pe

rfo
rm

an
ce

 S
pe

ed
up  PM-only  Memory Mode   MemoryOptimizer   Merchandiser

Figure 4. Performance of Memory Mode, MemoryOptimizer,
and Merchandiser, compared to the PM-only execution.

SpGEMM WarpX BFS DMRG NWChem-TC

0.4

0.6

0.8

1.0

 Outlier
 Median Line

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

 PM-only (25%~75%)   Memory Mode (25%~75%)   MemoryOptimizer (25%~75%)   Merchandiser (25%~75%)

Figure 5. Task execution time and their variance.

The last two solutions use application knowledge onmemory
access patterns and lifetime of data objects to guide data
placement, hence they are application-specific.

7.1 Overall Performance
Figure 4 shows overall performance normalized to PM-only.
Merchandiser introduces 23.6%, 17.1%, and 15.4% perfor-
mance improvement on average (up to 37.8%, 26.0%, and
23.2%) over PM-only, Memory Mode, and MemoryOptimizer
respectively. We have the following 4 observations: (1) By
introducing task semantics, Merchandiser provides larger
performance improvement than task-agnostic page manage-
ment solutions (Memory Mode and MemoryOptimizer). (2)
Compared to Memory Mode, Merchandiser brings larger
benefits to SpGEMM, BFS, and NWChem-TC, because they
involve sparsematrix/graph/tensor computation and random
access patterns, which have bad locality in the hardware-
managed cache. (3) Compared to MemoryOptimizer, Mer-
chandiser brings larger benefits to WarpX and DMRG. These
applications have regular memory access patterns. Our per-
formance modeling works better to guide data placement
for such applications. (4) For applications with large load
imbalance, such as BFS and NWChem-TC, the number of
pages being migrated among tasks can vary by up to 21.4×.

Comparedwith the two application-specific solutions (Spar-
ta and WarpX-PM), Merchandiser achieves 17.3% improve-
ment and 4.6% degradation over Sparta and WarpX-PM re-
spectively. The reason for better performance on SpGEMM
is that Sparta ignores the load balancing caused by multiple
matrix multiplications. WarpX-PM relies on manual analy-
sis of the lifetime of data objects using program semantics,
which provides better guidance on data placement. Although
Merchandiser performs worse than the manual approach
WarpX-PM, the two performances are very close.

7.2 Performance Analysis and Overhead
Quantifying load balance. We use the average coefficient
of variation (A.C.V) [1] of execution time across tasks, which
is a statistical metric to quantify variability: a smaller value



PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Zhen Xie, Jie Liu, Jiajia Li, and Dong Li

0 50 100 150 200 250 300
0

50

100

150

200

0 50 100 150 200 250 300
0

50

100

150

200

0 50 100 150 200 250
0

50

100

150

200

(Sec.) (Sec.)(Sec.)

PM bw. peak 52 GB/s

M
em

or
y 

Ba
nd

w
id

th
 (G

B/
s)

(a) Memory bandwidth usage of using Memory Mode for WarpX application

 DRAM
 PMM

DRAM bw. peak 180 GB/s

PM bw. peak 52 GB/s

M
em

or
y 

Ba
nd

w
id

th
 (G

B/
s)

(b) Memory bandwidth usage of using MemoryOptimizer for WarpX application

 DRAM
 PMM

DRAM bw. peak 180 GB/s

PM bw. peak 52 GB/s

M
em

or
y 

Ba
nd

w
id

th
 (G

B/
s)

(c) Memory bandwidth usage of using LB-HM for WarpX application

 DRAM
 PMM

DRAM bw. peak 180 GB/s

Figure 6.Memory bandwidth consumption during the execution of WarpX.

Table 3. Statistical models, parameters, and accuracy.
Model Parameter R2 (Accuracy)

DTR (Decision Tree Regressor) criterion=gini, max_depth=10 78.1%
SVR (Support Vector Regressor) kernel=‘rbf’, degree=5 83.6%
KNR (K-Neighbors Regressor) n_neighbors=8 72.9%
RFR (Random Forest Regressor) n_estimators=20, max_depth=10 89.2%

GBR (Gradient Boosted Regressor) base_estimator=‘DTR’ 94.1%
ANN (MLP Regressor) alpha=1𝑒−6, hidden_layer=(200, 20) 93.2%

of A.C.Vmeans less difference in execution time among tasks,
thus the task executions are more balanced.
Figure 5 shows the results based on the boxplot. In the

figure, the box displays the interquartile range (25%-75%)
with the median, and the whiskers represents the outliers.
Wider box and longer whiskers indicate larger performance
variance and worse load balance among tasks. Compared
with Memory Mode and MemoryOptimizer, Merchandiser
reduces A.C.V by 51.6% and 42.7% on average respectively.

Load imbalance could be caused by the applications them-
selves, such as the different distributions of non-zero ele-
ments of each matrix in SpGEMM, the uneven graph par-
titioning approach in BFS, and the inequable tensors with
different memory access patterns in NWChen-TC. On the
other hands, WarpX and DMRG do not have such load im-
balance caused by themselves. The performance of PM only
in Figure 5 shows the load imbalance from the applications
themselves. We notice that using Merchandiser, A.C.V is re-
duced by 39.1% and 21.4% for SpGEMM and BFS, compared
with using PM-only. This indicates that Merchandiser can
even remove load imbalance in applications themselves.
StudyDRAMutilization.Weuse Intel Performance Counter
Monitor [35] to measure memory bandwidth. Figure 6 shows
runtime bandwidth inWarpX. ComparedwithMemoryMode,
Merchandiser increases average DRAM bandwidth usage
from 5.98 GB/s to 24.31 GB/s, indicating the usage of fast
memory is improved; Meanwhile, the average PM bandwidth
usage is reduced from 13.74 GB/s to 9.97 GB/s, indicating
the effectiveness of page migration in Merchandiser. Further-
more, MemoryOptimizer and Merchandiser perform simi-
larly in terms ofmemory bandwidth usage. ButMerchandiser
outperforms MemoryOptimizer because of the reduction of
load imbalance (shown in Figure 4.)
Runtime overhead of Merchandiser. Multiple compo-
nents contributes to the runtime overhead - (1) online re-
finement of 𝛼 , (2) online collection of task information using
the base input, and (3) online performance prediction for
the task with new inputs. (1) and (2) only need to use per-
formance counters, which is lightweight (less than 0.1% of

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0%

25%
50%
75%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0%

25%
50%
75%

100%

 Accuracy        
      Using all events

(b) Irregular access pattern-based applications(a) Regular access pattern-based applications
Num. of events involved in performance model

A
cc

ur
ac

y

Num. of events involved in performance model

 Accuracy        
      Using all events

A
cc

ur
ac

y

Figure 7. Accuracy of the correlation function using differ-
ent amounts of performance events as input.

performance loss in our evaluation). (3) uses a lightweight
performance modeling (Equations 1-2), which takes 0.031
ms in our system. Compared with long execution time of
tasks (i.e., at least a few seconds), this overhead is small.

7.3 Performance Modeling Analysis
Construction of correlation function. We use Python
scikit-learn package to train six statistical models (listed in
Table 3) to select the correlation function. 70% of data gener-
ated from Section 5.1 is used for training, and the remaining
30% for testing. We use the average of the squares of the
residuals, R-squared (R2), as the metric to measure how far
the prediction deviates from the measurement. R2 ranges
from 0.0 to 1.0, where 1.0means the prediction is exactly the
same as the measurement. Table 3 lists model parameters
and accuracy using all the performance events. The Gradient
Boosted Regressor (GBR) has the highest modeling accuracy.

Values of 𝛼 . Different tasks have distinct values of 𝛼 . The
average values of 𝛼 are: 1.9, 4.3, 2.4, 5.7, and 2.6 for SpGEMM,
WarpX, BFS, DMRG, and NWChem-TC, respectively.
Selection of workload characteristics.We evaluate the
impact of selecting performance events on the scaling func-
tion (𝑓 (.)). We use different performance events as the input
to 𝑓 (.). Using Evaluation 2,measured𝑇𝑛𝑒𝑤_ℎ𝑦𝑏𝑟𝑖𝑑 ,𝑇𝑛𝑒𝑤_𝑝𝑚_𝑜𝑛𝑙𝑦
and 𝑇𝑛𝑒𝑤_𝑑𝑟𝑎𝑚_𝑜𝑛𝑙𝑦 , we calculate the value of 𝑓 (.) as the
golden output. We compare the function output and golden
output to quantify the accuracy of 𝑓 (.).
Figure 7 shows the average accuracy of 𝑓 (.) when using

different numbers of performance events as the input to 𝑓 (.).
The figure shows that using the top 8 events, the model
accuracy is 93.7% and 93.2% for regular- (i.e., WarpX and
DMRG) and irregular- applications (i.e., SpGEMM, BFS, and
NWChem-TC) respectively, which is close to the accuracy
of using all events (94.8% and 94.1%). Hence we choose top
8 events (listed in Section 5.1) as 𝑓 (.)’s input.
Evaluating performance modeling accuracy. Table 4
shows the average prediction accuracy over all task instances
in each application. Overall, the accuracy is at least 71.3%.
For comparison, we evaluate another performance model [8].



Merchandiser: Data Placement on HM for Task-Parallel HPC Applications PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

Table 4. Accuracy of the whole performance modeling.
Application Profiling-based regression Performance model

SpGEMM 37.4% 74.2%
WarpX 75.1% 87.4%
BFS 38.6% 71.3%

DMRG 83.9% 89.2%
NWChem-TC 62.5% 83.0%

This model uses the data-object-size difference between the
base and new inputs to scale the performance of the base
input to predict the performance of the new input. Our per-
formance modeling outperforms by 12.3%-36.8%.

8 Related Work
Data management on HM has attracted many research
efforts. They can be classified into two classes: application-
agnostic solutions and application-specific solutions. Application-
agnostic solutions [3, 27, 39, 49, 70, 71, 89, 89, 91–93] use
system-level profiling to track page hotness and migrate
pages accordingly without using application knowledge.
Those solutions do not modify applications but miss perfor-
mance improvement opportunities embedded in application
knowledge. Application-specific solutions [13, 20, 23, 43, 45,
48, 51, 67, 69, 72, 82, 85, 87, 94] rely on algorithm knowledge
and program semantics to decide when to trigger data migra-
tion and migrate which data. Those solutions make the best
use of fast memory and can outperform application-agnostic
solutions. Different from existing efforts, Merchandiser uses
task semantics.
Load balance in HPC parallel applications. There are
existing efforts for load balance for OpenMP applications [18,
19, 62, 88, 90, 94]. They use loop scheduling algorithms to dy-
namically assign iterations to different threads. Chameleon [42]
presents the first conceptual generalization of load balancing
to arbitraryMPI applications. In [14, 62, 66, 74], a data-driven
approach was introduced to balance loads on I/O servers for
HPC applications. However, no work considers the load bal-
ance problem caused by data placement in HM as us.

9 Conclusions
This paper finds a new performance problem on HM: load
imbalance in task-parallel HPC applications because of in-
appropriate placement of data objects in HM. This problem
is due to the ignorance of the association between memory
accesses and specific tasks and an incorrect assumption that
bringing hot pages to fast memory always leads to better
performance.We address this problem by introducing task se-
mantics during memory profiling and migration. Also using
performance modeling to guide data migration, we outper-
form the existing software- and hardware-based solutions
by 17.1% and 15.4% respectively.
Acknowledgement.This work was partially supported

by U.S. National Science Foundation (CCF-2217086 and OAC-
2104116), and the Chameleon Cloud. We thank all the re-
viewers for their constructive comments.

10 Appendix: Artifact Description/Artifact
Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We conduct all experiments on a two-socket server with

two Intel Xeon Gold 6252N 24-core processors running Linux
5.17.0. Each socket has 12 DIMM slots, six for 16-GB DDR4
DRAM modules, and six for 128-GB Optane PMM. In total,
the system has 192 GB DRAM and 1.5 TB PM. We configure
the Optane PMM to App Direct Mode for maximum control.
We evaluate this work Merchandiser on this heteroge-

neous memory system for five common task-parallel HPC ap-
plications. SpGEMMand BFS are derived fromhigh-performance
scalable math libraries. They are the basis for solving sparse
systems of equations. WarpX is a production code for plasma
simulation. DMRG comes from Itensor and simulates the low-
energy physics of quantum many-body systems. NWChem-
TC is the tensor contraction component in NWChem to
model complex chemical and materials processes.

10.1 ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created soft-
ware artifacts are maintained in a public repository or are
available under an OSI-approved license.
List of URLs and/or DOIs where software artifacts are

available: https://doi.org/10.5281/zenodo.7453555
Hardware Artifact Availability: There is no author-

created hardware artifact;
Data Artifact Availability: There is no author-created

data artifact;

10.2 BASELINE EXPERIMENTAL SETUP
Relevant hardware details: Intel Optane 256GB persistent
memory module;
Operating systems and versions: Ubuntu 20.04 running

Linux kernel 5.17.0-206-generic;
Compilers and versions: GCC v10.3.0;
Applications: SpGEMM, BFS,WarpX, DMRG, andNWChem-

TC;
Libraries: LLVM-based tool (Spindle), ML-based algorithm

(GBR model), PAPI v5.6.0, ipmctl - Intel Persistent Memory
Control;

Key algorithms: Dynamic programming and greedy heuris-
tic algorithm;

Baseline implementation and version: Intel MemOptimizer
(commit: 3832466) https://github.com/intel/memory-optimizer

References
[1] Hervé Abdi. 2010. Coefficient of variation. Encyclopedia of research

design 1 (2010), 169–171.
[2] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-

transparent Page Management for Two-tiered Main Memory. In In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems.



PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Zhen Xie, Jie Liu, Jiajia Li, and Dong Li

[3] Neha Agarwal and Thomas F Wenisch. 2017. Thermostat: Application-
transparent page management for two-tiered main memory. In Pro-
ceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems. 631–644.

[4] Francis Alexander, Ann Almgren, John Bell, Amitava Bhattacharjee,
Jacqueline Chen, Phil Colella, David Daniel, Jack DeSlippe, Lori Di-
achin, Erik Draeger, et al. 2020. Exascale applications: skin in the
game. Philosophical Transactions of the Royal Society A 378, 2166
(2020), 20190056.

[5] Hartwig Anzt, Terry Cojean, Goran Flegar, Fritz Göbel, Thomas Grütz-
macher, Pratik Nayak, Tobias Ribizel, Yuhsiang Mike Tsai, and En-
rique S Quintana-Ortí. 2020. Ginkgo: A modern linear operator al-
gebra framework for high performance computing. arXiv preprint
arXiv:2006.16852 (2020).

[6] Alberto Baiardi. 2021. Electron Dynamics with the Time-Dependent
Density Matrix Renormalization Group. Journal of Chemical Theory
and Computation (2021).

[7] David H Bailey, Eric Barszcz, John T Barton, David S Browning,
Robert L Carter, Leonardo Dagum, Rod A Fatoohi, Paul O Freder-
ickson, Thomas A Lasinski, Rob S Schreiber, et al. 1991. The NAS
parallel benchmarks. The International Journal of Supercomputing
Applications 5, 3 (1991), 63–73.

[8] Bradley J Barnes, Barry Rountree, David K Lowenthal, Jaxk Reeves,
Bronis De Supinski, and Martin Schulz. 2008. A regression-based
approach to scalability prediction. In Proceedings of the 22nd annual
international conference on Supercomputing. 368–377.

[9] Christopher Cantalupo, Vishwanath Venkatesan, Jeff Hammond,
Krzysztof Czurlyo, and Simon David Hammond. 2015. memkind:
An Extensible Heap Memory Manager for Heterogeneous Memory Plat-
forms and Mixed Memory Policies. Technical Report. Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States).

[10] Pablo De Oliveira Castro, Chadi Akel, Eric Petit, Mihail Popov, and
William Jalby. 2015. Cere: Llvm-based codelet extractor and replayer
for piecewise benchmarking and optimization. ACM Transactions on
Architecture and Code Optimization (TACO) 12, 1 (2015), 1–24.

[11] C.Consortium. [n.d.]. ComputeExpressLink. https://www.
computeexpresslink.org

[12] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali.
2020. Pangolin: An efficient and flexible graph mining system on cpu
and gpu. Proceedings of the VLDB Endowment 13, 8 (2020), 1190–1205.

[13] Yu Chen, Ivy B Peng, Zhen Peng, Xu Liu, and Bin Ren. 2020. Atmem:
adaptive data placement in graph applications on heterogeneous mem-
ories. In Proceedings of the 18th ACM/IEEE International Symposium on
Code Generation and Optimization. 293–304.

[14] Minh Thanh Chung, Josef Weidendorfer, Philipp Samfass, Karl Fuer-
linger, and Dieter Kranzlmüller. 2020. Scheduling across Multiple Ap-
plications using Task-Based Programming Models. In 2020 IEEE/ACM
Fourth Annual Workshop on Emerging Parallel and Distributed Runtime
Systems and Middleware (IPDRM). IEEE, 1–8.

[15] J. Corbe. [n.d.]. AutoNUMA: the Other Approach to NUMA Scheduling.
http://lwn.net/Articles/488709.

[16] Intel Corporation. 2021. MemoryOptimizer – hot page accounting and
migration daemon. https://github.com/intel/memory-optimizer.

[17] Najim Dehak, Reda Dehak, James R Glass, Douglas A Reynolds, Patrick
Kenny, et al. 2010. Cosine similarity scoring without score normaliza-
tion techniques.. In Odyssey. 15.

[18] Bang Di, Daokun Hu, Zhen Xie, Jianhua Sun, Hao Chen, Jinkui Ren,
and Dong Li. 2021. TLB-pilot: Mitigating TLB Contention Attack on
GPUs with Microarchitecture-Aware Scheduling. ACM Transactions
on Architecture and Code Optimization (TACO) 19, 1 (2021), 1–23.

[19] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. 2016. Data tiering in heterogeneous memory systems. In
Proceedings of the Eleventh European Conference on Computer Systems.

1–16.
[20] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe,

Siying Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin
Katti. 2018. Reducing DRAM footprint with NVM in Facebook. In
Proceedings of the Thirteenth EuroSys Conference. 1–13.

[21] Matthew Fishman, Steven R White, and E Miles Stoudenmire. 2020.
The ITensor software library for tensor network calculations. arXiv
preprint arXiv:2007.14822 (2020).

[22] Marta Garcia-Gasulla, Guillaume Houzeaux, Roger Ferrer, Antoni Ar-
tigues, Victor López, Jesús Labarta, and Mariano Vázquez. 2019. MPI+
X: task-based parallelisation and dynamic load balance of finite ele-
ment assembly. International Journal of Computational Fluid Dynamics
33, 3 (2019), 115–136.

[23] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and
Keshav Pingali. 2019. Single machine graph analytics on massive
datasets using intel optane DC persistent memory. arXiv preprint
arXiv:1904.07162 (2019).

[24] Nagendra Gulur, Mahesh Mehendale, Raman Manikantan, and Ra-
maswamy Govindarajan. 2014. ANATOMY: An Analytical Model of
Memory System Performance. In International Conference on Measure-
ment and Modeling of Computer Systems.

[25] Manish Gupta, Vilas Sridharan, David Roberts, Andreas Prodromou,
Ashish Venkat, Dean Tullsen, and Rajesh Gupta. 2018. Reliability-
aware data placement for heterogeneous memory architecture. In
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 583–595.

[26] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News 34, 4 (2006), 1–17.

[27] Takahiro Hirofuchi and Ryousei Takano. 2016. RAMinate: Hypervisor-
based virtualization for hybrid main memory systems. In Proceedings
of the Seventh ACM Symposium on Cloud Computing. 112–125.

[28] Sunpyo Hong and Hyesoon Kim. 2009. An Analytical Model for a
GPU Architecture with Memory-level and Thread-level Parallelism
Awareness. In Proceedings of the 36th Annual International Symposium
on Computer Architecture (ISCA ’09).

[29] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and
Mayur Naik. 2010. Predicting execution time of computer programs
using sparse polynomial regression. Advances in neural information
processing systems 23 (2010), 883–891.

[30] Yingchao Huang and Dong Li. 2017. Performance Modeling for Opti-
mal Data Placement on GPU with Heterogeneous Memory Systems.
In IEEE International Conference on Cluster Computing.

[31] Amazon Inc. 2018. Amazon EC2 High Memory Instances
with 6, 9, and 12 TB of Memory, Perfect for SAP HANA.
https://aws.amazon.com/blogs/aws/now-available-amazon-ec2-
high-memory-instances-with-6-9-and-12-tb-of-memory-perfectfor-
sap-hana/.

[32] Intel. [n.d.]. Intel Optane™ Persistent Memory 200 Series Brief.
https://www.intel.com/content/www/us/en/products/docs/memory-
storage/optane-persistent-memory/optane-persistent-memory-200-
series-brief.html

[33] Intel. 2019. Intel MemoryOptimizer. https://github.com/intel/memory-
optimizer.

[34] Intel. 2021. Intel Memory Tiering. https://lwn.net/Articles/802544/.
[35] Intel. 2021. Processor Counter Monitor (PCM). https://github.com/

opcm/pcm.
[36] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R
Dulloor, et al. 2019. Basic performance measurements of the intel op-
tane DC persistent memory module. arXiv preprint arXiv:1903.05714
(2019).

[37] Tomislav Janjusic, Christos Kartsaklis, andWang Dali. 2014. Scalability
analysis of gleipnir: A memory tracing and profiling tool, on titan.
Cray User Group (2014).

https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://github.com/intel/memory-optimizer
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://github.com/intel/memory-optimizer
https://github.com/intel/memory-optimizer
https://lwn.net/Articles/802544/
https://github.com/opcm/pcm
https://github.com/opcm/pcm


Merchandiser: Data Placement on HM for Task-Parallel HPC Applications PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

[38] Shoaib Kamil, Parry Husbands, Leonid Oliker, John Shalf, and Kather-
ine Yelick. 2005. Impact of modern memory subsystems on cache
optimizations for stencil computations. In Proceedings of the 2005 work-
shop on Memory system performance. 36–43.

[39] Sudarsun Kannan, AdaGavrilovska, Vishal Gupta, and Karsten Schwan.
2017. Heteroos: Os design for heterogeneous memory management in
datacenter. In Proceedings of the 44th Annual International Symposium
on Computer Architecture. 521–534.

[40] Ricky A. Kendall, Edoardo Aprà, David E. Bernholdt, Eric J. Bylaska,
Michel Dupuis, George I. Fann, Robert J. Harrison, Jialin Ju, Jeffrey A.
Nichols, Jarek Nieplocha, T. P. Straatsma, Theresa L. Windus, and
Adrian T. Wong. 2000. High performance computational chemistry:
An overview of NWChem a distributed parallel application. Computer
Physics Communications 128, 1-2 (June 2000), 260–283. https://doi.
org/10.1016/S0010-4655(00)00065-5

[41] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Explor-
ing the Design Space of Page Management for Multi-Tiered Memory
Systems. In 2021 USENIX Annual Technical Conference (USENIX ATC
21).

[42] Jannis Klinkenberg, Philipp Samfass, Michael Bader, Christian Ter-
boven, and Matthias S Müller. 2020. Chameleon: reactive load balanc-
ing for hybrid MPI+ OpenMP task-parallel applications. J. Parallel and
Distrib. Comput. 138 (2020), 55–64.

[43] R Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony
Demeri, Changwoo Min, and Sudarsun Kannan. 2020. Durable transac-
tional memory can scale with timestone. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 335–349.

[44] Lawrence Berkeley National Laboratory. 2021. WarpX. https://github.
com/ECP-WarpX/WarpX.

[45] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. 2019. Recipe: Converting concurrent DRAM
indexes to persistent-memory indexes. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles. 462–477.

[46] Ryan Levy, Edgar Solomonik, and Bryan K Clark. 2020. Distributed-
memory DMRG via sparse and dense parallel tensor contractions.
In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–14.

[47] Yan Ling, Fang Liu, Yue Qiu, and Jiajie Zhao. 2016. Prediction of total
execution time for MapReduce applications. In 2016 Sixth International
Conference on Information Science and Technology (ICIST). IEEE, 341–
345.

[48] Jiawen Liu, Dong Li, and Jiajia Li. 2021. Athena: High-Performance
Sparse Tensor Contraction Sequence on Heterogeneous Memory. In
International Conference on Supercomputing (ICS).

[49] Jie Liu, Jiawen Liu, Zhen Xie, and Dong Li. 2020. FLAME: A Self-
Adaptive Auto-labeling System for Heterogeneous Mobile Processors.
arXiv preprint arXiv:2003.01762 (2020).

[50] Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li. 2021.
Sparta: High-performance, element-wise sparse tensor contraction
on heterogeneous memory. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 318–
333.

[51] Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li. 2021.
Sparta: High-Performance, Element-Wise Sparse Tensor Contraction
on Heterogeneous Memory. In Principles and Practice of Parallel Pro-
gramming.

[52] Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts.
2013. Understanding variable importances in forests of randomized
trees. Advances in neural information processing systems 26 (2013).

[53] Jaydeep Marathe, Frank Mueller, Tushar Mohan, Sally A Mckee, Bro-
nis R De Supinski, and Andy Yoo. 2007. Metric: Memory tracing via
dynamic binary rewriting to identify cache inefficiencies. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 29, 2 (2007),

12–es.
[54] Mitesh R Meswani, Sergey Blagodurov, David Roberts, John Slice,

Mike Ignatowski, and Gabriel H Loh. 2015. Heterogeneous memory
architectures: A HW/SW approach for mixing die-stacked and off-
package memories. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 126–136.

[55] Thierry Monteil. 2013. Coupling profile and historical methods to
predict execution time of parallel applications. Parallel and Cloud
Computing 2, 3 (2013), pp–81.

[56] Farrukh Nadeem and Thomas Fahringer. 2009. Using templates to
predict execution time of scientific workflow applications in the grid.
In 2009 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid. IEEE, 316–323.

[57] Sai Narasimhamurthy, Nikita Danilov, Sining Wu, Ganesan Umanesan,
Stefano Markidis, Sergio Rivas-Gomez, Ivy Bo Peng, Erwin Laure, Dirk
Pleiter, and Shaun De Witt. 2019. Sage: percipient storage for exascale
data centric computing. Parallel computing 83 (2019), 22–33.

[58] S Arash Ostadzadeh, Roel J Meeuws, Carlo Galuzzi, and Koen Ber-
tels. 2010. Quad–a memory access pattern analyser. In International
Symposium on Applied Reconfigurable Computing. Springer, 269–281.

[59] Eunjung Park, Christos Kartsaklis, Tomislav Janjusic, and John Cava-
zos. 2014. Trace-driven memory access pattern recognition in compu-
tational kernels. In Proceedings of the Second Workshop on Optimizing
Stencil Computations. 25–32.

[60] SeongJae Park, Yunjae Lee, and Heon Y. Yeom. 2019. Profiling Dynamic
Data Access Patterns with Controlled Overhead and Quality.

[61] Onkar Patil, Latchesar Ionkov, Jason Lee, Frank Mueller, and Michael
Lang. 2019. Performance Characterization of a DRAM-NVM Hybrid
Memory Architecture for HPC Applications Using Intel Optane DC
Persistent Memory Modules. In Proceedings of the International Sym-
posium on Memory Systems (MEMSYS ’19).

[62] Arnab K Paul, Arpit Goyal, Feiyi Wang, Sarp Oral, Ali R Butt, Michael J
Brim, and Sangeetha B Srinivasa. 2017. I/o load balancing for big data
hpc applications. In 2017 IEEE International Conference on Big Data
(Big Data). IEEE, 233–242.

[63] Ivy Peng, Kai Wu, Jie Ren, Maya Gokhale, and Dong Li. 2020. Demysti-
fying the Performance of HPC Scientific Applications on NVM-based
Memory Systems. In IEEE International Parallel and Distributed Pro-
cessing Symposium.

[64] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. 2019. System
Evaluation of the Intel Optane Byte-addressable NVM. In Proceedings
of the International Symposium on Memory Systems. ACM. https:
//doi.org/10.1145/3357526.3357568

[65] Thanh-Phuong Pham, Juan J Durillo, and Thomas Fahringer. 2017.
Predicting workflow task execution time in the cloud using a two-stage
machine learning approach. IEEE Transactions on Cloud Computing 8,
1 (2017), 256–268.

[66] Eric Raut, Jie Meng, Mauricio Araya-Polo, and Barbara Chapman.
2020. Evaluating Performance of OpenMP Tasks in a Seismic Stencil
Application. In International Workshop on OpenMP. Springer, 67–81.

[67] Jie Ren, Jiaolin Luo, Ivy Peng, Kai Wu, and Dong Li. 2021. Optimizing
Large-Scale Plasma Simulations on Persistent Memory-based Het-
erogeneous Memory with Effective Data Placement Across Memory
Hierarchy. In International Conference on Supercomputing (ICS).

[68] Jie Ren, Jiaolin Luo, Ivy Peng, Kai Wu, and Dong Li. 2021. Optimizing
large-scale plasma simulations on persistent memory-based heteroge-
neous memory with effective data placement across memory hierarchy.
In Proceedings of the ACM International Conference on Supercomputing.
203–214.

[69] Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li.
2020. Sentinel: Efficient Tensor Migration and Allocation on Heteroge-
neousMemory Systems for Deep Learning. In International Symposium
on High Performance Computer Architecture (HPCA).

https://doi.org/10.1016/S0010-4655(00)00065-5
https://doi.org/10.1016/S0010-4655(00)00065-5
https://github.com/ECP-WarpX/WarpX
https://github.com/ECP-WarpX/WarpX
https://doi.org/10.1145/3357526.3357568
https://doi.org/10.1145/3357526.3357568


PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Zhen Xie, Jie Liu, Jiajia Li, and Dong Li

[70] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
2021. Zero-offload: Democratizing billion-scale model training. arXiv
preprint arXiv:2101.06840 (2021).

[71] Jie Ren, Kai Wu, and Dong Li. 2020. Exploring non-volatility of non-
volatile memory for high performance computing under failures. In
2020 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 237–247.

[72] Jie Ren, Minjia Zhang, and Dong Li. 2020. HM-ANN: Efficient Billion-
Point Nearest Neighbor Search on Heterogeneous Memory. In Confer-
ence on Neural Information Processing Systems (NeurIPS).

[73] SeyedMasoud Sadjadi, Shu Shimizu, Javier Figueroa, Raju Rangaswami,
Javier Delgado, Hector Duran, and Xabriel J Collazo-Mojica. 2008. A
modeling approach for estimating execution time of long-running
scientific applications. In 2008 IEEE International Symposium on Parallel
and Distributed Processing. IEEE, 1–8.

[74] Philipp Samfass, Tobias Weinzierl, Dominic E Charrier, and Michael
Bader. 2020. Lightweight task offloading exploiting MPI wait times
for parallel adaptive mesh refinement. Concurrency and Computation:
Practice and Experience 32, 24 (2020), e5916.

[75] Michael J Schulte, Mike Ignatowski, Gabriel H Loh, Bradford M Beck-
mann, William C Brantley, Sudhanva Gurumurthi, Nuwan Jayasena,
Indrani Paul, Steven K Reinhardt, and Gregory Rodgers. 2015. Achiev-
ing exascale capabilities through heterogeneous computing. IEEE
Micro 35, 4 (2015), 26–36.

[76] Sarah Shah, Yasaman Amannejad, Diwakar Krishnamurthy, and Mea
Wang. 2019. Quick Execution Time Predictions for Spark Applica-
tions. In 2019 15th International Conference on Network and Service
Management (CNSM). IEEE, 1–9.

[77] Samantha Sherman and Tamara G Kolda. 2020. Estimating higher-
order moments using symmetric tensor decomposition. SIAM J. Matrix
Anal. Appl. 41, 3 (2020), 1369–1387.

[78] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard W.
Vuduc. 2012. A Performance Analysis Framework for Identifying
Potential Benefits in GPGPU Applications. In Proceedings of the Sym-
posium on Principles and Practices of Parallel Programming.

[79] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J.
Van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, and W.A. de
Jong. 2010. NWChem: A comprehensive and scalable open-source
solution for large scale molecular simulations. Computer Physics Com-
munications 181, 9 (2010), 1477–1489. https://doi.org/10.1016/j.cpc.
2010.04.018

[80] J.-L. Vay, A. Almgren, J. Bell, L. Ge, D.P. Grote, M. Hogan, O.
Kononenko, R. Lehe, A. Myers, C. Ng, and et al. 2018. Warp-X: A new
exascale computing platform for beam–plasma simulations. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 909 (Nov 2018),
476–479. https://doi.org/10.1016/j.nima.2018.01.035

[81] Thiruvengadam Vijayaraghavan, Yasuko Eckert, Gabriel H Loh,
Michael J Schulte, Mike Ignatowski, Bradford M Beckmann, William C
Brantley, Joseph L Greathouse, Wei Huang, Arun Karunanithi, et al.
2017. Design and Analysis of an APU for Exascale Computing. In
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 85–96.

[82] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur
Mutlu, Fang Lv, Xiaobing Feng, and Guoqing Harry Xu. 2019. Panthera:
Holistic memory management for big data processing over hybrid
memories. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 347–362.

[83] Haojie Wang, Jidong Zhai, Xiongchao Tang, Bowen Yu, Xiaosong Ma,
andWenguang Chen. 2018. Spindle: informed memory access monitor-
ing. In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC}
18). 561–574.

[84] K. Wu, Y. Huang, and D. Li. 2017. Unimem: Runtime Data Management
on Non-Volatile Memory-based Heterogeneous Main Memory. In In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis.

[85] Kai Wu, Yingchao Huang, and Dong Li. 2017. Unimem: Runtime data
managementon non-volatile memory-based heterogeneous main mem-
ory. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–14.

[86] Kai Wu, Jie Ren, and Dong Li. 2018. Runtime Data Management on
Non-Volatile Memory-Based Heterogeneous Memory for Task Parallel
Programs. In ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis.

[87] Kai Wu, Jie Ren, and Dong Li. 2018. Runtime data management on
non-volatile memory-based heterogeneous memory for task-parallel
programs. In SC18: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 401–413.

[88] Zhen Xie, Wenqian Dong, Jiawen Liu, Hang Liu, and Dong Li. 2021.
Tahoe: tree structure-aware high performance inference engine for
decision tree ensemble onGPU. In Proceedings of the Sixteenth European
Conference on Computer Systems. 426–440.

[89] Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li.
2021. MD-HM:memoization-basedmolecular dynamics simulations on
big memory system. In Proceedings of the ACM International Conference
on Supercomputing. 215–226.

[90] Zhen Xie, Jie Liu, Sam Ma, Jiajia Li, and Dong Li. 2022. LB-HM: load
balance-aware data placement on heterogeneous memory for task-
parallel HPC applications. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 435–
436.

[91] Zhen Xie, Guangming Tan, Weifeng Liu, and Ninghui Sun. 2019. IA-
SpGEMM: An input-aware auto-tuning framework for parallel sparse
matrix-matrix multiplication. In Proceedings of the ACM International
Conference on Supercomputing. 94–105.

[92] Zhen Xie, Guangming Tan, Weifeng Liu, and Ninghui Sun. 2021. A
pattern-based spgemm library for multi-core and many-core archi-
tectures. IEEE Transactions on Parallel and Distributed Systems 33, 1
(2021), 159–175.

[93] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019.
Nimble page management for tiered memory systems. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 331–345.

[94] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. 2020. An empirical guide to the behavior and use of
scalable persistent memory. In 18th {USENIX} Conference on File and
Storage Technologies ({FAST} 20). 169–182.

https://doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1016/j.nima.2018.01.035

	Abstract
	1 Introduction
	2 Background
	3 Overview
	4 Input-Aware Memory Access Quantification
	5 Performance Modeling
	5.1 Construction of Correlation Function
	5.2 Performance Prediction on Homogeneous Memory
	5.3 Putting All Together

	6 Load Balance-Aware Data Migration
	7 Evaluation
	7.1 Overall Performance
	7.2 Performance Analysis and Overhead
	7.3 Performance Modeling Analysis

	8 Related Work
	9 Conclusions
	10 Appendix: Artifact Description/Artifact Evaluation
	10.1 ARTIFACT AVAILABILITY
	10.2 BASELINE EXPERIMENTAL SETUP

	References

