
IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Enabling Large Dynamic Neural Network Training
with Learning-based Memory Management

Jie Ren∗, Dong Xu§, Shuangyan Yang§, Jiacheng Zhao‡, Zhicheng Li‡,
Christian Navasca†, Chenxi Wang‡, Harry Xu†, and Dong Li§

∗ William & Mary, ‡ University of Chinese Academy of Sciences,
† University of California, Los Angeles, § University of California, Merced
{jren03}@wm.edu, {zhaojiacheng, lizhicheng21s, wangchenxi}@ict.ac.cn,

{cnavasca253}@g.ucla.edu, {harryxu}@cs.ucla.edu, {dxu17, syang127, dli35}@ucmerced.edu

Abstract—Dynamic neural network (DyNN) enables high com-
putational efficiency and strong representation capability. How-
ever, training DyNN can face a memory capacity problem because
of increasing model size or limited GPU memory capacity.
Managing tensors to save GPU memory is challenging, because
of the dynamic structure of DyNN. We present DyNN-Offload, a
memory management system to train DyNN. DyNN-Offload uses
a learned approach (using a neural network called the pilot model)
to increase predictability of tensor accesses to facilitate memory
management. The key of DyNN-Offload is to enable fast inference
of the pilot model in order to reduce its performance overhead,
while providing high inference (or prediction) accuracy. DyNN-
Offload reduces input feature space and model complexity of the
pilot model based on a new representation of DyNN; DyNN-
Offload converts the hard problem of making prediction for
individual operators into a simpler problem of making prediction
for a group of operators in DyNN. DyNN-Offload enables 8×
larger DyNN training on a single GPU compared with using
PyTorch alone (unprecedented with any existing solution). Eval-
uating with AlphaFold (a production-level, large-scale DyNN),
we show that DyNN-Offload outperforms unified virtual memory
(UVM) and dynamic tensor rematerialization (DTR), the most
advanced solutions to save GPU memory for DyNN, by 3× and
2.1× respectively in terms of maximum batch size.

I. INTRODUCTION

Deep learning (DL) is embracing dynamic neural network
(NN) architectures where the NN structure changes across
data samples [23]. Such dynamic neural networks (DyNN)
are different from the traditional static NN where a network
architecture (i.e., a dataflow graph) is defined using symbolic
expressions before execution and fixed during execution. A
DyNN model may select its model components (e.g., lay-
ers [28], channel [34] or sub-networks [66]) conditional on
input samples, and change the structure and parameters in the
dataflow graph accordingly. DyNN decouples the requirement
for many parameters from computational costs, which leads
to reduction of training cost. Previous works [10], [19], [60],
[67], [73], [83] show that compared with static NN, DyNN
reduces training cost yet improve model prediction perfor-
mance. DyNNs have shown high computational efficiency over
variable-length sequences [71], trees [72], and graphs [33].
They have also demonstrated strong representation capabil-
ities and high adaptiveness in achieving desired tradeoffs
between accuracy and efficiency on the fly [23]. As a result,
DyNNs have been applied to many problems, such as speech

recognition [78], language modeling [19], [60], [61], [82],
image recognition [5], [17] and DL translation [6], [71], [73].
Recently, DyNNs are applied to large language models (such
as GLaM from Google [18]), pushing the limit of scaling laws
in the age of generative models. It is believed that the DyNN
is one of a few techniques to improve efficiency and resource
utilization of future large models [39].

Problems. DyNNs, as many other NNs, are often memory
hungry [49], [57], [58], [86]. This is especially the case as
large models are gaining increasing popularity. For example,
AlphaFold [64], a DyNN model based on evoformers (a vari-
ant of transformer) recently making breakthrough in protein
structure prediction, consumes 1,024 GB memory when using
128 amino acids sequences of 256 in length [1]. As another
example, a switch-based mixture-of-expert (MoE) model with
the similar parameter efficiency as T5-large (a static natural
language processing model) consumes at least 320 GB mem-
ory [54]. Clearly, training of large models is fundamentally
limited by GPU memory capacity. Distributed parallel training
techniques such as pipeline parallelism [40], [41] and tensor
model parallelism [65] go beyond the memory boundary of
single GPU by splitting model states across multiple GPUs,
enabling training of massive models that would otherwise not
fit into a single GPU’s memory. However, these techniques re-
quire enough GPUs to provide large aggregated GPU memory
to store the model states necessary for training; these GPUs
can be extremely expensive and beyond the affordability of
many small companies and organizations [56], [58].

Exploiting CPU memory to reduce the need of GPU mem-
ory for large model training has been explored [26], [27], [49],
[50], [57]–[59]. Although tensor offloading to CPU memory
is effective in training static models, it is hard to be ap-
plied to DyNNs. In particular, effectively using heterogeneous
memory (CPU and GPU memories) requires minimizing the
amount of communication between CPU and GPU or hiding
communication. To achieve this goal, existing efforts rely on
profiling-guided optimization (PGO) to record tensor access
orders using a few training iterations and plan tensor prefetech
between CPU and GPU for remaining iterations. PGO has a
fundamental assumption: the NN model must be invariant, i.e.,
using a static computation graph where tensor dimensions as
well as data and control flows are statically fixed, and there

are no complex data structures (such as graphs and trees) in
the dataflow graph. Hence, profiling a few training iterations
is enough to decide tensor prefetch for upcoming operators.

However, the above assumption does not hold for DyNNs
due to their inherent dynamism. Depending on the input, the
DyNN selectively activates model components, introducing
irregular memory accesses and invalidating profiling results
collected in training iterations. As a result, communications
between CPU and GPU are largely exposed to the critical
path, leading to training throughput loss.

This paper presents a memory (tensor) management system,
DyNN-Offload, for training large DyNNs. DyNN-Offload uses
a new approach to guide tensor migration between CPU and
GPU to maximize GPU memory efficiency. In particular, we
explore the extent to which a pilot model, such as an NN, can
be used to increase predictability of tensor accesses during the
training process of a large DyNN. We use the pilot model to
timely prefetch tensors from CPU memory to GPU memory
to hide communication overheads.

Insights. Key to our approach is learning for learning, i.e.,
using the learned knowledge proactively gained from other
input problems and DyNNs, instead of using PGO which lacks
flexibility to handle dynamism in DyNN training. Our work
is driven by two major insights.
• The training process of an NN (regardless of whether it is

static or dynamic) exhibits learnable patterns. For example,
linear computation is commonly followed by nonlinear
computation (e.g., ReLU activation function).

• In essence, the dynamic structure of a DyNN builds on
a series of decision-making processes (i.e., control flows)
to activate model components, which, in turn, impacts the
access orders of tensors. The input sample to the DyNN
provides indications on how such processes occur. A pre-
diction model can be learned to enable automatic synthesis
of the decision-making processes.
Research challenges. Developing a model for GPU mem-

ory management requires overcoming a number of challenges.
The first is how to minimize the performance impact of
querying the model (referred to as pilot model) for memory
management. The inference using the pilot model introduces
performance overheads to the critical path of DyNN training.

The second challenge is how exactly to use the pilot model.
DyNN-Offload queries the pilot model to decide when to
prefetch tensors from CPU to GPU memory with the goal
to maximize the overlapping between tensor migration and
DyNN training. Tensor prefetching is critical in minimizing
the overheads incurred from tensor migration. A possible idea
is to build the pilot model to predict the exact execution order
of operators. If this can be done, we could come up with a
prefetch plan in a similar way to using PGO-guided tensor
prefetch for static NNs. However, this approach requires rich
output from the pilot model and high prediction accuracy,
which leads to high inference overhead of the pilot model.
Hence, there is an important tradeoff between the usefulness
(to guide tensor prefetch) and performance overhead.

DyNN-Offload. The design of the pilot model centers

around how to enable efficient enforcement and yet provide
high accuracy. We achieve this goal based on two observa-
tions: (1) operators in machine learning (ML), though rich in
interfaces and algorithms, can be identified by a combination
of six pervasive and expressive memory access patterns. (2)
Tensors typically migrate in batches in order to fully utilize in-
terconnect bandwidth. For those tensors that migrate together,
there is no need to predict the exact execution order of the
operators that reference the migrating tensors. This observation
relaxes the requirement of using fine-grained execution order
to plan tensor prefetch, which is the central technique used in
all PGO-based solutions for static NNs [50], [57], [59], [75].

Based on the first observation, the input features and output
of the pilot model can benefit from a compact representation
based on six program idioms to encode the DyNN’s architec-
ture and indicate execution order of operators. This compact
representation reduces the input feature space, leading to a
simpler pilot model. Based on the second observation, the pilot
model implicitly partitions a DyNN with resolved dynamism
into multiple execution blocks, and only predicts the execution
order of these blocks. This leads to an easier prediction
task, and hence a lighter pilot-model and higher prediction
accuracy. The above techniques address the challenge on the
performance overhead of the pilot model.

To address the challenge in the planning of tensor prefetch-
ing, DyNN-Offload learns how to hide tensor migration
through the training of the pilot model. During the pilot model
training, the DyNN is transformed to a static one and then
an existing PGO solution is used to decide execution blocks.
Such transformation allows DyNN-Offload to create training
samples with the knowledge of optimal DyNN partitioning for
the pilot model to learn.

Results. DyNN-Offload supports a variety of DyNNs and
works on real production datasets without the need of refac-
toring DyNNs. DyNN-Offload significantly improves GPU
memory efficiency: given a constraint on GPU memory con-
sumption, DyNN-Offload enables 8× larger DyNN training on
a single GPU compared with using PyTorch alone (unprece-
dented with any existing solution); Evaluating with AlphaFold
(a production-level, large-scale DyNN), we show that DyNN-
Offload outperforms unified virtual memory (UVM) [44] and
dynamic tensor rematerialization (DTR) [30], the most ad-
vanced solutions for DyNN, by 3× and 2.1× respectively in
terms of maximum batch size. DyNN-Offload also reduces
training time of the DyNN by 35% (up to 1.38×) com-
pared to UVM and DTR, while other solutions (e.g., ZeRO-
Infinity [56]) cannot work for DyNNs. The pilot model causes
only 30 µs inference overhead, much shorter than the training
iteration time of large DyNNs (O(100µs)) for each training
sample. Given O(1000) training samples, the pilot model only
mis-predicts tens of them.

II. BACKGROUND

A. Dynamic Neural Networks

Static NN applies fixed-structured operations to all input
samples. For example, convolutional NNs apply fixed network

architecture to fixed-sized images, and are able to capture
the spatial invariance common in computer vision. However,
besides images, many forms of data (e.g., sequences of vari-
able lengths and graphs) are structurally complex, and cannot
be captured by fixed-structured NNs. DyNNs can adapt their
structures or parameters to the input sample. Such dynamism
is able to reflect the complex structures of input data, hence
leading to high execution efficiency and accuracy. Such dy-
namism is often controlled by confidence-based criteria and
gating functions using control flows.

Figure 1 presents a DyNN example. This is a Tree-CNN
based on constituency parsing and designed for the sentence
embedding task in natural language processing. The Tree-CNN
generates representations for the input sentence by construct-
ing a parsing tree in a bottom-up manner and combining
the representations of each subtree. In the Tree-CNN, each
node represents a grammar type and has its own dedicated
CNN. Figure 1.a illustrates the tree-building rule: each pair of
neighboring nodes attempts to create a parent node, and only
the parent node with the highest score is activated to form
a subtree. Specifically, Line 9 in Figure 1.a demonstrates a
control flow that determines the dynamic structure of the Tree-
CNN. Therefore, the architecture of Tree-CNN varies based
on the content of the input sentence. Figure 1.b shows the
resolved tree structure for an input sentence. In the figure, the
activated nodes are represented in blue, and the inactivated
nodes are shown in shadow. Besides Tree-CNN, there are other
types of DyNNs. Their commonality lies in the dynamism
(i.e., the existence of the control flow as Line 9 in Figure 1.a).
Their differences lie in the model components activated by the
control flow: in Tree-CNN, the model components are CNN in
tree nodes; in MoE, the model components can be multi-layer
perceptron within a transformer block. DyNN-Offload can be
generally applied to those DyNNs to address their dynamism.

We use the following terms throughout the paper.
• DyNN training, which is the target workload in this paper.

DyNN training uses the pilot model for tensor prefetching.
• Pilot model inference (or prediction), which means the

pilot model is used to decide tensor prefetching;
• Pilot model training, which decides the pilot model param-

eters and happens offline.

B. Breaking Memory Capacity Wall

As state-of-the-art DL models continue to grow, training
them within the capacity of GPU memory becomes increas-
ingly challenging. Such a memory capacity wall limits ability
to explore training techniques and memory-intensive model
architectures. There are several solutions to reduce memory
consumption and address this problem, such as using low-
precision tensors [84], distributed training [41], [42], [56],
[69], tensor redundancy removal [55], tensor migration on
heterogeneous memory [26], [27], [49], [50], [57]–[59], and
tensor rematerialization [11], [20], [29], [30], [70]. Among
them, tensor migration and rematerialization are attractive,
because they do not have risks of losing training convergence,

(a) (b)

Input Sentence: The cat sat on the mat

NN NP

S

VP

PP

NPNN

NN

NN

NN

The cat

sat

on

the mat

Fig. 1. A DyNN example: (a) the implementation of each tree node in the
DyNN, (b) the tree network where S, PP, NP and VP stand for sentence,
preposition phrase, noun phrase, and verb phrase.

TABLE I
DISTRIBUTION OF JACCARD DISTANCE FOR ALL TRAINING SAMPLES.

[0,0.2] (0.2,0.4] (0.4,0.6] (0.6, 0.8] (0.8, 1]
Percentage of
training samples 5% 28% 25% 40% 2%

do not change NN models, and are cost-effective (i.e., no need
of extra GPU). However, they cannot work well for DyNNs.

Tensor migration highly relies on the workload predictabil-
ity to decide when tensor migration (prefetch) should happen.
For static NN, such predictability is provided by PGO based
on the assumption that the workload characteristics (including
execution time and tensor accesses) is invariant across training
samples, which is not held for DyNN.

To quantify the unpredictability of DyNN, we use Tree-
LSTM [72] with 6,000 training samples as an example. We
use Tree-LSTM as an example because of its rich control
flows, but other DyNNs in our analysis (shown in Table II)
show similar unpredictability. For each training sample, we
build a binary vector and each element of it indicates if a
specific control flow is taken or not. We use the first training
sample as the baseline, and use the Jaccard distance [76] (JD)
to quantify the execution similarity between the baseline and
any other training sample. The JD is a common metric to
measure how dissimilar two vectors are. For a given training
sample, the analysis result (the JD) is a value falling into [0, 1],
with “1” indicating the training sample and the baseline take
completely different control flows and “0” indicating opposite.
A larger JD value indicates lower similarity. Table I shows
the results, which shows a wide divergence of execution of
the dataflow graph across training samples. This divergence
fails the traditional PGO-guided tensor prefetch (in particular,
profiling tensor accesses using the first few training samples
cannot be used to guide prefetch for other training samples).

Tensor rematerialization frees some tensors (particularly
activations) from GPU memory but recomputes them on
demand. Tensor rematerialization uses checkpointing to store
some tensors in GPU, in order to replay the parent operations
to reproduce the freed tensors. Tensor rematerilization can
work for DyNNs [21], [30].

However, tensor rematerialization has fundamental limita-
tion. (1) Rematerialization can be recursive: if the arguments
to a freed tensor’s parent operation are freed too, then those
arguments must first be rematerialized. There is no theoretical
bound on depth of the recursiveness, leading to potentially
large loss in training throughput. (2) Some tensors (e.g.,
constant tensors and weights) cannot be rematerialized, leading
to a tighter bound on memory saving (compared with using
tensor prefetch techniques). Our evaluation shows the inferior
performance of using tensor rematerialization, compared with
using the pilot-model guided tensor migration (Section VI-C).

C. Using Machine Learning to Guide Tensor Migration

Before we explored ML to guide tensor migration for
DyNN, we asked whether simple heuristics would be accurate
enough to resolve dynamism. For example, for a DyNN used
in NLP and taking a sentence as input, one might measure
the ratio of the number of verbs to the number of nouns in
the input sentence, and assume that a larger ratio implies a
higher possibility of taking some branch in the dataflow graph.
However, we did not find a high correlation between the ratio
and the decision of taking the branch, using Spearman’s cor-
relation or Pearson’s correlation: at most 0.20 for Spearman’s
and 0.25 for Pearson’s, which are known as the low degree of
correlation [8]. Also, using this heuristics for prefetch, we find
that var-BERT easily has 50% performance loss, compared to
DyNN-Offload. Also, the heuristic is difficult to be general-
ized: different DyNNs require different heuristics. Hence, we
decided to try ML models. Recent research on distributed and
operating systems successfully employed ML for scheduling
and resource allocation [24], [36], [53], [68], [79], [85]. A
similar exploration to address the memory capacity problem
can lead to a powerful result, as we show in this paper.

III. OVERVIEW

Usage scenario. DyNN-Offload is used to guide the
decision for tensor prefetch based on operators execution
order to save GPU memory without losing DyNN training
throughput and accuracy. DyNN-Offload is transparent to data
scientists and does not require DyNN refactoring. Before an
input sample is fed into the DyNN for training, an NN model
(i.e., the pilot model) is used to quickly resolve control flows
in the DyNN and indicate when the tensor prefetch should
happen. Based on the prediction of the pilot model, the runtime
system in DyNN-Offload triggers tensor prefetch.

Overall architecture. Figure 2 shows the overall architec-
ture of DyNN-Offload, consisting of three main components.

(1) The pilot model. The center of DyNN-Offload is a
light NN (the pilot model). The pilot model’s input features
are the input sample to the DyNN and the DyNN architecture
information collected through static analysis on the DyNN
model script. The pilot model’s output indicates how operators
in the DyNN will be executed at the granularity of execution
blocks. An execution block includes a group of operators.
The pilot model indicates how the computation graph of the
DyNN is partitioned into execution blocks, such that at the

DyNN code snippet

Training data collection

9, 7, 1 … 7, 3
5, 8, 1 … 5, 1
7, 1, 1 … 1, 3
8, 4, 1 … 3, 8

Architecture Feature Matrix

Labeling
Ground Truth

Offline pilot model training

Op1 (t1, t2)
Op2 (t1, t2)
If()
…

...

The cat sat
on the mat

DyNN’s input

DyNN dataflow

8, 4, 1 … 3, 5
3, 9, 2 … 5, 2
5, 9, 4 … 1, 8

Pilot model training

Input feature of pilot model

Output of pilot model

Runtime memory management system

Pilot model inference

GPU memoryCPU memory

x
Handle mis-prediction Memory

management
and tensor
migration

fe
at

ur
e

la
ye

r

Input Embedding

6, 5, 2 … 1, 4...

M
LP

M
LP

M
LP

ou
tp

ut
 la

ye
r

pilot model

Op1 (t1, t2, t3)
Op2 (t1, t2)
if()
…

My apartment
has a large

kitchen

fe
at

ur
e

la
ye

r
fe

at
ur

e
la

ye
r

0,0,1
DyNN Model Type Embedding

(optional)

CNN-based
LSTM-based
Transformer-based
DyNN model type

Fig. 2. The workflow of DyNN-Offload.

beginning of an execution block, the tensor migration for the
next execution block is triggered to hide migration cost.

The input features and output of the pilot model use a
program idiom-based representation to identify operators in
the DyNN. We use six idioms defined in terms of memory
access patterns, and each operator can be easily characterized
with a combination of the six idioms. Using the idiom-based
representation significantly reduces the complexity of input
features and output, leading to the lightness of the pilot model.

(2) Runtime system. DyNN-Offload manages GPU mem-
ory for tensor migration and DyNN training based on dou-
ble buffering. Based on the pilot model, the tensors can
be prefetched from CPU memory to GPU memory at the
beginning of each execution block. DyNN-Offload handles
the mis-prediction of the pilot model by fetching tensors on
demand and recording the input sample to improve the pilot
model accuracy and avoid mis-prediction for future input.

(3) Training system for the pilot model. To generate
training samples to train the pilot model, DyNN-Offload feeds
a number of DyNN’s input samples to different types of
DyNN models, and records the execution traces of DyNNs for
tensor profiling. Then, for each DyNN’s input sample, DyNN-
Offload partitions the resolved dataflow graph into execution
blocks to maximize overlap between tensor migration and
training computation. The information for those execution

blocks plus DyNN’s input samples and architectures become
training samples for the pilot model.

IV. DESIGN

This section presents our design and the principal intuitions.

A. Design of Input Features

The pilot model takes the following information as input
features: (1) the input sample to the DyNN after embedding,
(2) DyNN’s static architecture, and (3) the basic NN type of
DyNN. The static architecture is collected by static analysis
on the DyNN code. The static architecture includes all model
components in the DyNN whose execution is determined by
the control flows. The static architecture is different from the
dynamic architecture which is input-dependent. We include the
static architecture as input features, such that the pilot model
can be independent of DyNN architecture and hence more
general. We discuss how to represent the static architecture as
input features of the pilot model in this section.

1) Design Goals: When determining input features to rep-
resent the static architecture, we have two goals: (1) we cannot
have too many features, because that leads to a large pilot
model, causing large runtime overhead, and (2) the features
should be informative to represent tensor accesses in operators.

We could use operator names (represented as numerical
values) as the input features. In particular, treating the compu-
tation in the DyNN as a sequence of operators, we employ a
vector and each element of the vector represents an operator in
the sequence. The operator names (or operator types), indicat-
ing how tensors are accessed, are informative. However, there
are three problems with this solution. (1) There are a large
number of operator names, leading to a large feature space.
Using an operator name-based vector as the input increases
the complexity of the pilot model. (2) Some DyNNs have
user-defined operators. Using the operator names as the input
features lacks generality to handle a variety of DyNNs. (3)
Some operators are the variant of the same operator (e.g., the
ADAM optimizer) but with different names. These operators
access the same tensors and have the same functionality. There
is no need to distinguish them as the input features.

2) Idiom-based Representation: We use an abstract to rep-
resent DyNN’s static architecture.

Idiom-based representation for operators. Each operator
is characterized with six idioms. An idiom is a computation
pattern, commonly found in numerical computation [9]. Using
this idiom-based representation is based on our observation
that the six idioms have wide coverage of computation in
ML operators. We describe these idioms using the following
examples, where A, B, and C are two-dimensional vectors,
i and j are indexes, a is a scalar tensor, and operators step
through tensors by enumerating i and j.

• Transpose: Aij = Bji

• Gather: Aij = BCij

• Scatter: BCij
= Aij

• Reduction: a = a+Aij

• Stream: Aij = Aij +Bij

Fig. 3. An example of getting idiom-based representation for matmul

1 def matmul(a, b):
2 ### the shape of input a and b are (ar, ac), (br, bc)
3 ar, ac = a.shape # input [0,0,0,0,0,0,ar,ac,0]
4 br, bc = b.shape # input [0,0,0,0,0,0,br,bc,0]
5 assert ac == br
6 c = torch.zeros(ar, bc)
7 ### the shape of output c is (ar, bc)
8 for i in range(ar):
9 c[i] = (a[i].unsequeezed(-1)

10 # transpose [1,0,0,0,0,0,0,0,0]
11 *b # stream [0,0,0,0,1,0,0,0,0]
12).sum(dim=0) # reduction [0,0,0,1,0,0,0,0,0]
13 return c
14 # The idiom-based representation of matmul(a,b) is
15 # [1,0,0,1,1,0,(ar+br),(ac+bc),0]

• Stencil: Aij = A(i−1)j +A(i+1)j

The six idioms are pervasive and expressive. Among 300
common operators in PyTorch, all of them have these pat-
terns 1. These patterns are automatically identified (see Sec-
tion V). We build a signature (a nine-element vector) for each
operator using the idioms. The signature includes six elements
that count the occurrence of each idiom in the operator and
three elements that capture the operator input information. This
results in a distinctive nine-element vector for each operator.
The use of these idioms dominates DyNN execution time, and
the nine-element vector is sufficient to build signatures, so
other computation patterns are not considered. Figure 3 gives
an example.

Idiom-based representation for DyNN. Given the source
code of a DyNN, we collect the nine-element vectors for all
operators in it. Those vectors are organized into a matrix
(named architecture feature matrix or AFM). In AFM, each
row corresponds to an operator. The row order in AFM
corresponds to the operator order. In the case of a unresolved
control flow, the operators in multiple branches are placed
into AFM following the program order in the DyNN script.
If an operator occurs multiple times, each occurrence has
a row in AFM. Besides the operator representation, AFM
has the control-flow representation, which is a row full of
dummy values (all “0”s). The index for such a row in AFM
corresponds to the control statement location in the DyNN
source code. Hence, AFM captures the DyNN architecture.
AFM is built offline and takes minor memory overhead (at
most a few KB per DyNN).

AFM pays great attentions to reduce the complexity of the
pilot model from two perspectives. First, the operators with the
same tensor accesses and similar functionality are intentionally
not distinguished to reduce the parameters of the pilot model.
For example, the activation functions, ReLU and Sigmoid,
use the same idioms (i.e., stream) and tensor shapes. Those
operators are not distinguishable in AFM. However, this does
not impact the prediction accuracy of the pilot model, because
from the perspective of tensor usage, those operators have no
difference. Second, the detailed tensor information (such as

1Idiom-based representation for each operator is in GitHub repo

https://github.com/PASAUCMerced/Tensor-Management-for-DyNN-Workloads/blob/main/idiom-based%20representation.pdf

output

0, 0, 0, 0, 0, 0, 1, 0, 0

0, 1, 0, 1, 1, 2, 2, 4, 0

control flow statement

𝑠 𝑥, 𝑦 = ∑ 𝑆!!∈!#$%&(()

𝑠𝑐𝑜𝑟𝑒* =	𝑈+𝑝*1, 0, 0, 0, 0, 1, 3, 3, 0

0, 1, 0, 0, 0, 0, 1, 2, 0

0, 0, 0, 0, 1, 0, 1, 0, 0

𝑐! 𝑐!"#

Tree Node

𝑓* = 	𝑊*
,!
,!"#

+ b

p- = 	tanh	(𝑓*)

1×2 1×2

1×2
output:

𝑝

score

input: input:

Idiom-based op
representation

Input tensor
shape

(a) (b)

Fig. 4. An AFM example to show the static structure of the Tree-CNN shown
in Figure 1. (a) A node in DyNN with input and output tensors; (b) AFM
representation along with computation in operators.

tensor association with operators) is not explicitly expressed
in AFM. Instead, the tensor information is implicitly encoded
into the operator information.

An example of AFM. Figure 4 shows the AFM for the
Tree-CNN in Figure 1. Each node in the Tree-CNN has four
operators, represented as the first four rows in AFM where
the first six elements in each row correspond to the numbers
of transpose, gather, scatter, reduction, stream, and stencil
respectively. The last row in AFM corresponds to the control
flow (Line 9 in Figure 1.a, showing six “0” as dummy values,
as discussed before). The sequence of the operators and control
flow follows the program order shown in Figure 1.a.

B. Output of Pilot Model

The pilot-model output is the information of operators
grouped into execution blocks.

Execution blocks. The beginning of an execution block i is
the point where tensor migration for the next execution block
i + 1 starts. To guide tensor prefetch, the output of the pilot
model indicates how the operators should be organized into
those execution blocks, such that tensor migration for the block
i+1 can be overlapped with the prior block i. The knowledge
of how to partition the training of the DyNN into execution
blocks is learned through pilot model training (Sec. IV-D).

Output format. The pilot-model output is multiple vectors,
each of which includes operator information for an execution
block. Each vector has ten elements: (1) the total number of
operators and control flows in the execution block (which is
one number), (2) the numbers of the six idioms accumulated
from all operators in the execution block (which are six
numbers), and (3) the dimension sizes of input/output tensors
accumulated from all operators in the execution block (which
are three numbers). Given the above output and DyNN’s static
architecture, we can deterministically resolve dynamism (i.e.,
the control flows), discussed as follows.

Map pilot-model output to operators in DyNN. From
the first operator, DyNN-Offload traverses DyNN’s static ar-
chitecture, meanwhile bookkeeping the number of operators,
the number of idioms, and the dimension sizes of input/output
tensors of the traversed operators. Whenever a control flow
is encountered, DyNN-Offload enumerates and traverses each

NN

NP

S

PP

The cat on the mat

NN

NN NN NN NN

NP

NN NN

NN

sat

VP

NN

satNP

NN

NP

sat

on

(b)

of operators in an execution block
Idioms-based representation of an execution block

Input tensor shapes of an execution block

(a)

25, 5, 10 ,0, 5, 10, 15, 10, 20, 0

25, 5, 10 ,0, 5, 10, 15, 10, 20, 0

5, 1, 2 , 0, 1, 2, 3, 1, 4, 0

Fig. 5. An example of the pilot model output. (a) shows the output. This
output partitions the DyNN execution into 3 execution blocks. (b) shows the
dataflow graph of the DyNN for a given input and how the pilot model output
maps back to the operators in the DyNN.

possible branch. The traverse continues till the last operator in
the DyNN. Whenever any path leads to a bookkeeping record
matching the pilot-model output, then that path (including the
resolved control flows) is picked to decide tensor prefetch.

The pilot-model output should be able to be mapped to
a traverse path, because during the pilot-model training, all
training samples are created to have such a match. In our tests
of 12,000 cases, all find an exact match. If the traverse cannot
find a path matching the bookkeeping record, DyNN-Offload
chooses a path whose bookkeeping record is the closest to the
pilot-model output in terms of the number of operators. The
above mapping process does not cause large runtime overhead,
because a large DyNN does not have many control flows.

After resolving dynamism for a DyNN’s training sample,
the pilot-model output is stored on CPU memory to guide
tensor prefetch for the training sample. The storage cost in
CPU memory is small, because the ten-element vector for an
execution block takes tens of bytes and the number of the
blocks is typically O(10).

An example of the pilot-model output. Figure 5 shows
a pilot-model output to resolve dynamism in the example
DyNN depicted in Figure 1. Figure 5.(b) shows the dataflow
graph corresponding to the DyNN where dotted lines and
solid lines show input-dependent dynamic architecture and
static architecture respectively. For a given input sample in
this example, the pilot-model output partitions the dataflow
graph of the DyNN into three execution blocks.

C. Lightweight Pilot Model

Model topology. The pilot model consists of three input-
feature layers, three parallel Multilayer Perceptrons (MLPs),
and an output layer, shown in Figure 2 3⃝. Overall there are
3,260 trainable parameters in the pilot model. The inference
time of the pilot model is small, only 30 µs.

The three input-feature layers process (1) the input sample
to the DyNN, (2) the DyNN’s static architecture, and (3)
the basic NN type of DyNN, respectively. The basic NN
type of DyNN (e.g., convolutional neural networks, LSTM,
or transformer) is represented by a one-hot vector, while the
DyNN’s static architecture is represented by AFM.

Each MLP in the pilot model consists of four layers: an
input layer, two hidden layers and an output layer. We use
three small MLPs because of the following reason. There are
a variety of DyNN architectures, built upon basic NN. Using
a single bulk MLP in the pilot model to handle all types of
DyNN significantly increases the pilot model complexity and
inference time (by at least 100× in our evaluation). To address
this problem, we use three small MLPs in parallel in the pilot
model. When using the basic NN type as an input feature
to the pilot model, the pilot model activates only one of the
MLPs, hence significantly reducing the inference time. We use
three MLPs, since using more MLPs led to slow convergence
without improving accuracy during pilot model training, and
using less than three MLPs resulted in a loss of accuracy.

Embedding re-direction. We employ an embedding-
redirection technique to embed the input sample to the pilot
model. This technique reuses the embedding results from the
DyNN. The embedding is commonly used at the beginning
of the DyNN to convert each DyNN’s input sample into a
fixed-length vector for the following layers in the DyNN. The
embedding works with input samples (training samples) with
various sizes, and serves as a form of feature extraction. Using
the embedding results from the DyNN, the pilot model can
simplify its input layer to handle input samples with various
sizes. To use the embedding from the DyNN, the embedding
kernel is instrumented to copy (or re-direct) the embedding
results from GPU memory to CPU memory for the pilot model
to consume. The re-direction cost is smaller than using CPU
for embedding, so we do not use CPU for embedding.

D. Training Pilot Model

A pilot-training sample is a pair of an input vector and an
output vector. The input vector includes AFM of the DyNN
and an input sample to the DyNN. The output vector (or
label) uses the same format as the output of the pilot model
(Section IV-B). We discuss collecting pilot-training samples.

Pilot-training sample collection. AFM of the DyNN is
independent of DyNN’s input and built using static analysis.
In particular, we analyze the DyNN model script to record
operator names, input tensor shapes of operators (maybe
represented with variables) and control flows to build AFM.
This procedure can be done by a static analysis tool for
Python [51]. Pilot-training samples are collected from different
types of DyNNs to make the samples representative.

DyNN-Offload collects execution information of the DyNN
to generate labels for pilot-training samples. In particular,
given an input sample to the DyNN, DyNN-Offload runs the
DyNN and generates a dynamic execution trace. The trace
includes execution order of operators, their names, input tensor
shapes of each operator, and execution time of each operator.
This execution trace is used to generate a pilot-training label.

Labeling. The execution trace of the DyNN gives enough
profiling information for a traditional tensor-offloading method
(for static NN) to decide the partition of a dataflow graph. We
use the tensor-offloading method in Sentinel [57] because of its
generality and short turnaround time. Using the GPU memory

capacity, tensor profiling information (including execution or-
der and time of operators), and NN topology as input, Sentinel
partitions the dataflow graph to maximize the overlap between
tensor migration and training computation without violating
the GPU memory capacity. DyNN-Offload transforms the
output of Sentinel into a representation compatible with output
format of the pilot model. This representation is used as the
output vector (or label) of a pilot-training sample.

E. Runtime Design

Pilot model inference. The pilot model runs on CPU. When
a batch of DyNN-training samples is about to be transferred
to GPU to train the DyNN, the pilot model is applied to each
training sample (input sample) in the batch. The pilot-model
output for each DyNN’s training sample is sent to the runtime
system of DyNN-Offload on CPU to trigger tensor prefetch.

Memory management and tensor migration. GPU mem-
ory is partitioned into two equal-sized buffers: one for working
tensors referenced by the ongoing execution block (called work
buffer), and the other (called migration buffer) for prefetching
tensors for the next execution block. The two buffers switch
roles once the ongoing execution block is done. The double
buffering aims to hide tensor migration overhead. The two
buffers have the same size to simplify management and to
accommodate varying execution times across blocks. Striking
a balance, the work buffer size is large enough to handle time
variation in execution blocks, yet compact enough to reserve
space for the migration buffer.

Since CPU triggers tensor migration for execution blocks
and GPU performs execution-block-based DyNN-training,
there must be a synchronization mechanism between CPU and
GPU. We introduce an operator counter at CPU to record the
number of operators (GPU kernels) launched on GPU. When
the counter reaches the number of operators in the ongoing
execution block i, CPU is aware that GPU starts to execute
the block i+ 1, and starts to migrate tensors for i+ 2.

The migration buffer must evict unused tensors and prefetch
tensors to be used. Eviction and prefetching could happen in
parallel to better utilize interconnect bandwidth between CPU
and GPU. However, we find this solution has difficulty to
migrate tensors into a contiguous memory space in GPU, lead-
ing to memory fragmentation. Hence, DyNN-Offload evicts
tensors first, and then prefetches tensors.

The memory management is implemented at the runtime of
DyNN training. There is no need to change the DyNN.

Handling mis-prediction. The pilot model may mis-predict
operator execution order. As a result, when an operator is about
to be executed on GPU, tensors needed by the operator may
not be on GPU memory. In this case, DyNN-Offload instru-
ments the runtime error due to tensor missing and migrates
the tensors on demand. Additionally, DyNN-Offload records
the mis-prediction by recording the resolved architecture and
input sample of the DyNN, in order to build a training sample
to be used in the future offline training of the pilot model.

Furthermore, the mis-prediction case is directly used to
avoid repeated mis-prediction for other DyNN-training sam-

ples. Some DyNN-training samples may lead to the same
dataflow graph as the mis-prediction case. To identify such
a DyNN-training sample, the output of the pilot model is
compared with the output where there is mis-prediction. If the
two outputs are exactly the same, then the correct execution
block in the mis-prediction case is used to resolve the control
flows for the new DyNN-training sample.

Impact of dynamic batching in DyNN. DyNN-training
samples are often batched to improve GPU utilization [35],
[81]: a batch is dynamically formed by batching operators
from multiple dataflow graphs (each graph corresponds to
one DyNN-training sample). Dynamic batching couples the
execution of multiple dataflow graphs, but does not impact
the effectiveness of DyNN-Offload, due to two reasons.

(1) Dynamic batching does not change the execution order
of execution blocks in each dataflow graph of DyNN. Hence,
the tensor prefetch guided by the pilot model is still useful.
Also, the operator counter-based approach (Section IV-E) can
still effectively set up synchronization between CPU and GPU
for tensor prefetch. (2) Dynamic batching can extend the
execution time of batched operators in the DyNN because of
extra cache misses caused by thread block scheduling [77] and
TLB misses [13]. But the extended execution time of execution
blocks on GPU gives more opportunities to overlap with tensor
migration. Hence the effectiveness of DyNN-Offload to hide
tensor migration is not compromised.

V. IMPLEMENTATION

DyNN-Offload includes (1) a runtime system and (2) an of-
fline training system to collect pilot-training samples. The run-
time system is implemented on top of ONNX Runtime [45].
Since ONNX Runtime supports a variety of ML frame-
works (e.g., PyTorch and TensorFlow), operating systems (e.g.,
Linux and Android), and hardware platforms, DyNN-Offload
can benefit various DyNNs regardless of their environment.
DyNN-Offload uses a LLVM-based static analysis tool [9] to
count idioms in operators automatically. The runtime system
has two components: tensor manager and runtime scheduler.

Tensor manager is in charge of tensor (de)allocation
and handling of mis-prediction. DyNN-Offload intercepts ten-
sor allocation API AllocatorDefaultAlloc() used for
GPU memory allocation, and redirects it to CPU memory.
DyNN-Offload initially allocates all tensors on CPU memory
to avoid out-of-memory errors. To avoid memory leak, DyNN-
Offload intercepts tensor AllocatorDefaultFree() to
ensure memory space is freed regardless of the loca-
tion of the tensor. Furthermore, DyNN-Offload implements
a tensor fault handler leveraging the tensor hook mech-
anism in ONNX. The tensor fault handler is invoked
when any tensor needed by GPU computation is miss-
ing in GPU memory (i.e., a mis-prediction happens) and
a cudaErrorInvalidAddressSpace fault is reported.
The handler fetches the missing tensor from CPU memory
and records the mis-prediction information to a file.

Runtime scheduler is used for the pilot model
inference and tensor prefetch. In particular, the pi-

0 import torch
1 import torch.nn as nn
2 from ort_support.offload as ort_support
3
4 device = ort_support.set_offload_device()
5 model = BuildModel(config)
6 model = ort_support.create_ort_trainer(device,model)

Fig. 6. An example of using DyNN-Offload.

lot model is implemented as a user-defined operator
pilot_model_inference(), which is used as the
first operator in the dataflow graph for the DyNN.
pilot_model_inference() takes a DyNN-training
sample and runs the pilot model on CPU. The AFM generated
from pilot_model_inference() is used by the ONNX
runtime. Based upon operator-launching by the ONNX run-
time, DyNN-Offload counts the number of launched operators
and triggers tensor migration asynchronously. Within an exe-
cution block, DyNN-Offload migrates tensors without priority;
DyNN-Offload waits for the completion of tensor migration
and starts the computation for the next execution block.

Figure 5 illustrates how to use DyNN-Offload. Only Line
4 (deciding the offloading target device) and Line 6 (enabling
training) need to be added.

Training systems for the pilot model include (1) an
execution trace generator, (2) a partition simulator, and (3)
a pilot-training sample generator.

The execution trace generator is based upon the existing
tensor instrumentation infrastructures in PyTorch or Tensor-
Flow to generate the dynamic execution trace in a Json-
formatted file. The partition simulator consumes this file and
implements the partition algorithm in Sentinel. The partition
algorithm determines where tensor migration (prefetch) should
be triggered. The partition simulator transforms the DyNN
partition result into a representation compatible with the pilot-
model output. The pilot-training sample generator pairs up
outputs of the partition simulator, AFMs of DyNNs, and
DyNN-training samples to generate pilot-training samples.

Our pilot model uses LeakyReLU as activation, SGD as
optimizer, and 0.01 as learning rate. We fine-tune the hyper-
parameters of the pilot model using a genetic algorithm [31].
The pilot model training happens offline, and we do not need
to fine-tune it for each DyNN because the pilot is small and
general, and fine-tuning it easily causes catastrophic forgetting.

VI. EVALUATION

A. Methodology

Experimental setup. We use two environments: (1) four
servers, each equipped with an NVIDIA RTX6000 GPU (GPU
for desktop with 23GB memory) and dual Intel Xeon CPUs
(totally 24 cores) and 186 GB CPU memory. This platform
represents DL training environment for regular users. (2) Two
high-end servers, each with four 80GB NVIDIA A100 GPUs,
and dual Intel Ice Lake CPUs (totally 40 cores) and 500 GB
CPU memory. This platform represents the environment for
high-end users in data centers. The interconnect between CPU

TABLE II
DYNNS FOR EVALUATION. “BS” STANDS FOR BATCH SIZE.

DyNN name DyNN (block) type Dataset # of blocks BS
Tree-CNN [62] CNN CUB 200 128 32

UGAN [38] RNN circular gaussian 64 512
Tree-LSTM [72] LSTM SICK 128 512
var-LSTM [35] LSTM Reuters-21578 128 512
var-BERT [46] transformer wikitext-2-v1 48 32
AlphaFold [3] evoformer uniref90, pdb70 2,3,4 6

fixed-LSTM [71] LSTM Reuters-21578 128 512
fixed-Bert [12] transformer wikitext-2-v1 48 32

and GPU in both computing environments is 16-lane PCIe 3.0.
We use CUDA Toolkit 11.2 and PyTorch 1.9.

Workloads. We evaluate six DyNNs, covering the major
DyNN types, ranging from transformer-, LSTM-, and CNN-
based ones. We also evaluate two static NNs (fixed-Bert and
fixed-LSTM). See Table II. We build over 24,000 samples
from six of the eight models in Table II to train the pilot
model (to show the generalizability of the pilot model, training
samples are not collected from var-LSTM and var-BERT).
We evaluate 2,000 samples for each model in Table II for
performance testing. Training and testing samples do not
overlap.

Baselines for evaluation are summarized as follows.
• DTR [30] is a state-art-the-art solution based on tensor rema-

terialization for DyNNs. DTR frees memory space for acti-
vation tensors when the GPU memory is not large enough.
DTR rematerializes the freed activation when needed.

• Unified virtual memory (UVM) [44] enables GPU mem-
ory oversubscription by using CPU memory, and migrates
pages between CPU and GPU based on GPU’s demands.
UVM allows the programmer to use memory prefetch from
CPU to GPU through cudaMemPrefetchAsync(). This
mechanism must rely on the programmer to have a good
knowledge on how tensors are accessed in DyNN and ex-
plicitly specify that using cudaMemPrefetchAsync().
However, this knowledge cannot be known a priori because
of the dynamic and irregular nature of DyNN. Hence, we
do not evaluate UVM with prefetch. We maximize the
oversubscription rate of UVM (i.e., 2). This implies that
when using UVM, the sum of CPU and GPU memory can
be at most twice the size of the GPU memory, a standard
that aligns with industrial practice [2], [52].

• ZeRO-Offload [58] is an industry-quality solution from
Microsoft, aiming to optimize tensor offloading for static
transformer models to save GPU memory based on PGO.

B. Breaking Memory Capacity Wall

We first test the largest trainable models on a single GPU
with 80GB memory. We change the size of var-BERT by mak-
ing it deeper (i.e., increasing the number of transformer layers)
or wider (i.e., increasing the hidden size in each transformer
layer). A similar method has been used in existing work [50],
[56], [58], [69]. Without DyNN-Offload, PyTorch can only
train var-BERT with 192 transformer layers (3.85B parameters
and 1,024 as the hidden size) on A100 GPU. With DyNN-

TABLE III
MAX TRAINABLE BATCH SIZE (BS) AND MEMORY USAGE FOR DYNN

TRAINING WITH UVM, DTR AND DYNN-OFFLOAD.

UVM DTR DyNN-Offload
bs mem usage bs mem usage bs mem usage

TreeCNN 48 30GB 72 36GB 96 39GB
UGAN 768 34GB 1120 38GB 1152 39GB

Tree-LSTM 352 34.5GB 560 39GB 640 44GB
var-LSTM 352 32.5GB 560 36GB 640 40GB
var-BERT 48 88GB 72 122GB 128 159GB
AlphaFold 10 94GB 20 144GB 24 192GB

fixed-LSTM 352 34GB 560 38GB 640 40GB
fixed-BERT 48 88GB 72 122GB 128 159GB

Offload, PyTorch can train var-BERT with 1,500 transformer
layers (31.25B parameters and 1,024 as the hidden size), 8×
larger than without DyNN-Offload. We also evaluate DyNN-
Offload with wide var-BERT. DyNN-Offload enables 64-layer,
wide var-BERT training (20.2B parameters and 8,192 as the
hidden size), while without DyNN-Offload, the maximum
trainable model has only 10 layers (3.2B parameters and 8,192
as the hidden size). DyNN-Offload enables 6.3× larger wide-
model training than without DyNN-Offload.

In comparison, UVM can train var-BERT with up to 7.5B
parameters (consuming 2x GPU memory). Using UVM to
train a larger model leads to more than 200% slow down in
training time. DTR can only train var-BERT with 192 layers
(3.85B parameters and 1,024 as the hidden size). Training a
larger model with DTR suffers from system crashes because
of DTR’s internal mechanism to track tensor lifetime.

We further evaluate the largest batch size on a single
GPU with 80GB memory, shown in Table III. We compare
DyNN-Offload with UVM and DTR. To make the comparison
fair, we set the same maximum-runtime-overhead (200%) for
UVM, DTR, and DyNN-Offload. With this constraint, we
evaluate which method leads to the largest batch size. Table III
shows the result. With UVM, DTR and DyNN-Offload, the
largest batch size is 1.17×, 1.7×, and 3.6× larger, compared
with PyTorch without any memory saving solution. UVM is
worse than DyNN-Offload, because of UVM’s large runtime
overhead – on-demand fetching limits memory saving. DTR
is worse than DyNN-Offload, because DTR only works for
activation tensors, limiting the memory saving opportunities.

C. DyNN Training Improvement

Figure 7 shows the training time. We deploy BERT and
AlphaFold on an A100 GPU because of their high computing
and memory demands, and deploy other DyNNs on RTX GPU.
We report one-epoch time after warm-up run.

• UVM performs worst in almost all cases, because tensor
migration largely happens on demand (see the discussion for
Figure 8). UVM amplifies communication volume because
of page-level (instead of tensor-level) migration. Also, as
the batch size increases, the UVM’s overhead increases
significantly since more frequent GPU page faults happens
when GPU memory oversubscription is more serious.

• As the batch size increases, the performance benefit of
DyNN-Offload over DTR becomes larger. DyNN-Offload
outperforms DTR by 35% on average.

• ZeRO-Offload only works for static NN, such as fixed-Bert.
For static NN, DyNN-Offload outperforms ZeRO-Offload by
33% on average with three batch sizes, because of optimal
partition decided by DyNN-Offload.
We break down training time to analyze performance. See

Figure 8. We have 3 observations. (1) UVM spends a large
portion of time on tensor migration (see Tree-CNN and UGAN
where tensor migration takes 55% and 40% of training time).
(2) Rematerialization is costly. To save memory space, DTR
enables recursive tensor rematerilization, which introduces
extra computation. In AlphaFold, DTR has 1.7× computation
time than DyNN-Offload. (3) By removing rematerialization
and hiding migration, DyNN-Offload performs best.

We further compare the performance of DyNN-Offload and
DTR under various GPU memory budgets. Figure 9 shows the
results. In Figure 9, we include the performance of unmodified
PyTorch. When the memory budget is the largest in Figure 9,
all tensors can be allocated in GPU memory and the unmod-
ified PyTorch shows the best performance, which provides a
baseline to evaluate the overhead of DyNN-Offload (including
the cost of tensor migration) and DTR (including the cost of
recomputation) under various GPU memory budgets.

Figure 9 shows that as the memory budget becomes smaller,
DyNN’s training time becomes longer because of more fre-
quent tensor-migration (in DyNN-Offload) or recomputation
(in DTR). DyNN-Offload consistently outperforms DTR under
various memory budgets by 12% on average (up to 28%).

Furthermore, DTR exhibits rapid performance degradation
as the memory budget decreases because of its reliance on a
lengthy recomputation chain for tensor recovery. The length of
the computation chain increases superlinearly as the memory
budget decreases. In contrast, DyNN-Offload’s migration over-
head is limited by the interconnect bandwidth between GPU
and CPU. Until reaching the maximum hardware bandwidth,
the migration overhead in DyNN-Offload increases almost
linearly as the memory budget decreases.

Overhead analysis. The overhead of DyNN-Offload for a
training iteration includes (1) the pilot model inference time
and (2) the time of mapping the output of the pilot model to
operators. For (1), the time is 30 µs. For (2), the time is about
10-15 µs. The overhead is much smaller than a single iteration
time of large-scale DyNNs we evaluate (i.e., O(100µs)).

D. Scalability of DyNN-Offload

We use distributed training (see Figure 10). We employ data
parallelism on 8 A100 GPUs on two nodes. The batch size
per GPU is constant (20). As the scale becomes larger, the
throughput increases proportionally until 4 GPUs. After that,
the performance scaling slows down due to increase of inter-
GPU communication, but the overhead of DyNN-Offload and
on-demand tensor migration caused by mis-prediction remain
stable at all scales, leading to good scalability.

TABLE IV
PILOT MODEL PERFORMANCE WITH DIFFERENT MODEL COMPLEXITY.

“PM” STANDS FOR PILOT MODEL.

MLP Complexity
(# of neurons)

PM
Accuracy

PM Training
Time

PM Inference
Time

PM Memory
Consumption

256 0.7 2h 5us 40KB
512 0.82 2.5h 12us 75KB
1024 0.88 3h 20us 140KB
2048 0.91 4h 42us 260KB
4096 0.93 6h 80us 530KB

E. Construction of Pilot Model

We study how to construct an effective and efficient pilot
model. We want to reduce inference time as much as possible
but with high modeling accuracy. This is especially important
in use scenarios where DyNN has short iteration time. We
change the number of neurons in each MLP layer of the
pilot model and study its effect, shown in Table IV. When
increasing neurons from 256 to 512, the model accuracy
largely increases by 0.12. However, when we increase neurons
beyond 512, the momentum of accuracy increase is signifi-
cantly smaller, but the inference time continuously increases
with a rate of approximately 2x. Hence we choose 512 for our
pilot model, because of its good balance between accuracy and
costs (including inference and training times).

Our pilot model can work for any transformer-, LSTM-,
and CNN-based DyNN. For any new type of DyNN, the pilot
model can be re-trained with incremental training technique
such as curriculum learning [22], saving training efforts.

The number of mis-predictions. With 512 neurons in each
MLP layer, we find less than 60 mis-predictions in each DyNN
model with 3,000 testing samples.

F. Idiom-based Representation

We compare the idiom-based representation with another
representation based on operator type. We give each operator
type a unique ID and name this approach “global id-based
representation”. Using the two representations, we train two
sets of pilot models. Figure 11 shows the accuracy. Given the
same model complexity (in terms of the number of neurons),
the idiom-based one outperforms the global id-based one in
terms of accuracy by at least 19%. To reach the same accuracy,
e.g. 0.88, the idiom-based one needs 2,048 neurons, while the
global id-based one needs 4M neurons, which increases the
inference time by 128× and training time by 2.4×. Using the
operator type largely increases the input feature space, and has
to increase model complexity to improve accuracy.

G. Evaluation of DyNN Model Partition

DyNN-Offload partitions the dataflow graph of the DyNN
into execution blocks to hide tensor migration. We compare
it with 3 heuristics: (1) partitioning by evenly splitting the
number of operators, (2) evenly splitting the training time, and
(3) evenly splitting the size of all tensors. All partition methods
use the same number of partitions. See Figure 12. DyNN-
Offload outperforms other solutions by 14% - 24%, because

32 40 48 56
Batch size

3000

5000

7000

9000
Tr

ai
ni

ng
 t

im
e(

s)
/e

po
ch

TreeCNN

512 640 768 1024
Batch size

800

1000

1200

1400

1600

1800 UGAN

288 320 352 416
Batch size

600

800

1000

1200

1400
Tree-LSTM

288 320 352 416
Batch size

500

750

1000

1250 var-LSTM

32 40 48 64
Batch size

550

1050

1550

2050

Tr
ai

ni
ng

 t
im

e(
s)

/e
po

ch

var-Bert

6 8 10 12
Batch size

600

1000

1400

1800
AlphaFold

288 320 352 416
Batch size

400

600

800

1000

1200

fixed-LSTM

32 40 48 64
Batch size

600

1100

1600

2100 fixed-Bert
PyTorch
UVM
DTR
ZeRO-Offload
DyNN-Offload

Fig. 7. Training time comparison between existing solutions and DyNN-Offload

UVM DTR

batchsize=40

DO UVM DTR

batchsize=48

DO UVM DTR

batchsize=56

DO0

2000

4000

6000

8000

Tr
ai

ni
ng

ti
m

e(
s)

/e
po

ch

TreeCNN

UVM DTR

batchsize=640

DO UVM DTR

batchsize=768

DO UVM DTR

batchsize=1024

DO0

600

1200

1800 UGAN

UVM DTR

batchsize=320

DO UVM DTR

batchsize=325

DO UVM DTR

batchsize=416

DO0

500

1000

1500 TreeLSTM

UVM DTR

batchsize=640

DO UVM DTR

batchsize=768

DO UVM DTR

batchsize=1024

DO0

400

800

1200

Tr
ai

ni
ng

ti
m

e(
s)

/e
po

ch

val-LSTM

UVM DTR

batchsize=40

DO UVM DTR

batchsize=48

DO UVM DTR

batchsize=64

DO0

700

1400

2100 var-Bert

UVM DTR

batchsize=14

DO UVM DTR

batchsize=16

DO UVM DTR

batchsize=18

DO0

600

1200

1800 AlphaFold

Computation Rematerialization Migration

Fig. 8. Performance breakdown for DyNN-Offload, DTR and UVM. “DO” stands for DyNN-Offload.

DyNN-Offload can adaptively change the partition size to hide
tensor migration (Section IV-D), while others cannot.

H. Impact of Handling Misprediction of Pilot Model

We study the number of mis-predictions without and with
handling them. DyNN-Offload handles mis-predication to
avoid repeated mis-prediction and improve the pilot model
accuracy. Without handling mis-predication, the number of
mis-prediction for Tree-CNN, Tree-LSTM, and var-BERT is
167, 109, 182, evaluated with 3,000 training samples. With
handling of mis-prediction, the number of mis-prediction
decreases to 59, 42, and 102 respectively. Despite causing on-
demand data fetches from CPU memory, the rare occurrences
of mis-predictions increase training time by less than 1%.

VII. RELATED WORK

ML for memory and storage. LinnOS [24] uses a light
NN to infer SSD performance at per-IO granularity for

performance predictability. KML [4] and LearnedSSD [32]
employ ML to tune storage configurations. LLAMA [36]
introduces NN to predict object lifetime and avoid memory
fragmentation. Cori [16] and Kleio [15] use ML to decide
page migration frequency and granularity on hetero-memory.

Recent efforts use NN for prefetching. Voyager [68] builds
hierarchical NN to learn address correlation and prefetch
irregular sequences of memory accesses. Peled et al. [47] use
a table-based reinforcement learning framework to explore
the correlation between program contexts and memory ad-
dresses. Peled et al. [48] formulate prefetching as a regression
problem and use a fully-connected feed-forward network as
a prefetcher. Hashemi et al. [25] formulate prefetching as a
classification problem and use LSTM as a prefetcher. DyNN-
Offload is different from the above, because it focuses on a
unique memory capacity problem for training DyNNs.

System supports for DyNNs focus on batching dynamic
dataflow graphs to improve hardware utilization. Since differ-

30GB 24GB 18GB 12GB 6GB0

3000

6000

9000
TreeCNN (batchsize=40)

30GB 24GB 18GB 12GB 6GB0

800

1600

2400
UGAN (batchsize=680)

30GB 24GB 18GB 12GB 6GB0
700

1400
2100

Tr
ai

ni
ng

ti
m

e(
s)

/e
po

ch

TreeLSTM (batchsize=256)

30GB 24GB 18GB 12GB 6GB0

600

1200

1800
val-LSTM (batchsize=256)

80GB 64GB 48GB 32GB 16GB0

700

1400

2100
var-Bert (batchsize=36)

80GB 64GB 48GB 32GB 16GB0

800

1600

2400
AlphaFold (batchsize=6)

Memory Budget

PyTorch DTR DuNN-Offload

Fig. 9. Comparison between the existing solutions and DyNN-Offload with various DyNN models and GPU memory budgets. The red ‘x’ in the figure
indicates that the DyNN model with a given GPU memory budget cannot be trained because of limited GPU memory budget.

1 2 4 6 8
Number of GPUs

0

2

4

6

8

N
or

m
al

iz
ed

 t
ra

in
in

g
 t

hr
ou

gh
pu

t

var-Bert AlphaFold

Fig. 10. Scalability evaluation of DyNN-Offload in terms of system scales
(i.e., the number of GPUs).

28 29 210 211 212

Number of neurons in the each MLP layer of pilot model
0.0
0.2
0.4
0.6
0.8
1.0

Ac
c.

 o
f p

ilo
t

m
od

el

global id-based representation
idiom-based representation

Fig. 11. Evaluation of the effectiveness of the idiom-based representation.

ent input samples use different dataflow graphs, batching them
together with unresolved control flows is challenging.

TensorFlow Fold uses a depth-based batching [35], which
dynamically batches nodes with the same depth and shapes in
multiple dataflow graphs. However, this method misses batch-
ing opportunities (e.g., the loss functions in different dataflow
graphs can be at different depths and cannot be batched
using this method). DyNet [43] uses an agenda-based batching
that dynamically tracks nodes with dependencies resolved for
batching. However, DyNet focuses on individual nodes and
is not open to dataflow graph level optimizations. Cavs [81]
represents DyNN with a static vertex function and a dynamic
instance-specific graph. The scheduling of the static function
exposes batched execution opportunities over multiple input
samples. However, Cavs needs many programming efforts.
DyNN-Offload complements these works.

0

1000

2000

3000

4000

5000

6000

7000

Tr
ai

ni
ng

 ti
m

e
(s

ec
/e

po
ch

)

Tree-CNN
0

200

400

600

800

1000

1200

1400

Tree-LSTM

Evenly split # of ops
Evenly split DyNN training time

Evenly split migration tensor size
DyNN-Offload

0

200

400

600

800

1000

1200

1400

Var-Bert

Be
tt

er

Fig. 12. The training time with DyNN-Offload and three heuristic solutions
to partition DyNNs.

Input-aware performance optimization has been utilized
for input-sensitive applications, e.g., streaming graph process-
ing [7], Spark [87], sorting [14], and sparse matrix multipli-
cation [80]. A common theme of the above work is to use
input knowledge to determine how to optimize performance
(e.g., deciding configurations for autotuning or computation
granularity for aggregation). Also, input knowledge has been
used for GPU code generation [37], [63], [74]. Different from
the existing efforts, DyNN-Offload recognizes the implicit
knowledge in input samples to save GPU memory.

VIII. CONCLUSIONS

DyNN-Offload is a memory management system enabling
large DyNN training with limited GPU memory. Unlike the
traditional PGO-based approach that lacks abilities to react to
dynamism in DyNN, DyNN-Offload uses a learned approach
to resolve dynamism and predict access order of tensors. We
show that building a fast, accurate, and live ML model to guide
performance optimization and analysis for DyNNs is feasible.

REFERENCES

[1] “AlphaFold Performance: Molecule Size, Speed, Memory,
and GPU,” https://www.rbvi.ucsf.edu/chimerax/data/alphafold-
jan2022/afspeed.html.

[2] “TensorFlow,” https://github.com/tensorflow/tensorflow, 2022.

https://github.com/tensorflow/tensorflow

[3] G. Ahdritz, N. Bouatta, S. Kadyan, Q. Xia, W. Gerecke, T. J. O’Donnell,
D. Berenberg, I. Fisk, N. Zanichelli, B. Zhang, A. Nowaczynski,
B. Wang, M. M. Stepniewska-Dziubinska, S. Zhang, A. Ojewole,
M. E. Guney, S. Biderman, A. M. Watkins, S. Ra, P. R. Lorenzo,
L. Nivon, B. Weitzner, Y.-E. A. Ban, P. K. Sorger, E. Mostaque,
Z. Zhang, R. Bonneau, and M. AlQuraishi, “Openfold: Retraining
alphafold2 yields new insights into its learning mechanisms and
capacity for generalization,” bioRxiv, 2022. [Online]. Available:
https://www.biorxiv.org/content/early/2022/11/22/2022.11.20.517210

[4] I. U. Akgun, A. S. Aydin, A. Shaikh, L. Velikov, and E. Zadok, “A
Machine Learning Framework to Improve Storage System Performance,”
in ACM Workshop on Hot Topics in Storage and File Systems, 2021.

[5] M. Artetxe, S. Bhosale, N. Goyal, T. Mihaylov, M. Ott, S. Shleifer, X. V.
Lin, J. Du, S. Iyer, R. Pasunuru, G. Anantharaman, X. Li, S. Chen,
H. Akin, M. Baines, L. Martin, X. Zhou, P. S. Koura, B. O’Horo,
J. Wang, L. Zettlemoyer, M. Diab, Z. Kozareva, and V. Stoyanov,
“Efficient large scale language modeling with mixtures of experts,” 2022.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by
Jointly Learning to Align and Translate,” in International Conference
on Learning Representations (ICLR), 2015.

[7] A. Basak, Z. Qu, J. Lin, A. R. Alameldeen, Z. Chishti, Y. Ding,
and Y. Xie, “Improving streaming graph processing performance using
input knowledge,” in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 2021, pp. 1036–1050.

[8] S. Boslaugh, Statistics in a Nutshell. O’Reilly Media, Inc., 2014.
[9] L. Carrington, M. M. Tikir, C. Olschanowsky, M. Laurenzano, J. Peraza,

A. Snavely, and S. Poole, “An Idiom-Finding Tool for Increasing
Productivity of Accelerators,” in Proceedings of the International Con-
ference on Supercomputing (ICS), 2011.

[10] D. Chen, D. D. Lepikhin, H. Lee, M. Krikun, N. Shazeer, O. Firat,
Y. Huang, Y. Xu, and Z. Chen, “Gshard: Scaling giant models with
conditional computation and automatic sharding,” 2020.

[11] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” arXiv: Learning, 2016.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[13] B. Di, D. Hu, Z. Xie, J. Sun, H. Chen, J. Ren, and D. Li, “TLB-pilot:
Mitigating TLB Contention Attack on GPUs with Microarchitecture-
Aware Scheduling,” Transactions on Architecture and Code Optimiza-
tion, vol. 19, no. 1, 2021.

[14] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and
S. Amarasinghe, “Autotuning algorithmic choice for input sensitivity,”
ACM SIGPLAN Notices, vol. 50, no. 6, pp. 379–390, 2015.

[15] T. D. Doudali, S. Blagodurov, A. Vishnu, S. Gurumurthi, and
A. Gavrilovska, “Kleio: A Hybrid Memory Page Scheduler with Ma-
chine Intelligence,” in International Symposium on High-Performance
Parallel and Distributed Computing (HPDC), 2019.

[16] T. D. Doudali, D. Zahka, and A. Gavrilovska, “Cori: Dancing to the
Right Beat of Periodic Data Movements over Hybrid Memory Sys-
tems,” in International Parallel and Distributed Processing Symposium
(IPDPS), 2021.

[17] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun,
Y. Zhou, A. W. Yu, O. Firat, B. Zoph, L. Fedus, M. Bosma, Z. Zhou,
T. Wang, Y. E. Wang, K. Webster, M. Pellat, K. Robinson, K. Meier-
Hellstern, T. Duke, L. Dixon, K. Zhang, Q. V. Le, Y. Wu, Z. Chen, and
C. Cui, “Glam: Efficient scaling of language models with mixture-of-
experts,” 2022.

[18] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun,
Y. Zhou, A. W. Yu, O. Firat, B. Zoph, L. Fedus, M. Bosma, Z. Zhou,
T. Wang, Y. E. Wang, K. Webster, M. Pellat, K. Robinson, K. Meier-
Hellstern, T. Duke, L. Dixon, K. Zhang, Q. V. Le, Y. Wu, Z. Chen, and
C. Cui, “GLaM: Efficient Scaling of Language Models with Mixture-
of-Experts,” in International Conference on Machine Learning, 2022.

[19] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” Journal
of Machine Learning Research, vol. 23, no. 120, pp. 1–39, 2022.
[Online]. Available: http://jmlr.org/papers/v23/21-0998.html

[20] J. Feng and D. Huang, “Optimal gradient checkpoint search for arbitrary
computation graphs,” 2021.

[21] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves,
“Memory-Efficient Backpropagation through Time,” in International
Conference on Neural Information Processing Systems, 2016.

[22] G. Hacohen and D. Weinshall, “On The Power of Curriculum Learning
in Training Deep Networks,” CoRR, vol. abs/1904.03626, 2019.

[23] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic
neural networks: A survey,” CoRR, vol. abs/2102.04906, 2021.

[24] M. Hao, L. Toksoz, N. Li, E. E. Halim, H. Hoffmann, and H. S. Gunawi,
“LinnOS: Predictability on Unpredictable Flash Storage with a Light
Neural Network,” in USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2020.

[25] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning Memory Access Patterns,”
in International Conference on Machine Learning, 2018.

[26] M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella,
“AutoTM: Automatic Tensor Movement in Heterogeneous Memory Sys-
tems Using Integer Linear Programming,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020.

[27] C.-C. Huang, G. Jin, and J. Li, “SwapAdvisor: Pushing Deep Learning
Beyond the GPU Memory Limit via Smart Swapping,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2020.

[28] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q.
Weinberger, “Multi-Scale Dense Networks for Resource Efficient Image
Classification,” in International Conference on Learning Representations
(ICLR), 2018.

[29] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel, J. Gonzalez,
K. Keutzer, and I. Stoica, “Checkmate: Breaking the Memory Wall with
Optimal Tensor Rematerialization,” in Proceedings of Machine Learning
and Systems (MLSys), 2020.

[30] M. Kirisame, S. Lyubomirsky, A. Haan, J. Brennan, M. He, J. Roesch,
T. Chen, and Z. Tatlock, “Dynamic tensor rematerialization,” 2021.

[31] A. Lentzas, C. Nalmpantis, and D. Vrakas, “Hyperparameter Tuning
Using Quantum Genetic Algorithms,” in 2019 IEEE 31st International
Conference on Tools with Artificial Intelligence (ICTAI), 2019.

[32] D. Li and J. Huang, “A Learning-based Approach Towards Automated
Tuning of SSD Configurations,” CoRR, vol. abs/2110.08685, 2021.

[33] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object parsing
with graph LSTM,” CoRR, vol. abs/1603.07063, 2016.

[34] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime Neural Pruning,” in
Conference on Neural Information Processing Systems (NeurIPS), 2017.

[35] M. Looks, M. Herreshoff, D. Hutchins, and P. Norvig, “Deep Learning
with Dynamic Computation Graphs,” in International Conference on
Learning Representations (ICLR), 2017.

[36] M. Maas, D. G. Andersen, M. Isard, M. M. Javanmard, K. S. McKinley,
and C. Raffel, “Learning-Based Memory Allocation for C++ Server
Workloads,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2020.

[37] A. Magni, D. Grewe, and N. Johnson, “Input-aware auto-tuning for
directive-based GPU programming,” in Proceedings of the 6th Workshop
on General Purpose Processor Using Graphics Processing Units, 2013,
pp. 66–75.

[38] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative
adversarial networks,” 2017.

[39] A. Mirhoseini, “Pushing the Limits of Scaling Laws in the Age of
Generative Models,” Keynote at Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2023.

[40] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “PipeDream: Generalized
Pipeline Parallelism for DNN Training,” in Symposium on Operating
System Principles, 2019.

[41] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
“Memory-Efficient Pipeline-Parallel DNN Training,” in Proceedings of
the International Conference on Machine Learning (ICML), 2021.

[42] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. A.
Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient large-scale language model
training on gpu clusters using megatron-lm,” 2021.

[43] G. Neubig, Y. Goldberg, and C. Dyer, “On-the-fly Operation Batching
in Dynamic Computation Graphs,” in Conference on Neural Information
Processing Systems (NeurIPS), 2017.

[44] Nvidia, “Unified Memory,” https://devblogs.nvidia.com/unified-
memory-in-cuda-6/, 2019.

[45] ONNX, “ONNX Runtime,” https://onnxruntime.ai/.
[46] R. Pappagari, P. Żelasko, J. Villalba, Y. Carmiel, and N. Dehak,

“Hierarchical transformers for long document classification,” 2019.

https://www.biorxiv.org/content/early/2022/11/22/2022.11.20.517210
http://jmlr.org/papers/v23/21-0998.html
https://devblogs.nvidia.com/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/unified-memory-in-cuda-6/

[47] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic Locality and
Context-based Prefetching Using Reinforcement Learning,” in Interna-
tional Symposium on Computer Architecture, 2015.

[48] L. Peled, U. Weiser, and Y. Etsion, “A Neural Network Prefetcher for
Arbitrary Memory Access Patterns,” ACM Transactions on Architecture
and Code Optimization, 2019.

[49] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and
X. Qian, “Capuchin: Tensor-based GPU Memory Management for
Deep Learning,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.

[50] B. Pudipeddi, M. Mesmakhosroshahi, J. Xi, and S. Bharadwaj, “Training
large neural networks with constant memory using a new execution
algorithm,” CoRR, vol. abs/2002.05645, 2020.

[51] PyTorch, “PyTorch Profiler,” https://pytorch.org/tutorials/recipes/recipes/
profiler recipe.html, 2021.

[52] PyTorch, “UVM in torchRec,” https://github.com/pytorch/torchrec/blob/
main/examples/sharding/uvm.ipynb, 2022.

[53] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive Cluster
Scheduling for Goodput-Optimized Deep Learning,” in Proceedings
of the Symposium on Operating Systems Design and Implementation
(OSDI), 2021.

[54] S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi, A. A. Awan,
J. Rasley, and Y. He, “DeepSpeed-MoE: Advancing Mixture-of-Experts
Inference and Training to Power Next-Generation AI Scale,” CoRR, vol.
abs/2201.05596, 2022.

[55] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “ZeRO: Memory op-
timizations Toward Training Trillion Parameter Models,” in ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2020.

[56] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, “ZeRO-
Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep
Learning,” CoRR, vol. abs/2104.07857, 2021.

[57] J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel: Efficient
Tensor Migration and Allocation on Heterogeneous Memory Systems
for Deep Learning,” in International Symposium on High Performance
Computer Architecture (HPCA), 2020.

[58] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang,
D. Li, and Y. He, “ZeRO-Offload: Democratizing Billion-Scale Model
Training,” in USENIX Annual Technical Conference, 2021.

[59] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vDNN: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016.

[60] C. Riquelme, J. Puigcerver, B. Mustafa, M. Neumann, R. Jenatton,
A. Susano Pinto, D. Keysers, and N. Houlsby, “Scaling vision
with sparse mixture of experts,” in Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp.
8583–8595. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2021/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf

[61] S. Roller, S. Sukhbaatar, A. Szlam, and J. Weston, “Hash layers for large
sparse models,” 2021.

[62] D. Roy, P. Panda, and K. Roy, “Tree-cnn: A hierarchical deep convolu-
tional neural network for incremental learning,” 2019.

[63] M. Samadi, A. Hormati, M. Mehrara, J. Lee, and S. Mahlke, “Adaptive
input-aware compilation for graphics engines,” in Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2012, pp. 13–22.

[64] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green,
C. Qin, A. Žı́dek, A. W. Nelson, A. Bridgland et al., “Improved protein
structure prediction using potentials from deep learning,” Nature, vol.
577, no. 7792, pp. 706–710, 2020.

[65] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool,
P. Hawkins, H. Lee, M. Hong, C. Young, R. Sepassi, and B. Hechtman,
“Mesh-TensorFlow: Deep Learning for Supercomputers,” in Neural
Information Processing Systems (NeurIPS), 2018.

[66] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and
J. Dean, “Outrageously Large Neural Networks: The Sparsely-Gated
Mixture-of-Experts Layer,” in International Conference on Learning
Representations (ICLR), 2017.

[67] L. Shen, Z. Wu, W. Gong, H. Hao, Y. Bai, H. Wu, X. Wu, J. Bian,
H. Xiong, D. Yu, and Y. Ma, “Se-moe: A scalable and efficient mixture-
of-experts distributed training and inference system,” 2023.

[68] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin,
“A Hierarchical Neural Model of Data Prefetching,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2021.

[69] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” 2019.

[70] J. M. Siskind and B. A. Pearlmutter, “Divide-and-conquer checkpointing
for arbitrary programs with no user annotation,” Optimization Methods
and Software, vol. 33, no. 4-6, p. 1288–1330, Sep 2018. [Online].
Available: http://dx.doi.org/10.1080/10556788.2018.1459621

[71] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to Sequence Learning
with Neural Networks,” in Conference on Neural Information Processing
Systems (NeurIPS), 2014.

[72] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” 2015.

[73] N. Team, M. R. Costa-jussà, J. Cross, O. Çelebi, M. Elbayad,
K. Heafield, K. Heffernan, E. Kalbassi, J. Lam, D. Licht, J. Maillard,
A. Sun, S. Wang, G. Wenzek, A. Youngblood, B. Akula, L. Barrault,
G. M. Gonzalez, P. Hansanti, J. Hoffman, S. Jarrett, K. R. Sadagopan,
D. Rowe, S. Spruit, C. Tran, P. Andrews, N. F. Ayan, S. Bhosale,
S. Edunov, A. Fan, C. Gao, V. Goswami, F. Guzmán, P. Koehn,
A. Mourachko, C. Ropers, S. Saleem, H. Schwenk, and J. Wang,
“No language left behind: Scaling human-centered machine translation,”
2022.

[74] P. Tillet and D. Cox, “Input-Aware Auto-tuning of Compute-bound
HPC kernels,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2017.

[75] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska,
“Superneurons: Dynamic GPU Memory Management for Training Deep
Neural Networks,” in ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2018.

[76] Wikipedia, “Jaccard Index.” [Online]. Available: https://en.wikipedia.
org/wiki/Jaccard index

[77] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter, “Enabling and Exploit-
ing Flexible Task Assignment on GPU through SM-Centric Program
Transformations,” in International Conference on Supercomputing (ICS),
2015.

[78] Z. Wu, D. Zhao, Q. Liang, J. Yu, A. Gulati, and R. Pang, “Dynamic spar-
sity neural networks for automatic speech recognition,” in International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.

[79] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia, “AntMan: Dynamic Scaling on GPU Clusters for Deep Learn-
ing,” in Symposium on Operating Systems Design and Implementation
(OSDI), 2020.

[80] Z. Xie, G. Tan, W. Liu, and N. Sun, “IA-SpGEMM: An Input-Aware
Auto-tuning Framework for Parallel Sparse Matrix-Matrix Multiplica-
tion,” in Proceedings of the ACM International Conference on Super-
computing (ICS), 2019.

[81] S. Xu, H. Zhang, G. Neubig, W. Dai, J. K. Kim, Z. Deng, Q. Ho,
G. Yang, and E. P. Xing, “Cavs: An Efficient Runtime System for
Dynamic Neural Networks,” in Proceedings of USENIX Conference on
USENIX Annual Technical conference (ATC), 2018.

[82] F. Xue, Z. Shi, F. Wei, Y. Lou, Y. Liu, and Y. You, “Go wider
instead of deeper,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 8, 2022, pp. 8779–8787.

[83] A. Yang, J. Lin, R. Men, C. Zhou, L. Jiang, X. Jia, A. Wang, J. Zhang,
J. Wang, Y. Li, D. Zhang, W. Lin, L. Qu, J. Zhou, and H. Yang, “M6-t:
Exploring sparse expert models and beyond,” 2021.

[84] J. A. Yang, J. Huang, J. Park, P. T. P. Tang, and A. Tulloch, “Mixed-
Precision Embedding Using a Cache,” in Conference on Machine
Learning and Systems, 2020.

[85] G. X. Yu, Y. Gao, P. Golikov, and G. Pekhimenko, “Habitat: A Runtime-
Based Computational Performance Predictor for Deep Neural Network
Training,” in USENIX Annual Technical Conference (ATC 21), 2021.

[86] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable Neural
Networks,” in International Conference on Learning Representations
(ICLR), 2019.

[87] Z. Yu, Z. Bei, and X. Qian, “Datasize-aware High Dimensional Configu-
rations Auto-tuning of In-Memory Cluster Computing,” in International

https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://github.com/pytorch/torchrec/blob/main/examples/sharding/uvm.ipynb
https://github.com/pytorch/torchrec/blob/main/examples/sharding/uvm.ipynb
https://proceedings.neurips.cc/paper_files/paper/2021/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
http://dx.doi.org/10.1080/10556788.2018.1459621
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Jaccard_index

Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2018.

	Introduction
	Background
	Dynamic Neural Networks
	Breaking Memory Capacity Wall
	Using Machine Learning to Guide Tensor Migration

	Overview
	Design
	Design of Input Features
	Design Goals
	Idiom-based Representation

	Output of Pilot Model
	Lightweight Pilot Model
	Training Pilot Model
	Runtime Design

	Implementation
	Evaluation
	Methodology
	Breaking Memory Capacity Wall
	DyNN Training Improvement
	Scalability of DyNN-Offload
	Construction of Pilot Model
	Idiom-based Representation
	Evaluation of DyNN Model Partition
	Impact of Handling Misprediction of Pilot Model

	Related Work
	Conclusions
	References

